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An analysis of the excitation of classical and quantum harmonic oscillators by unipolar pulses in a rectangular

time profile has been carried out. For a quantum oscillator, the probability of excitation is determined depending

on the parameters of the problem. The transition from the case of extremely short pulses, when the excitation is

determined by the electrical area of the pulse, to long pulses, for which the main factor is the pulse energy, is

traced. At the same time, a significant difference was found in the conditions for the applicability of the sudden

perturbation approximation in the cases of classical and quantum oscillators.
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Introduction

The model of a harmonic oscillator, both classical and

quantum, describes well a number of physical processes,

including molecular vibrations (unless high vibrational

levels [1] are excited). For a quantum oscillator, the

nonrelativistic Schrödinger equation has an exact solution

closely related to the solution of the classical equation

of motion, at an arbitrary kind of external force and

time dependence of the oscillator frequency (see original

articles [2–6], the contents of which are summarized in

monograph [7]). The result, of course, depends significantly

on the type of time dependence of these quantities.

Recently, significant progress has been made in obtaining

very short laser pulses, recognized by the awarding of

the Nobel Prizes in 1999 ([8] femtosecond durations) and

2023 ([9] attosecond pulses). Of particular interest, in

our opinion, are extremely short unipolar or quasi-unipolar

pulses due to their unidirectional (for the entire duration of

a pulse) effect on electric charges (see original articles [10–

16], reviews [17–19] and a chapter in monograph [20]).

Although some properties of unipolar pulses have already

been discussed more than 60 years ago [21], discussions

about the very possibility of existence of such pulses are still

ongoing [22,23]. In our opinion, there is convincing theo-

retical and experimental evidence for the existence of such

pulses and their propagation in coaxial waveguides [20]. The

acuteness of the discussion is reduced by the fact that there

are no essential differences between the effect on micro-

objects of a strictly unipolar pulse and a pulse with an

extended weak front of pulses of opposite polarity and/or

a pair of widely spaced unipolar pulses with a total zero

electrical area.

The purpose of the present work is to analyze the

excitation of a harmonic oscillator by a unipolar pulse with

a rectangular time profile and to compare the classical and

quantum descriptions of such excitation. This will make

it possible to trace the transition from extremely short

to longer pulses. Note that the excitation of a quantum

harmonic oscillator has been considered on the basis of the

exact solution and the solution in the sudden perturbation

approximation [24,25] in numerous studies [26–31]. The

problem considered in this paper allows us to clarify

the conditions of applicability of the sudden perturbation

approximation. We also point out that the possibility

of controlling the shape and obtaining unipolar or quasi-

unipolar pulses with a near-rectangular time profile is

demonstrated theoretically in [32–35].

Classical oscillator

The equation of motion of a classical harmonic oscillator

with unit mass under the action of external force f (t),
which can be identified with electric field strength E , has
the following form:

d2x/dt2 + ω2x = f (t). (1)

Here, x is the displacement of the oscillator relative to the

equilibrium position in the absence of force and ω is the

frequency of free oscillations. Before the start of the external

force pulse (t < 0), the oscillator is in the equilibrium

position, x(0) = 0, dx/dt(0) = 0.

A single pulse with a rectangular time profile with

duration τ and amplitude A has
”
pulse area“ (understood as

electrical area) S f =
∫

f (t)dt = Aτ and energy W f = A2τ .

During a pulse (0 < t < τ ), the solution (1) describes a
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harmonic oscillation near the displaced equilibrium position:

x(t) =
A
ω2

[1− cos(ω)] = 2
A
ω2

sin2
(ωt
2

)

. (2)

By the end of a pulse (t = τ ), the oscillator gains energy

W = 2
A
ω2

sin2
(ωτ

2

)

. (3)

For a fixed force amplitude A and increasing pulse

duration τ , the energy of the oscillator changes peri-

odically between a maximum value of Wmax = 2 A
ω2 at

τ =
(

N + 1
2

)

Tosc, where Tosc = 2π
ω

is the period of free

oscillation of the oscillator and N is an integer, and a

minimum value of Wmin = 0 corresponding to complete

stopping of the oscillator in the equilibrium position at

τ = NTosc . In terms of pulse energy,

W = 2
W f

ω2τ
sin2

(ωτ

2

)

=
W f

ω2ϕ
sin2 ϕ, (4)

where ϕ = ωτ /2. Extrema of the oscillator energy at a

fixed pulse energy and increasing pulse duration are reached

at ϕ values that are the solutions of transcendental equation

tanϕ = 2ϕ. The first and main maximum is realized at

ϕ ≈ 1.17. Energy minima Wmin = 0 again correspond to

the oscillator stopping at τ = NTosc .

For pulses of duration much shorter than the period of

the oscillator,

τ ≪ Tosc, (5)

its final energy, as can be seen from (3), is completely deter-

mined by the electrical area of a pulse: W = 1
2
(Aτ )2 = 1

2
S2

E .

This corresponds to the approximation of sudden pertur-

bations where a pulse is so short that its duration is not

sufficient for the position of the oscillator to shift, and

the whole effect of the pulse on it is reduced to the

transmission of a mechanical momentum proportional to

the electrical area of the pulse. It is noteworthy that in the

classical description, condition (5) is the only condition for

the applicability of the sudden perturbation approximation,

regardless of the amplitude or energy of the excitation pulse.

Oscillator excitation by multiple rectangular pulses can

be examined in a similar way. The difference is the change

in initial conditions for the next pulse due to the effects of

previous pulses.

Quantum oscillator

The Schrödinger equation for a quantum harmonic oscil-

lator excited by external force f (t) for wave function ψ(x , t)
in the atomic system of units (unit charge and mass of the

electron, e = m = 1, and reduced Planck’s constant ~ = 1)
has the following form:

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+

1

2
ω2x2ψ − f xψ. (6)

Here, x is the coordinate, and the rest of the notation is as

above.

In the absence of an external force, before the arrival

of a pulse (t → −∞) and after its termination (t → +∞),
stationary states of the free oscillator are described by an

equidistant energy spectrum and wave functions of the

form [7]

ψn(x , t) = ϕn(x) exp

[

−i

(

n +
1

2

)

ωt

]

,

ϕn(x) =

(

1

2n!

√

ω

π

)1/2

exp

(

−1

2
ωx2

)

Hn

(√
ωx

)

. (7)

Here, n = 0, 1, 2, . . . is the state number and Hn are

Hermite polynomials. Transitions between these levels

occur during a pulse. The probability of transition from

level n to level m within the entire pulse duration is given

by the expression [7]

Wmn =
n< !
n> !

νk
(

Lnk
<

)2
exp(−ν), (8)

where Lk
n are generalized Laguerre polynomials,

n<=min(m, n), n> = max(m, n), and k = |n − m|.
In particular, the probabilities of the oscillator remaining in

the ground state W00 after a pulse and its excitation Wexc

are

W00 = exp(−ν), Wexc = 1−W00 = 1− exp(−ν). (9)

The main parameter in (8) and (9) is dimensionless

quantity ν , which depends on the type of function f (t).
For a rectangular pulse with the above characteristics,

ν = ν0

{

4 sin2
ωτ

2
+

+

[

A
ω2

ωτ +

(

1− A
ω2

)

sin(ωτ )

]2}

,

(10)

where ν0 = A2

2ω3 . For extremely short pulses (condition (5))
in the lowest approximation,

ν =
(Aτ )2

2ω
=

S2
f

2ω
. (11)

The dependence of the probability only on the electrical

area of a pulse corresponds to the sudden perturbation

approximation.

With the next term of the expansion of (10) in small

parameter ωτ taken into account,

ν =
S2

f

2ω

[

1− 1

3

(

1

4
+

A
ω2

)

(ωτ )2
]

. (12)

The correction term depends not only on the electrical area

of a pulse, but also on its duration. It is small under the

condition
1

3

(

1

4
+

A
ω2

)

(ωτ )2 ≪ 1. (13)
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Inequality (13) is violated at sufficiently large pulse

amplitudes, i.e., at large displacements of the mean oscillator

position A/ω2. Requirement (5) of smallness of the pulse

duration is then insufficient to justify the sudden pertur-

bation approximation. Physically, it implies that at large

pulse amplitudes, the oscillator is displaced by appreciable

distances during a pulse. Thus, the non-point nature

of the quantum oscillator, which, in contrast to a point

classical oscillator, is characterized by a spatially distributed

wave function, becomes significant. And this violates

the conditions of applicability of the sudden perturbation

approximation in the case of a quantum oscillator.

For pulses with durations markedly longer than the

oscillation period of the free oscillator (ωτ ≫ 1),

ν =
W 2

f

2ω5
. (14)

In this case, the degree of oscillator excitation is determined

not by the electrical area of a pulse, but by its energy.

Figure 1 shows the dependence of the probability of

excitation (Wexc) of a quantum oscillator from its initial

ground state on the pulse duration (more precisely, on

dimensionless quantity ωτ , which has the meaning of

”
number of periods“ of free oscillations of the oscillator

during a pulse) calculated by formulae (9) and (10) at

different values of parameter A/ω2. As in the case of

the classical oscillator, this dependence is not periodic.

The
”
quantum“ difference is the fact that the minima

do not fall to zero, contradicting the sudden perturbation

approximation (except for the trivial case ωτ = 0. It

can also be seen that as pulse amplitude A increases,

the excitation probability approaches unity. These results

confirm the possibility of creating level population inversion

by pumping with extremely short pulses.
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Figure 1. Dependence of oscillator excitation probability Wexc on

excitation pulse duration τ . Parameters: ω = 0.1; A = 0 (curve 1),
0.05 (2), 0.07 (3), and 0.1 (4).
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Figure 2. Dependence of the oscillator excitation probability (ex-
act (curves 1 and 3) and in the sudden perturbation approximation

(2, 4)) on amplitude A of the excitation pulse at ωτ = 0.1 (1, 2)
and 0.2 (3, 4).

Figure 2 illustrates a comparison between the
”
exact“

expression for the excitation probability and its counterpart

in the sudden perturbation approximation. The difference is

quantitative in nature and evident at intermediate values of

pulse amplitude. This fact allows us to define the scope of

application of the above approximation.

Discussion and conclusion

Thus, while the approximation of sudden perturbations

is applicable in the case of a classical oscillator if just the

requirement of smallness of the perturbation pulse duration

in comparison with the characteristic period of the oscillator

is fulfilled, an additional restriction on the perturbation

amplitude arises for a quantum oscillator. Taken together,

these conditions reduce to the requirement of smallness of

changes in the potential energy of the oscillator during a

pulse. The difference in the applicability conditions of the

approximation for classical and quantum oscillators is due to

the fact that the former is point-like and the latter is spatially

distributed. It appears that this conclusion is also true for

other objects modelled by harmonic oscillators.

Another conclusion, also of a general character, is the

transition from the electrical area of a pulse (as a major

factor of excitation efficiency) at short durations to the

energy of that pulse for longer pulses. These conclusions

were obtained outside the framework of perturbation theory,

which extends the scope of their applicability.
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Appendix. Derivation of formula (10)

We use the notation from [7] and the method of solving

the Schrödinger equation given there for a rectangular pulse

with amplitude A and duration τ . To do this, we return to

the equation of motion of a classical oscillator (1), where

x is replaced by η, for function f (t) = A at 0 < t < τ and

0 outside of this time interval. Let us assume that at t < 0

η = exp(iωt). Within the (0, τ ) interval, the solution of

equation d2η/dt2 + ω2η = A is the expression

η(t) =
A
ω2

+ exp(iωt) − A
ω2

cos(ωt). (A1)

We now find the value of d :

d =
iA√
2ω

τ
∫

0

η(t)dt =
A√
2ω3/2

{

−2 sin2
ωτ

2

+ i

[

A
ω2

ωτ +

(

1− A
ω2

)

sin(ωτ )

]}

. (A2)

Finally, the calculation of ν = |d|2 yields expression (10).
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