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1. Introduction

Impurity centers have various physical applications;

specifically, they may serve as active elements in lasers

based on intracenter optical transitions (this was demon-

strated in [1] for group-V donors in silicon). The deepening

of levels in deep-lying impurities expands the range of

potential radiation sources. An Mg0 donor may be regarded

as a candidate here [2].

Characterized as a substitutional impurity in silicon,

magnesium is a double donor. The binding energy of

singly charged and neutral donors is 256 and 107meV,

respectively [3–5]. Just as in shallow donors, the 1s level in

magnesium is split by the short-range potential of a lattice

with tetrahedral symmetry into 1s(A1) singlet, 1s(T2) triplet,
and 1s(E) doublet. In addition to this, two ladders of states

specified by the total spin of a system of two electrons (spin-
singlet — parastates and spin-triplet — orthostates) emerge

in a helium-like neutral Mg0 donor. These ladders of weakly

coupled (due to the weakness of spin-orbit interaction)
states may induce various spin-dependent effects, expanding

the range of possible applications of such centers in

semiconductors.

Both the positions of first excited levels and the lifetime

(relaxation time) of states need to be determined in

order to examine the possibility of construction of such

sources. Since transitions are allowed in the electric dipole

approximation, direct measurements of relaxation times may

normally be performed with resonance excitation of p-type
states of donors in silicon in pump-probe experiments. In

contrast, the examination of binding energies and lifetimes

of excited s -states of donors is performed individually

in each specific case. Specifically, the binding energy

of 1s(E) and 1s(T2) levels of magnesium in silicon has

until quite recently been estimated only based on indirect

data [4]. Spectroscopic studies of thermal filling of excited

states coupled with measurements of Fano resonances in

the photocurrent spectrum [2] provided an opportunity to

identify the position of the 1s(T2) parastate level: ∼ 66meV

above the 1s(A1) ground state energy. Since the energy

difference between these levels is ∼ 2meV higher than the

maximum optical phonon energy, single-quantum processes

of electron relaxation from this level are forbidden by the

energy conservation law. In the present study, we consider

multi-phonon processes of relaxation of this level: transitions

of electrons from level 1s(T2) to the ground state of a donor

with emission of phonons.

Several approximations and simplifications were used in

calculations of the probability of these transitions. First, the

problem was considered in the one-electron approximation:

it was assumed that an electron of an impurity center

moves in the field of an ion and a second electron,

which is characterized by an overall positive unit point-

like charge. Second, we limited ourselves to the effective

mass approximation in calculations of wave functions of

donor states. This mass was considered to be isotropic

and equal to the effective mass of the density of states of

1-valleys. The chemical shift of 1s(A1) and 1s(T2) levels

was characterized using the quantum defect method. In this

approximation, the localization radius is ∼ 1 nm for 1s(A1)
state and ∼ 1.7 nm (which is close to the Bohr radius

of ∼ 1.9 nm) for 1s(T2). Comparing these values with the

lattice constant (0.543 nm), we conclude that although the

effective mass approximation is fairly crude (in particular,

for the ground state), it still allows one to obtain estimates.

Third, the degeneracy of 1s(T2) level was ignored in

calculations of probabilities of non-radiative transitions: we

used the adiabatic approximation and Born–Oppenheimer

equations [6]. This approach disregards vibronic effects [7]
that induce collective electron-vibration motion in which all

electronic states of the 1s(T2) triplet are actually involved

(Jahn–Teller effect). In view of this, the adiabatic separation

of motion into electron and vibration (phonon) parts used

here with the corresponding factorization of wave functions
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is an approximation and a simplification. However, this

approximation provides an opportunity to characterize the

electron-vibration motion associated with the indicated

triplet term qualitatively by analyzing such an important

parameter of it as the scale of localization of electron

states and specifying the relation between electron and

vibration motions within the adiabatic approximation (with

the specifics of Jahn–Teller dynamics neglected).
Taking the moderate level depth of neutral magnesium

into account, we consider the interaction of electrons at an

impurity with bulk phonon modes using literature data on

deformation potential constants.

According to the obtained estimates, the rate of multi-

phonon relaxation of 1s(T2) state is on the order of 1011 s−1,

which is close to the results of pump-probe measurements

of 2p0 and 2p± relaxation times [8].

2. Calculation method

2.1. Energy and wave functions

An electron bound at an impurity and interacting with

lattice vibrations may be characterized by wave function

9(r, η) = ψ(r, η)χ(η) that is governed by the system of

Born–Oppenheimer equations:

(He(r) + HeL(r, η))ψ(r, η) = W (η)ψ(r, η), (1)

(HL(η) + W (η))χ(η) = Eχ(η), (2)

where ψ(r, η) and χ(η) are the wave functions of an

electron and phonons, respectively; He is the Hamiltonian of

an electron in the field of an impurity; HeL is the electron–
phonon interaction energy; HL is the lattice vibration energy;

r is the radius vector of an electron; and η is the set

of coordinates of vibration motion of a crystal. Electron

energy W (η) depends parametrically on coordinates η, since

interaction energy HeL(r, η) also depends on them. Eigen

value E specified by Eq. (2) is the total energy of an

electron-vibration system.

Nonadiabaticity operator Hna is neglected in

Eqs. (1)−(2) [6]. This provides an opportunity to

solve this system of equations independently for each

impurity level. Total energies E and wave functions 9(r, η)
determined by solving these equations correspond to

stationary states of the electron-vibration system, which

are classified by their association with specific impurity

levels (solutions of Eq. (1)). Transitions between different

states may be interpreted as non-radiative transitions with

emission or absorption of phonons. The perturbation

energy inducing transitions between states is operator Hna ,

and common perturbation theory may be used to calculate

transition probabilities [6].
Let us solve Eq. (1) in the first order of perturbation theo-

ry. We examine the zero-order approximation (HeL = 0) in

more detail, since the end result is expressed in terms of

matrix elements of wave functions of this approximation.

The same designation ψ(r) with the dependence on normal

coordinates η omitted is used for these wave functions.

Let us examine Hamiltonian He in the one-electron

approximation under the assumption that an electron in

excited and ground states moves in the field of a singly

charged ion. Therefore, it is assumed that the presence of

a second electron is manifested in partial screening of the

ion charge. The problem is considered in the effective mass

approximation, which is regarded as isotropic and equal to

the effective mass of the density of states m = 0.32m0 [9].
The wave function of a bound state of a Coulomb center in

multi-valley semiconductors is a linear combination of wave

functions of states of different valleys and is written as [10]

ψn =
∑

j

Cn j Fn j(r)ϕ j(k, r). (3)

Here, ϕ j(k, r) is the Bloch wave function at the bottom

of conduction band of the j-th valley and Fn j(r) is the

envelope wave function of the donor state of the n-th level

of the j-th valley. Coefficients Cn j specify the distribution

of the wave function over all six valleys of the conduction

band of silicon in accordance with tetrahedral point-group

symmetry Td . The values of coefficients Cn j for the 1s(A1)
singlet state and one chosen state of the 1s(T2) triplet are

as follows [11]:

A1 :
1√
6

(1, 1, 1, 1, 1, 1),

T2 :
1√
2

(1,−1, 0, 0, 0, 0). (4)

The numbering of valleys here is the same as in [11].
We use the quantum defect method for envelope wave

functions:

Fn = An(r/r0)
νn−1 exp

(

−r/(νnr0)
)

, (5)

An =
[

4πr30(νn/2)
2νn+1Ŵ(2νn + 1)

]−1/2
,

r0 = ~
2ε/(e2m), νn = (EH/|En|)1/2, En is the energy of

level n (n assumes the values of 1 and 2 for 1s(A1)
and 1s(T2) levels, respectively), EH = e4m/(2~

2ε2) is the

binding energy in the effective mass approximation, e is the

electron charge, and ε is permittivity.

Energy HeL is written under the assumption that an

electron bound at a donor interacts with bulk phonon modes

and that the electron–phonon coupling is linear:

HeL =
∑

σ,λ,q

uσ λq(r)ησ λq, (6)

σ is the number of a dispersion law branch, λ is the type of

a standing wave of crystal vibrations (cosine- or sine-type),
q is the wave vector of a phonon, ησ λq are real normal

coordinates in units of [~/(Mωσq)]
1/2, ωσq is the phonon

frequency, and M is the lattice oscillator mass. Here and

elsewhere, summation over q is performed for a half of the

Brillouin zone (see Appendix).
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With energy W (η) in (1) determined in the first order of

perturbation theory, Eq. (2) is easy to solve in the harmonic

approximation for operator HL. The wave function of

a phonon corresponding to mode (σ, λ, q) is the wave

function of a harmonic oscillator with a shifted equilibrium

position:

η
(i)
σ λq = −〈ψi |uσ λq|ψi〉

~ωσq

. (7)

The following is the total energy of the electron-vibration

system consisting of an electron in a state with wave

function ψi and a phonon subsystem characterized by set

{n} of occupation numbers nσ λq:

Ei,{n} = W (0)
i +

∑

σ,λ,q

~ωσq(nσ λq + 1/2) + J i, (8)

where W (0)
i is the electron energy in the zero-order approx-

imation (at HeL = 0 in Eq. (1)) and J i is the deformation

energy:

J i = −1

2

∑

σ,λ,q

~ωσq(η
(i)
σ λq)

2. (9)

Energy ET of a purely electron transition with a fixed state

of the phonon subsystem is specified by the difference of

energies Ei,{n} at a constant set of occupation numbers {n}:

ET = W (0)
2 −W (0)

1 + J2 − J1. (10)

In contrast to, e.g., chalcogens in silicon [12–14], literature
absorption or luminescence spectroscopy data for the

1s(A1)−1s(T2) transition in Mg0 donors are lacking. How-

ever, the corresponding transition energy ET was identified

by examining Fano resonances in the photoconductivity

spectrum [2] and found to be equal to ∼ 66meV. The

difference in deformation energies (on the order of 10meV)
was neglected in calculations of wave functions (3) and (5);

it was assumed that ET ≈ W (0)
2 −W (0)

1 = E2 − E1.

2.2. Phonons and electron–phonon interaction

Matrix elements of operator HeL and, consequently,

functions uσ λq(r) in electron wave functions (3) are required
for calculations:

〈ψn|HeL|ψm〉 =
∑

σ,λ,q

〈ψn|uσ λq|ψm〉ησ λq. (11)

In view of the multi-valley nature of electron wave functions,

matrix elements 〈ψn|uσ λq|ψm〉 contain three contributions

that correspond to normal scattering processes and g- and
f -type Umklapp processes:

〈ψn|uσ λq|ψm〉 = dnm
σ λq + gnm

σ λq + f nm
σ λq. (12)

The contribution of normal (intravalley) processes dnm
σ λq

is associated with matrix elements diagonal in valleys

〈Fniϕi |uσ λq|Fm jϕ j〉 (i = j), while
”
intervalley“ contributions

are associated with non-diagonal (i 6= j) matrix elements

induced by pairs of valleys positioned on their symmetry

axis (gnm
σ λq) and valleys positioned at an angle to each other

( f nm
σ λq).

The final expressions for the probability of non-radiative

transitions contain sums with each their term being

quadratic in matrix elements (12). This leads to the

emergence of contributions bilinear in dnm
σ λq, gnm

σ λq and f nm
σ λq.

It is appropriate in the effective mass approximation to

neglect cross contributions of types dnm
σ λqg ps

αµk, gnm
σ λq f ps

αµk,

etc. This is reasonable, since regions of the Brillouin zone

wherein each different-type factor is appreciably different

from zero are sufficiently separated for moderately deep

centers. Thus, only
”
diagonal“ contributions containing

products of only same-type factors (
”
intravalley“ or g-

and f -type
”
intervalley“ ones) were taken into account in

calculations.

The energy distance between levels 1s(A1) and 1s(T2)
is ∼ 66meV, which is only slightly larger than the maximum

energy of optical phonons (64.3meV [9]). Since normal

processes of electron scattering on optical phonons are

forbidden by symmetry [11], they were disregarded. The

maximum resonance energy among symmetry-allowed in-

tervalley scattering processes corresponds to g-LO phonons

(∼ 62meV) [9]. These phonons are also characterized

by the maximum deformation potential [9]. The only

optical phonons taken into account were g-LO ones, and

the only acoustical phonons considered were LA ones

(normal processes and g-type processes). Intervalley f -type
processes were neglected.

Reference values from [9] were used for the deformation

potentials of
”
intervalley“ phonons, and data from [15] were

used for deformation potentials in intravalley scattering.

The Brillouin zone was assumed to be spherically sym-

metric with radius qD = (6π2N/V )1/3 [16], where V is the

crystal volume, N is the number of unit cells, V/N = a3
0/4,

and a0 is the lattice constant. The phonon dispersion law

was assumed to be isotropic, and the following approxi-

mations were used. It was considered to be quadratic for

optical phonons (the index of a dispersion law branch is

σ = 1):

ω1q = ω1(q) = ω1(0)

(

1− q2

q2
1

)

, (13)

q2
1 = q2

D/
(

1− ω1(qD)/(ω1(0)
)

,

where the maximum and minimum frequencies cor-

respond to phonon energies ~ω1(0) = 64.3meV and

~ω1(qD) = 51.4meV [9] and the minimum energy corre-

sponds to the energy of an LO phonon at X point in the

Brillouin zone. The dispersion law of acoustical phonons

(σ = 2) was approximated with a linear fractional function:

ω2q = ω2(q) =
vq

1 + q/q2

, (14)

q2 = ω2

(

qD)/(v − ω2(qD)/qD
)

,
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where the maximum frequency corresponds to the energy

of an LA phonon at X point: ~ω2(qD) = 51.4meV. Param-

eter v is equal to the direction-averaged sound velocity [17]:

v = 〈vLA〉 =

√

1

ρ

(2

5
c12 +

4

5
c44 +

3

5
c11

)

,

where ρ is the crystal density and c11, c12, and c44 are

elastic constants [9]; v ≈ 9 · 105 cm/s.

2.3. Transition probability

Probabilities of non-radiative transitions are written in

the common first-order perturbation theory wherein the

nonadiabaticity operator serves as a perturbation:

w =
2π

~
Av({m})

∑

{n}

∣

∣

∣
〈1, {n}|Hna |2, {m}〉

∣

∣

∣

2

× δ(E2,{m} − E1,{n}), (15)

where |i, {n}〉 and Ei,{n} are the wave function and

energy (8) of the electron-vibration system in the initial

(i = 2) and final (i = 1) states and {n} is the set of

occupation numbers of phonon modes. Symbol Av({m})
denotes statistical averaging over the initial states of the

phonon subsystem.

Within the first order of perturbation theory, matrix

elements of nonadiabaticity operator Hna may be sub-

stituted with matrix elements of operator HeL (6) with

the zero-order approximation used for the electron wave

function [18]. This substitution is well-warranted under the

supplementary condition of equality of energies of electron-

vibration motion in the initial and final states. The indicated

condition is satisfied automatically in expression (15) due

to the presence of a δ-function.

With this substitution introduced, formula (15) is identical
to the expression obtained by R. Pässler within the static

coupling scheme [19]. Summation over the final states

and statistical averaging over the initial states in the

expression for the probability of non-radiative transitions

were performed in [19], and we use the obtained results

here.

Let us set the temperature to zero and write the Pässler’s

formula in our notation:

w =
π

~

∑

σ λq

|Vσ λq|2R(ET − ~ωσq), (16)

Vσ λq = 〈ψ1|uσ λq|ψ2〉, (17)

where R(E) is the Franck–Condon factor. It may be

expressed via the inverse Laplace transform [19]:

R(E) =
1

2πi

+i∞
∫

−i∞

r(τ )e−τ Edτ , (18)

r(τ ) = exp
(

sN(τ ) − sN(0)
)

.

At zero temperature,

sN(τ ) =
∑

σ λq

Sσ λq exp(τ ~ωσq), (19)

where Huang–Rhys factor Sσ λq for phonon mode (σ, λ, q)
is expressed in terms of the difference of equilibrium

position shifts (7):

Sσ λq =
1

2

(

η
(2)
σ λq − η

(1)
σ λq

)2
. (20)

The values of η
(2)
σ λq for the excited state were neglected in

calculations, since they are much smaller than η
(1)
σ λq.

Terms containing products of diagonal and non-diagonal

matrix elements (12) are omitted in formula (16). They may

be neglected in the case of the considered transition, since

they contain only
”
cross“ contributions (see Section 2.2).

In practical calculations, it is convenient to present

expression (16) as a sum of definite integrals corresponding

to the contributions to adiabaticity violation of LO (σ = 1)
and LA phonons (σ = 2):

w =
∑

σ

∫

wσ (E)R(ET − E)dE, (21)

wσ (E) =
π

~

∑

λq

|Vσ λq|2δ(E − ~ωσq). (22)

3. Results and discussion

Multi-phonon transition probability (21) is expressed in

terms of integrals of the Franck–Condon factor, R(E).
Similar to the Dirac δ-function, this function is meaningful

mostly in integrands (i. e., as a kernel of an integral

operator). (Note that the infinite integral of R(E) over

energy E is equal to unity [19].) We used the following

regularization for visual presentation of dependence R(E)
(Figure 1) and practical calculations. Factor R(E) was

substituted with function Rγ(E), which is a convolution with

a Gaussian distribution:

Rγ(E) =
1

γ
√
2π

∫

R(W ) exp

(

− (W − E)2

2γ2

)

dW, (23)

where broadening parameter γ should be sent to zero. It

was assumed in calculations that γ = 1.5meV. Note that the

maximum of function Rγ(E) at E = 0 is broadened by the

used regularization procedure.

Only intervalley scattering processes (terms g12
σ λq in for-

mula (12) corresponding to g-processes) contribute to non-

diagonal matrix element 〈ψ1|uσ λq|ψ2〉 and, consequently, to
functions wσ (E) (22). The contribution of normal (intraval-
ley) processes of scattering (d12

σ λq in (12)) on LA phonons

is zero for the chosen initial and final electron 1s(T2) and

1s(A1) states, and the corresponding contribution for optical

phonons is, as was noted, zero in virtue of more general

Semiconductors, 2024, Vol. 58, No. 1



Multi-Phonon Relaxation of the 1s(T2) Triplet of Neutral Magnesium Donors in Silicon 11

0 20 40 60 80 100 120

10–1

10–3

10–2

10–4

R
, 

m
eV

–
1

Energy, meV

Figure 1. Energy dependence of the Franck–Condon factor for

1s(T2)−1s(A1) transition at zero temperature.
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Figure 2. Functions w1(E) (curve 1) and w2(E) (2) characteriz-

ing the degree of adiabaticity violation in the interaction of a donor

electron with g-LO and g-LA phonons, respectively.

symmetry considerations. Functions wσ (E) for LO and LA

phonons are shown in Figure 2. Their maxima correspond

roughly to the resonance energies of g-LO (62meV) and

g-LA (18.5meV) phonons.

At the same time, the
”
intravalley“ interaction with LA

phonons actually contributes to the non-radiative transition

probability. This is attributable to the dependence of

the Franck–Condon factor on diagonal matrix elements

for which the
”
intravalley“ contribution of LA phonons is

dominant. The quantitative measure of this contribution is

the sum over modes of Huang–Rhys factors. For a fixed

branch σ of the dispersion law,

Sσ =
∑

λq

Sσ λq.

The values corresponding to LO and LA phonons are

S1 ≈ 6 · 10−3 and S2 ≈ 0.65. Intravalley processes produce

a dominant contribution to S2, while the contribution of

g-processes (9 · 10−4) is significantly smaller. Huang–Rhys
factors Sσ λq characterize the variation of lattice deformation

and the corresponding change in accumulated energy, which

is specified by (9), in transition of an electron between

impurity states. This change is reflected in the energy

conservation law that is expressed by factor R(E).

It is evident that the contribution of g-processes to the

overall Huang–Rhys factor and, consequently, the Franck–
Condon factor is small compared to that of

”
intravalley“

processes of interaction with LA phonons. In a similar

fashion, the inclusion of intervalley f -processes of scattering
should not affect function R(E) in any significant way.

Having performed integration and summation in for-

mula (21), we find that the overall rate of multi-phonon

transitions is w ≈ 8 · 1010 s−1. The relaxation rate is fairly

high due to the proximity of the transition energy and

the one-quantum resonance at g-LO phonons. The

contributions to transition probability w emerging due

to the adiabaticity violation in interaction with LO and

LA phonons (contributions from functions w1(E) and

w2(E) (22)) are ∼ 8 · 1010 and ∼ 7 · 107 s−1, respectively.

Since the deformation potential of g-LO phonons is at

least 5 times higher than the other deformation potentials

of g- and f -phonons, we believe that the inclusion of

interaction with other
”
intervalley“ phonons should not alter

the estimate of the multi-phonon transition rate in any

significant way.

In order to determine the sensitivity of the relaxation

rate to the inaccuracy of deformation potentials, probabil-

ity w was calculated with deformation potentials varying

within ±20% of their tabular values. The transition rate

falls within the range from 5.1 · 1010 to 1.1 · 1011 s−1 when

the deformation potential of g-LO phonons is varied, while

the variation of deformation potentials of LA phonons (both
for g-type processes and for intravalley transitions) turned

out to have little effect on the relaxation rate. Note that

the error of calculation of transition probabilities attributable

to electron–phonon coupling constants is specified not

only by the inaccuracy of their tabular values, but also

by the deviation of calculations from the effective mass

approximation.

4. Conclusion

The relaxation rate of 1s(T2) triplet at low temperatures

was estimated with the use of the adiabatic approximation

and the one-electron approximation for Si :Mg0 donor

parastates. The multi-phonon relaxation rate is on the order

of 1011 s−1. Dominant scattering processes induced by

the interaction with LO and LA phonons were taken into

account in calculations.
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Appendix

Let us express matrix elements (12) in terms of defor-

mation potentials and matrix elements on envelope wave

functions Fn j(r). Following [20], we substitute phonon

creation and annihilation operators with normal coordinates

in the expressions for electron interaction with
”
intervalley“

phonons.

Let us expand the electron–phonon interaction energy in

a series in powers of displacements znρ of atoms in unit

cells. The positions of cells is characterized by translation

vectors n, and index ρ denotes the number of an atom in a

cell:

HeL =
∑

nρ

znρCρ(r− n),

Cρ(r− n) =
(

∂HeL/∂znρ
)

{zn,ρ}=0
. (A.1)

Displacements znρ may be presented as an expansion

znρ =
∑

σq

eσρq
√

2NMωσq/~
(aqσ + a+

−qσ ) exp(iqn), (A.2)

where eσρq is a unit phonon polarization vector; summation

over q is performed within the entire Brillouin zone. We

isolate summations over two halves of the Brillouin zone

differing in the sign of q in (A.2) and introduce (via a

linear transformation) new phonon creation and annihilation

operators corresponding to standing waves and real normal

coordinates:

b+
qσ 1 =

1√
2

(a+
qσ + a+

−qσ ),

b+
qσ 2 =

i√
2

(−a+
qσ + a+

−qσ ), (A.3)

where annihilation operators are derived from b+
qσ λ

(λ = 1, 2) via Hermitian conjugation.

Assuming that envelope wave functions Fn j(r) are suffi-

ciently smooth, we calculate the matrix elements of operator

HeL on basis wave functions

ψn j = Fn j(r)ϕ j(k, r), (A.4)

ϕ j(k, r) = exp(ikr)α j(r), (A.5)

where α j(r) is the periodic part of the Bloch function of the

j-th valley normalized by condition
∫

�0

|α j |2dr = �0,

where integration is performed over a unit cell with

volume �0. The envelope wave function is normalized

to unity within the bulk of a crystal. Having introduced

real normal coordinates ηqσ λ = (bqσ λ + b+
qσ λ)/

√
2, one may

write matrix elements (12) on basis functions (A.4):

〈ψn j |uσ λq|ψml〉 =

(

2~

NMωσq

)1/2

× Aσ jl

∫

F∗
n j exp

(

i(kl − k j)r
)

cλ(qr)Fmldr, (A.6)

c1(qr) = cos(qr), c2(qr) = sin(qr), k j is the wave number

corresponding to the minimum of the j-th valley,

Aσ jl =
1

�0

∫

�0

ϕ∗
j ξσqϕldr,

ξσq(r) =
∑

ρ

eσρqCρ(r). (A.7)

The dependence of Aσ jl on q was neglected, and the

corresponding index in the designation of these constants

was omitted. Magnitudes of constants |Aσ jl| for matrix

elements (A.6) non-diagonal in valleys may be equated to

the deformation potentials of
”
intervalley“ phonons known

from literature.

With these transformations taken into account, summa-

tion over q in (11) should be performed within one half

of the Brillouin zone. Matrix elements (12) of arbitrary

wave functions are determined from (A.6) with account

for the coefficients of expansion of (3) in basis functions.

When calculating integrals with envelope wave functions

in (A.6), one should bear in mind that phonon wave

vector q is defined accurately to within a reciprocal lattice

vector.

In expressing intravalley part dnm
σ λq of matrix elements (12)

in terms of deformation potentials, we take advantage of

the fact that the electron–phonon interaction energy in the

long-wavelength limit is proportional to the deformation

tensor. Following, e. g., [21] and using expansion (A.2)
for displacements and transformation (A.3) for operators,

we obtain the following for a matrix element diagonal in

valleys:

〈ψn j |uσ λq|ψm j〉 =

(

2~

NMωσq

)1/2

q

(

4d +
(qe j)

2

q2
4u

)

×
∫

F∗
n jsλ(qr)Fm j dr, (A.8)

where σ = 2 (LA phonons), e j is a unit vector codirectional

with the axis of the j-th valley, s1(qr) = − sin(qr), and

s2(qr) = cos(qr). In calculations, we substituted (qe j)
2

in (A.8) with its value averaged over the solid angle; thus

introducing averaged deformation potential 4d + 4u/3.
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