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Potential energy curves of low-lying states of the CN molecule taking

into account relativistic and quantum-electrodynamic corrections
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By the method of multireference configuration-interaction in the basis of Dirac-Fock-Sturm orbitals, a relativistic

first-principles calculation of the potential energy curves of low-lying X26+
1/2 and A251/2 states of the CN molecule

in the range of internuclear distances 0.8−8.0 Å has been performed. Using the method of the model Lamb shift

operator, quantum-electrodynamic corrections to the total energy of the molecule for the given states have also

been calculated. The contribution of quantum-electrodynamic corrections to the equilibrium internuclear distance

Re
AB , dissociation energy De , and vibrational constant ωe of the ground state of the CN molecule is considered.
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1. Introduction

Among the most important diatomic molecules for astro-

physics, the CN radical plays a special role, whose spectrum

has been recorded in a wide variety of astronomical

objects. For example, the spectra of carbon-rich stars

contain lines corresponding to electronic transitions in the

CN molecule [1]. Also, spectral lines of the CN radical

have been detected in sunspots [2] and comets [3,4].
The CN absorption lines recorded in nuclei of galaxies

may indicate active star formation [5]. The study of CN

energy levels in molecular clouds in the interstellar medium

allows us to study cosmic background radiation [6] and the

isotopic composition and formation history of galaxies [7,8].
In addition, astrophysical spectroscopic data on the CN

molecule can be used to study the variation of fundamental

constants with time [9].
The structure of energy levels of the CN molecule

has been examined numerous times both experimentally

and theoretically. The most complete spectroscopic data

are available for transitions between the three lowest CN

doublet states: the so-called
”
violet“ B26+–X26+ [10]

and
”
red“ A25− X26+ [11] systems [12]. The theoretical

study of spectroscopic properties of a molecule requires

the construction of potential energy curves, which can

be used to calculate vibrational contributions to the total

energies of molecules. Semi-empirical methods, which

utilize available experimental spectroscopic data, have been

used widely to construct potential energy curves of different

electronic states of the CN molecule [13–15]. Calculations

of potential energy curves from first principles were also

performed [16–19].

To further improve the accuracy of quantum-chemical

calculations, it may be necessary to perform more accu-

rate calculations of relativistic contributions and introduce

quantum-electrodynamic (QED) corrections to the total

energy of the molecule. For more exact calculation of

relativistic contributions, it is necessary to go beyond the

scalar-relativistic Douglas–Kroll approximation [20] and take

into account spin-orbit splitting, which can be done, for

example, with the use of the two-component Breit–Pauli
Hamiltonian or the four-component Dirac–Coulomb–Breit
Hamiltonian. As for the calculation of QED corrections, it

should be noted that rigorous calculations of molecular QED

corrections from first principles are a very difficult task and

are currently only possible for one-electron and two-electron

molecular ions [21–23]. However, QED effects can be

accounted for with a sufficiently high degree of accuracy by

the model-QED-operator [24–27] or the effective radiation

potential [28–31]. In our recent work [32], the model

operator method [24] was generalized to the calculation of

the multi-electron QED corrections in the CO molecule.

Earlier in calculations of various properties of atoms and

ions we widely used the relativistic method of multirefer-

ence configuration-interaction in the basis of Dirac-Fock-

Sturm orbitals (MRCI-DFS) [33–35]. In Ref. [32], this

method was generalized to the case of calculations of the

potential energy of diatomic molecules with closed shells.

This work aims to extend the application of the MRCI-DFS

method to molecules with open electron shells.

In the present work, potential energy curves for low-lying

states X26+
1/2 and A251/2 of the CN molecule in the region

of internuclear distances of 0.8−8.0 Å are obtained. QED

corrections to the total energy of the X26+
1/2 and A251/2
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states of the CN molecule are determined by the model-

QED-operator approach [32]. In addition, the contribution

of QED corrections to equilibrium internuclear distance

Re
AB , dissociation energy De , and vibrational constant ωe

is obtained for the X26+
1/2 state of CN.

Atomic system of units is used herein (e = m = ~ = 1).

2. Theoretical methods

The MRCI-DFS method for calculations of diatomic

molecules was discussed in detail in Ref. [32]. Here, we will

describe the main points of this method. Adiabatic potential

energy curves of the CN molecule were obtained in the

present study using the Dirac–Coulomb (DC) Hamiltonian:

ĤDC = 3(+)
[

ĤD + V̂C

]

3(+). (1)

Here, 3(+) is the product of one-electron projectors to the

positive spectrum of the Dirac–Fock (DF) operator, ĤD is

the sum of one-electron Dirac Hamiltonians that contain the

two-center potential created by nuclei

VAB(r) = V A
nucl(r − RA) + V B

nucl(r − RB), (2)

and V̂C is the sum of two-electron operators of the Coulomb

interelectron interaction. In potential (2), RA, RB are the

radius vectors of nuclei A and B , respectively. The model of

a uniformly charged sphere nucleus was used to construct

nuclei potentials V A,B
nucl (r). The values of mean-square radii

of the nuclei were taken from Ref. [36].
At each given internuclear distance, many-electron wave

function 9� of a molecule with a certain value of projection

� of the total angular momentum onto the internuclear axis

is represented as a linear combination of Slater determinants

9� =
∑

β

Cβ(�)detβ(�). (3)

The problem of determining the coefficients of Cβ(�)
reduces to the eigenvalue problem

HDC C(�) = EDC(�)C(�), (4)

where HDC is the matrix of the DC Hamiltonian in the Slater

determinants basis and C(�) is a column vector consisting

of the coefficients of expansion (3).
The Slater determinants are constructed from one-

electron molecular orbitals expanded in a two-center basis

of DFS orbitals centered on different nuclei. The expansion

coefficients of molecular orbitals in the DFS basis are

determined by solving the two-center equations of the

restricted DF method in matrix form (with orbitals with

different-sign projections of the total angular momentum on

the internuclear axis being populated equally).
When constructing the basis of one-electron DFS func-

tions, orbitals of the basic configurations of carbon and

nitrogen atoms were obtained first by solving the DF [37]
equations numerically in the approximation of the center of
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Figure 1. Dependence of the potential energy of the X26+
1/2 and

A251/2 states of the CN molecule on the internuclear distance,

which was calculated by the MRCI-DFS method, in comparison

with the results of [18].

gravity of the nonrelativistic configuration [38]. At the next

stage, we determined the virtual Sturm orbitals by solving

numerically the Dirac–Fock–Sturm [33–35,39] equations.

QED corrections to the potential curves of the CN

molecule were calculated using the model-QED-operator

approach [24,25,40–42]. In calculations of QED corrections,

the model operator was added to the Hamiltonian in the

step of constructing the DFS basis, in solving the DF

molecular equations, and in calculating the HDC matrix.

In other words, the model operator has been accounted

for in all orders of perturbation theory. The QED energy

correction was defined as the difference between the total

electronic energies of the molecule with and without the

model operator.

3. Calculation results

In the present work, adiabatic potential energy curves

for two low-lying doublet states X26+
1/2 and A251/2 of

the CN molecule were calculated using the MRCI-DFS

method for inter-nuclear distances RAB ∈ [0.8, 8.0] Å. All

possible single and double excitations from all reference

configurations to the space of active and virtual orbitals

were taken into account in the construction of the MRCI

matrix. Localized 1s atomic orbitals were assigned to the

frozen core. DFS atomic orbitals with principal quantum

number n ≤ 5 and orbital quantum number l ≤ 3 of both

atoms and, additionally, the 6s orbital at each center were

included into the one-electron basis.
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Fig. 1 shows the results of calculation of the potential

energy curves in the present study (black dots and red

squares for states X26+
1/2 and A251/2, respectively) and

the curves obtained in Ref. [18] (black solid line and red

dashed line for states X26+
1/2 and A251/2, respectively). In

Ref. [18], the curves of several low-lying CN states were

calculated using the MOLPRO program. The potential

energy curves in Fig. 1, as well as the QED plot in Fig. 2,

are presented in the interatomic distance range up to 4.0 Å
in order to render the region of minimum of the curves in

more detail.

Comparison of the results of the present calculations with

those of Ref. [18] shows good agreement for both states.

The plot shows correct positions of the points both at small

distances and in the region of the potential minimum and

the dissociation limit. In addition, the intersection point of

two potential curves at RAB ≈ 1.5 Å is also consistent with

Ref. [18]. Strictly speaking, in the relativistic calculation, two

adiabatic curves shown in the plot cannot intersect, since

they have the same projection of the total momentum on

the molecule axis. However, in the nonrelativistic and scalar-

relativistic approximations [18], they are molecular terms of

different symmetry. Therefore, we have plotted our curves

as intersecting nonrelativistic terms of different symmetry

for clarity.

In the present study, QED corrections to the electronic

energies of the CN molecule for the X26+
1/2 and A251/2

states were calculated by the model-QED-operator ap-

proach. The atomic orbitals of both centers with n ≤ 4 and

l ≤ 2 were used as a one-electron basis in these calculations.

Fig. 2 shows the results of calculation of QED corrections

to the energies of states X26+
1/2 (black solid curve) and

A251/2 (red dashed curve) of the CN molecule. The plot

Internuclear distance, Å
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1015

1013

1011

1009

1007

999

997

995

Q
E

D
 c

or
re

ct
io

n,
 c

m
–1

X
2 +
S , QED correction

A
2
P, QED correction

1005

1003

1001

Figure 2. Dependence of the QED corrections to the potential

energy of the X26+
1/2 and A251/2 states of the CN molecule on the

internuclear distance.

Equilibrium internuclear distance Re
AB (Å), dissociation energy De

(cm−1), and vibrational constant ωe (cm−1) for the ground state of

the CN molecule obtained in this work without QED corrections

(2nd column) and with QED corrections (3rd column). The fourth
and fifth columns present the data from Ref. [11] and Ref. [17],
respectively

Value DC DC+QED [11] [17]

Re
AB , Å 1.177 1.177 1.172 1.171

De , cm
−1 61640.1 61641.0 - 63083.8

ωe , cm
−1 2119.9 2120.1 2068.7 2069.3

shows that the depth of the minimum of the QED correction

curve for the X26+
1/2 state relative to the long-range limit is

very small: less than 2 cm−1. However, as the interatomic

distances decrease, the magnitude of QED contributions

increases dramatically.

Finally, for the ground state of the CN molecule, we

calculated the contributions of QED corrections to the

values of certain molecular constants, namely equilibrium

internuclear distance R e
AB , dissociation energy De , and

vibrational constant ωe . The values of R e
AB and ωe were

determined in OpenMolcas with the use of the adiabatic

curves calculated in this work. Dissociation energy D e

was defined as the difference between the total energies of

the molecule at RAB = 8.0 Å and at the point of minimum

Re
AB . The values of R e

AB , De , and ωe were determined both

without and with QED corrections.

The results of calculation of equilibrium internuclear

distance R e
AB , dissociation energyDe , and vibrational con-

stant ωe for ground state X26+
1/2 of the CN molecule are

presented in the table without (2nd column) and with (3rd

column) QED corrections. The data from Ref. [11] and

Ref. [17] are also listed in the table for comparison with our

calculations. In Ref. [11], spectroscopic constants of the CN

molecule were derived from the analysis of experimental

data; in Ref. [17], they were determined with the use

of adiabatic curves calculated by the MRCI method in

MOLPRO.

The table shows that QED corrections provide a very

small contribution to the value of the internuclear distance.

The value of R e
AB is 1.777 Å both with and without QED

corrections. Notably, our R e
AB value matches well the

equilibrium distances of 1.172 Å from Ref. [11] and 1.171 Å
from Ref. [17]. The value of dissociation energy De

without QED corrections is 61640.1 cm−1, which differs

from the result of [11,17] by about 2%. The contribution

of QED corrections to the value of De is approximately

1 cm−1. The value of vibrational constant ωe obtained in this

work without QED corrections is 2119.9 cm−1, while QED

corrections contribute about 0.2 cm−1. Our result differs

from the data of Refs. [11,17] by about 2%.
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4. Conclusion

In this paper, a relativistic non-empirical calculation of

potential energy curves for states X26+
1/2 and A251/2 of

the CN molecule in the region of internuclear distances

RAB ∈ [0.8, 8.0] Å was carried out by the method of

multireference configuration interaction in the basis of

Dirac–Fock–Sturm orbitals. The obtained data agree well

with the results of earlier studies. In addition, QED

corrections to the total energy of the X26+
1/2 and A251/2

states of the CN molecule were calculated using the

model-QED-operator approach. The obtained dependence

of QED corrections on the internuclear distance was

used to determine the contribution of QED corrections to

equilibrium internuclear distance R e
AB , dissociation energy

De , and vibrational constant ωe .
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