05

Влияние хиральности на динамику доменных стенок в молекулярном ферримагнетике $[Mn^{II}(HL-pn)(H_2O)][Mn^{III}(CN)_6] \cdot 2H_2O$

© Ф.Б. Мушенок¹, Р.Б. Моргунов¹, О.В. Коплак², М.В. Кирман¹

¹ Институт проблем химической физики РАН, Черноголовка, Московская обл., Россия ² Киевский национальный университет, Киев, Украина E-mail: mushenokf@yandex.ru

(Поступила в Редакцию 28 сентября 2011 г.)

Разделены вклады режимов переключения, скольжения, ползучести и дебаевской релаксации закрепленных доменных стенок в низкочастотные магнитные свойства хирального и рацемического молекулярных ферримагнетиков $[Mn^{II}(HL-pn)(H_2O)][Mn^{III}(CN)_6] \cdot 2H_2O$. Обнаружено влияние хиральности атомной и спиновой структур на температуру перехода от режима скольжения к ползучести и от ползучести к режиму дебаевской релаксации. В хиральных кристаллах переход в режим ползучести наблюдается при T = 7 K, а в режим дебаевской релаксации — при T = 5 K. В рацемических кристаллах эти переходы наблюдаются при T = 13 и 9 K соответственно при прочих равных условиях.

Работа поддержана грантом РФФИ № 10-03-00314а.

1. Введение

Синтез молекулярных магнетиков открывает широкие возможности для управления магнитными свойствами твердых тел путем блочного конструирования и контролируемого дизайна атомной и спиновой структур. На этом пути в хиральных кристаллах были обнаружены магнитохиральный дихроизм [1], солитоноподобные спиновые возбуждения [2], спин-волновая нестабильность, индуцированная микроволновым полем [3] и нелинейные гармоники магнитной восприимчивости [4]. Необходимым условием спиновой хиральности является наличие взаимодействия, служащего посредником между хиральной атомной и спиновой структурами; таким взаимодействием может быть антисимметричное обменное взаимодействие Дзялошинского-Мория [5-7] или одноионная анизотропия [8,9]. В [8] сообщалось о синтезе хирального молекулярного ферримагнетика $[Mn^{II}(HL-pn)(H_2O)][Mn^{III}(CN)_6]\cdot 2H_2O$ (Brown Needle — BN) с хиральным лигандом 1,2-диаминопропаном (L-pn). Кристаллическая структура этого соединения подобна структуре хиральных молекулярных ферримагнетиков $[Cr(CN)_6][Mn(S)-pnH(H_2O)](H_2O)$, полученных ранее, с тем отличием, что ионы Cr^{3+} заменены на ионы Mn³⁺. Такая замена приводит к тому, что проводником (посредником) спиновой хиральности становится не антисимметричный обмен Дзялошинского-Мория, а спин-орбитальное взаимодействие ионов Mn³⁺. В работе [9] было обнаружено различие температурных зависимостей спектров электронного спинового резонанса ионов Mn³⁺ в хиральных и рацемических кристаллах BN. Влияние хиральности на спектры ЭПР объясняется сильным спин-орбитальным взаимодействием иона Mn^{3+} ($\lambda = 90 \, \text{cm}^{-1}$). В результате ориентация спинов зависит от локального кристаллического поля,

задаваемого в свою очередь атомной структурой. Хиральность атомной и спиновой структур влияет на статические магнитные свойства кристаллов ВN. Например, коэрцитивная сила для хиральных образцов H_c равна 120 Ое, а для рацемических — 690 Ое [8]. Наряду с тривиальными причинами, обусловленными различием дефектного состава, это различие может быть связано с изменением динамики доменных стенок в хиральных и рацемических кристаллах. Статические [8] и высокочастотные динамические [9] магнитные свойства BN не позволяют судить о низкочастотной спиновой динамике, обусловленной движением доменных стенок. Динамика доменных стенок определяется как случайным полем дефектов [10], так и рельефом Пайерлса [11]. Можно предполагать, что хиральность кристаллов влияет на динамику доменных стенок, поскольку она определяется локальными кристаллическими полями, управляемыми одноионной анизотропией ионов Mn³⁺ и хиральной координацией этих ионов. Поэтому целью настоящей работы является исследование низкочастотных ($\nu \sim 1 - 10^3 \, \text{Hz}$) магнитных свойств кристаллов ВN, чувствительных к движению доменных стенок, а также сравнительный анализ различных режимов динамики доменных стенок в хиральных и рацемических кристаллах.

2. Методика

Методика синтеза кристаллов $[Mn^{II}(HL-pn) \times (H_2O)][Mn^{III}(CN)_6] \cdot 2H_2O$ подробно описана в [8]. Кристаллы BN образованы чередованием квазидвумерной сетки ионов Mn^{2+} и Mn^{3+} (рис. 1), связанных между собой цианидными мостиками -CN-. Отдельные слои связаны между собой силами Ван-дер-Ваальса. В межслоевом пространстве расположен

Рис. 1. Проекция атомной структуры кристаллов *BN-S* на плоскость *ab* [4].

хиральный лиганд *L*-рп. Асимметричный элемент структуры кристаллов *BN* образован катионом $(Mn^{II}-(H(R/S)-pn)(H_2O))^{2+}$, анионом $(Mn^{III}(CN)_6)^{3-}$ и молекулой воды в решетке. В настоящей работе исследованы как хиральные *BN-S* (*S*-pn) и *BN-R* (*R*-pn), так и рацемические *BN*-гас (*R*/*S*-pn) образцы. Хиральные кристаллы *BN-R* и *BN-S* являются зеркальными (правым и левым) изомерами с пространственной группой *P*2₁2₁2₁. Рацемические кристаллы *BN*-гас образованы последовательностью правых и левых двумерных сеток с пространственной группой *P*2₁/*m*.

Статические и высокочастотные динамические магнитные свойства хиральных и рацемических кристаллов *BN* были подробно исследованы в [8,9]. Установлено, что температурная зависимость магнитной восприимчивости кристаллов *BN* в диапазоне T = 100-300 К описывается законом Кюри–Вейсса $\chi = C/(T - \Theta)$, где $\Theta = -56$ К — парамагнитная температура Вейсса. Ниже температуры Кюри T_c , равной 21.2 К для *BN-R*, *BN-S* и 20.8 К для *BN*-гас, наблюдается ферримагнитное упорядочение, обусловленное косвенным антиферромагнитным взаимодействием ионов Mn²⁺ и Mn³⁺.

В настоящей работе для измерения динамической магнитной восприимчивости χ_{AC} использован СКВИД-магнитометр MPMS 5XL Quantum Design. Частота переменного магнитного поля ν_{AC} изменялась в диапазоне от 1 до 1400 Hz. Узкий частотный диапазон СКВИД-магнитометра не позволял наблюдать все режимы движения доменных стенок при прочих равных условиях. Поэтому их исследование производилось при двух значениях переменного магнитного поля $h_{AC} = 4$ и 0.1 Ое и различных температурах. В процессе измерения переменное магнитное поле h_{AC} поддерживалось с точностью 0.01 Ое, а температура образца — с точностью 0.1 К.

3. Экспериментальные результаты

Темепратурные и частотные зависимости магнитной восприимчивости $\chi_{AC} = \chi' + i\chi''$ в хиральных кристаллах *BN-R* и *BN-S* идентичны. На частоте $v_{AC} = 1400$ Hz понижение температуры от комнатной до ~ 25 K приводит к плавному увеличению действительной части магнитной восприимчивости χ' в соответствии с законом Кюри–Вейсса. Мнимая часть χ'' в районе T = 300-25 K равна нулю с точностью проведения эксперимента. Ниже температуры магнитного упорядочения T_c при

Рис. 2. Зависимость действительной χ' и мнимой χ'' частей магнитной восприимчивости кристаллов *BN-R*, *BN-S* и *BN*-гас от температуры *T* на частоте переменного магнитного поля $\nu_{\rm AC} = 1400$ (*a*) и 40 Hz (*b*). Стрелками отмечено положение дополнительного максимума. На вставке — температурная зависимость производной $d\chi''/dT$ для кристаллов *BN-R*, $\nu_{\rm AC} = 1400$ Hz.

711

 $v_{\rm AC} = 1400 \, {\rm Hz}$ на зависимостях $\chi'(T)$ и $\chi''(T)$ наблюдается интенсивный максимум, который будем называть основным (рис. 2, а). Дальнейшее понижение температуры приводит к монотонному убыванию χ' и χ'' . При $T = 19.5 \,\mathrm{K}$ на кривой $\chi''(T)$ наблюдается перегиб, что свидетельствует о наличии второго (дополнительного) максимума на зависимостях $\chi'(T)$ и $\chi''(T)$. Подтверждением существования дополнительного максимума является наличие на зависимостях $d\chi'/dT$ и $d\chi''/dT$ пика в области $T = 19 \,\mathrm{K}$ (см. вставку на рис. 2, *a*). Уменьшение частоты переменного магнитного поля v_{AC} вызывает следующие изменения зависимостей $\chi'(T)$ и $\chi''(T)$ хиральных кристаллов *BN*: 1) увеличивается амплитуда χ'_{\max} основного максимума на зависимости $\chi'(T)$ (рис. 3); 2) увеличивается амплитуда дополнительного максимума на зависимостях $\chi'(T)$ и $\chi''(T)$. Она становится сравнимой с амплитудой основного максимума при уменьшении частоты v_{AC} от 1400 до 40 Hz (рис. 2, *b*).

С целью разделения режимов движения доменных стенок в кристаллах ВN полученные экспериментальные результаты были проанализированы с помощью диаграммы Коула-Коула (зависимость мнимой части магнитной восприимчивости χ'' от ее действительной части χ' [12]). В хиральных кристаллах *BN-R* и *BN-S* при температуре $T = 20 \,\mathrm{K}$ с увеличением частоты ν_{AC} от 1 до 40 Hz (т. е. с уменьшением χ') наблюдается возрастание χ'' , и при $\nu_{AC} = 40$ Hz происходит перегиб зависимости $\chi''(\chi')$ (рис. 4, a). Дальнейшее увеличение частоты v_{AC} приводит к убыванию χ'' . При тех же условиях ($T \sim 20$ K, $v_{\rm AC} = 40\,{
m Hz})$ на зависимостях $\chi'(T)$ и $\chi''(T)$ наблюдается интенсивный дополнительный максимум (рис. 2, b). Следовательно, перегиб на зависимости $\chi''(\chi')$ и дополнительный максимум на зависимостях $\chi'(T)$ и $\chi''(T)$ соответствуют одному и тому же физическому процессу.

Рис. 3. Зависимость максимального значения магнитной восприимчивости χ'_{max} кристаллов *BN-R*, *BN-S*, *BN*-гас от частоты переменного магнитного поля ν_{AC} ; $h_{AC} = 4$ Ое. Сплошные линии проведены для облегчения восприятия.

Рис. 4. Зависимости $\chi''(\chi')$ кристаллов *BN-R* (*a*) и *BN*-гас (*b*) при температурах $T \ge 10$ K; $h_{AC} = 4$ Oe. Сплошными линиями показана аппроксимация выражением (2). На вставке — зависимость $\chi''(\chi')$ кристаллов *BN-R* при T = 16 K и $h_{AC} = 0.1$ Oe. Сплошной линией показана аппроксимация выражением (4).

С понижением температуры экспериментальные точки зависимости $\chi''(\chi')$, полученные в том же частотном диапазоне $\nu_{AC} = 1-1400Z$ Hz, смещаются к началу координат, что обусловлено уменьшением магнитной восприимчивости χ_{AC} . В частности, перегиб зависимости $\chi''(\chi')$ с понижением температуры смещается и при T = 12 K оказывается в области $\nu_{AC} < 1$ Hz, недоступной для измерений в наших экспериментах. Дальнейшее понижение температуры приводит к сглаживанию зависимости $\chi''(\chi')$ и ее вырождению в прямую линию (рис. 5, *a*). При температуре, меньшей 6 K, на зависимости $\chi''(\chi')$ в области высоких частот (слева) образуется подъем (см. вставку на рис. 5, *a*).

Теперь рассмотрим частотные и температурные зависимости магнитной восприимчивости рацемических

Рис. 5. Зависимости $\chi''(\chi')$ кристаллов *BN-R* (*a*) и *BN*-гас (*b*) при различных температурах $T \le 9$ K; $h_{AC} = 4$ Oe. На вставке — зависимость $\chi''(\chi')$ кристаллов *BN-R* при T = 5 K.

кристаллов *BN*-гас. Ниже температуры магнитного упорядочения T_c зависимости $\chi'(T)$ и $\chi''(T)$ рацемических кристаллов *BN*-гас имеют несколько отличий от аналогичных зависимостей для хиральных кристаллов *BN-R* и *BN-S* (рис. 2): 1) в рацемических кристаллах *BN*-гас максимумы зависимостей $\chi'(T)$ и $\chi''(T)$ наблюдаются при более низкой температуре, чем в хиральных кристаллах *BN-R* и *BN-S* (рис. 2); 2) в рацемических кристаллах *BN*-гас амплитуда основного максимума χ'_{max} меньше, чем в *BN-R* и *BN-S* (рис. 3); 3) с понижением температуры действительная χ' и мнимая χ'' составляющие магнитной восприимчивости кристаллов *BN*-гас убывают более плавно по сравнению с хиральными кристаллами (рис. 2).

Зависимость $\chi''(\chi')$ рацемических кристаллов *BN*-гас (рис. 4, *b*) в интервале температур T = 16-20 K совпадает с аналогичными зависимостями для хиральных кристаллов *BN*-*R* и *BN*-S (рис. 4, *a*). Ниже T = 16 K зависимости $\chi''(\chi')$ рацемических кристаллов *BN*-гас отличаются от аналогичных зависимостей хиральных кристаллов *BN-R* и *BN-S*: 1) в рацемических кристаллах точка перегиба зависимости $\chi''(\chi')$ оказывается недоступной для наблюдения при $T \le 14$ K, в то время как в хиральных кристаллах это происходит при $T \le 12$ K; 2) сглаживание зависимости $\chi''(\chi')$ кристаллов *BN*-гас происходит при $T \le 13$ K. В хиральных кристаллах сглаживание наблюдается при $T \le 7$ K; 3) в рацемических кристаллах подъем слева в высокочастотной части $\chi''(\chi')$ возникает при температуре T = 9 K. В хиральных кристаллах такой подъем возникает при T = 5 K.

Таким образом, наблюдается влияние хиральности на температурные и частотные зависимости динамической магнитной восприимчивости χ_{AC} кристаллов *BN*. В отличие от коэрцитивной силы параметры Коула—Коула не зависят от случайных факторов (таких как концентрация дефектов). Они характеризуют динамику доменных стенок, которая оказывается различной в хиральных и рацемических кристаллах. Рассмотрим возможные причины этого эффекта.

4. Обсуждение

В хиральных кристаллах BN температура основного максимума $\chi'(T)$ не зависит от частоты ν_{AC} . Следовательно, наличие пиков на зависимостях $\chi'(T)$ и $\chi''(T)$ обусловлено дальним ферримагнитным упорядочением и отражает динамику доменных стенок. Этот вывод следует также из данных о магнитном моменте насыщения кристаллов BN [8].

Наличие диссипативной части χ'' магнитной восприимчивости в магнитоупорядоченных материалах обусловлено потерями энергии на движение доменных стенок под действием переменного магнитного поля h_{AC} , а максимумы на зависимостях $\chi'(T)$ и $\chi''(T)$ характеризуют динамические свойства доменных стенок. Режим движения доменных стенок определяется температурой T, амплитудой h_{AC} и частотой v_{AC} переменного магнитного поля. В ферро- и ферримагнетиках известны следующие режимы движения доменных стенок (рис. 6), которые различают на диаграмме Коула–Коула $\chi''(\chi')$ [13].

1) Дебаевская релаксация доменных стенок в потенциальной яме, образованной точками закрепления стенок дефектами структуры. Вклад дебаевской релаксации в магнитную восприимчивость равен [14]

$$\chi_{\rm AC}(\omega) = \chi_{\rm S} + \frac{\chi_{\rm S} - \chi_0}{1 + (i\omega\tau_r)^{1-\alpha}},\tag{1}$$

где $\omega = 2\pi v_{AC}$, χ_0 и χ_S — изотермическая ($\omega \to 0$) и адиабатическая ($\omega \to \infty$) магнитные восприимчивости соответственно, τ_r — время релаксации доменной стенки, α — показатель полидисперсности, который характеризует ширину статистического распределения времен релаксации τ_r . Предельный случай $\alpha = 0$ соответствует

Рис. 6. Схематическое изображение зависимости $\chi''(\chi')$ для различных режимов движения доменных стенок: дебаевской релаксации (relaxation), ползучести (creep), скольжения (slide) и переключения (switching) [13].

релаксации дебаевского типа с монодисперсным значением τ_r . Другой предельный случай $\alpha = 1$ соответствует бесконечно широкому распределению времени релаксации τ_r . В координатах $\chi''(\chi')$ дебаевской релаксации соответствует полуокружность, описываемая уравнением

$$\chi''(\chi') = -\frac{\chi_0 - \chi_s}{2\tan[0.5(1-\alpha)\pi]} + \left\{ (\chi' - \chi_s)(\chi_0 - \chi') + \frac{(\chi_0 - \chi_s)^2}{4\tan^2[0.5(1-\alpha)\pi]} \right\}^2.$$
(2)

Эта окружность пересекает ось абсцисс в точках χ_0 и χ_s . Точки на вершине полуокружности $\chi''(\chi')$ соответствуют условию $2\pi\nu_{\rm AC} = 1/\tau_r$.

2) Режим ползучести — термоактивированное открепление доменных стенок и их движение через потенциальный барьер [15]. Магнитная восприимчивость в этом режиме описывается выражением [16]

$$\chi_{\rm AC}(\omega) = \chi_{\infty} \left[1 + \frac{1}{(i\omega\tau_c)^{\beta}} \right], \qquad (3)$$

где τ_c — время релаксации режима ползучести, β — дисперсия времен релаксации τ_c . На зависимости $\chi''(\chi')$ этому режиму соответствует монотонно возрастающий участок, описываемый уравнением вида

$$\chi'' = (\chi' - \chi_{\infty}) \tan(0.5\pi\beta). \tag{4}$$

3) Режим скольжения — надбарьерное движение доменных стенок. В идеальной модели режиму скольжения соответствует вертикальная зависимость $\chi''(\chi')$, что связано с отсутствием вклада режима скольжения в действительную часть магнитной восприимчивости χ' (рис. 6). Сосуществование различных режимов движения доменных стенок в реальных кристаллах приводит к тому, что режиму скольжения соответствует монотонно возрастающая зависимость $\chi''(\chi')$ с наклоном, бо́льшим, чем в режиме ползучести [17].

Физика твердого тела, 2012, том 54, вып. 4

4) Режим переключения — процесс полного перемагничивания образца за счет смещения доменных стенок. Наблюдается на малых частотах ν_{AC} , когда пробег доменных стенок сравним с размерами доменов, за полупериод переменного поля происходит исчезновение доменов с невыгодной ориентацией магнитного момента. В координатах $\chi''(\chi')$ этому режиму соответствует четверть окружности (рис. 6), описываемая уравнением (2) с параметром $\alpha = 0$ [15].

Рассмотрим наши экспериментальные данные с точки зрения приведенной классификации. В хиральных кристаллах BN-R и BN-S в диапазоне температур T = 20-16 K полуокружность сменяется плавным убыванием χ'' в области высоких частот (рис. 4, *a*). Поскольку квазилинейный участок оказывается слева от полуокружности, можно предположить, что при данной температуре наблюдается переключение магнитных доменов, переходящее в скольжение. Аппроксимация низкочастотного участка выражением (1) с параметром $\alpha = 0$, описывающим вклад процесса переключения в магнитную восприимчивость, позволила определить время переключения $\tau_s = 2.3 \,\mathrm{ms}$ при $T = 20 \,\mathrm{K}$. Соответственно перегиб слева на зависимости $\chi''(\chi')$ соответствует переходу в режим скольжения. Исчезновение перегиба на зависимости $\chi''(\chi')$ при понижении температуры до $T = 12 \,\mathrm{K}$ связано с возрастанием коэрцитивной силы, которая препятствует переключению доменов. Поэтому точка перегиба смещается в область более низких частот $v_{AC} < 1$ Hz, недоступную в наших экспериментах.

С увеличением частоты ν_{AC} режим скольжения доменных стенок должен переходить в режим ползучести, а затем в режим дебаевской релаксации (рис. 6). В наших экспериментах в интервале температур $T = 16 - 20 \, \mathrm{K}$ при амплитуде переменного поля $h_{\rm AC} = 4$ Oe на зависимости $\chi''(\chi')$ отсутствуют участки, соответствующие этим режимам. Это может быть обусловлено тем, что режимы ползучести и дебаевской релаксации находятся в области частот $v_{AC} > 1.4 \, \mathrm{kHz}$, недоступных в используемой модели магнитометра. Поэтому для наблюдения ползучести и релаксации доменных стенок был использован следующий факт. Процессы переключения и скольжения доменных стенок наблюдаются только в том случае, когда внешнее магнитное поле $h_{\rm AC}$ превышает пороговое значение, необходимое для преодоления закрепляющих сил. Если *h*_{AC} меньше порогового значения, то возможно наблюдение только термоактивируемых процессов ползучести и дебаевской колебательной релаксации сегментов доменных стенок, не связанной с преодолением потенциального барьера. Таким образом, с уменьшением амплитуды переменного поля $h_{\rm AC}$ процессы скольжения и переключения должны переходить сначала в режим ползучести, а затем в режим релаксации. Поэтому были получены частотные зависимости $\chi'(\nu_{\rm AC}), \ \chi''(\nu_{\rm AC})$ при $h_{\rm AC} = 0.1$ Ое. Установлено, что при $h_{\rm AC} = 0.1$ Ое зависимость $\chi''(\chi')$ является линейной (см. вставку на рис. 4, a), описывается уравнением (4) и соответствует режиму ползучести доменных стенок. Следовательно, предположение о том, что в переменном поле $h_{\rm AC} = 4$ Ое движение доменных стенок связано с процессами переключения и скольжения, подтверждается тем, что в слабом поле $h_{\rm AC} = 0.1$ Ое движение доменных стенок обусловлено процессами ползучести.

С понижением температуры ниже 10 К зависимость $\chi''(\chi')$ сглаживается и при T = 7 К становится линейной (рис. 5, *a*). Такая квазилинейная зависимость соответствует режиму ползучести доменных стенок и описывается уравнением (4). Дальнейшее понижение температуры ниже 6 К приводит к образованию на высокочастотной части зависимости $\chi''(\chi')$ подъема слева. Поскольку с повышением частоты режим ползучести доменных стенок обычно переходит в дебаевский релаксационный режим (рис. 6), мы связываем наблюдаемый подъем с переходом к дебаевскому релаксационному движению доменных стенок.

Таким образом, в интервале температур T = 16-20 К при амплитуде переменного поля $h_{\rm AC} = 4$ Ое динамика доменных стенок в хиральных кристаллах BN-Rи BN-S на низких частотах ($\sim 1-10$ Hz) обусловлена переключением доменов, а на высоких частотах ($\sim 0.1-1$ kHz) — скольжением доменных стенок. При температурах T = 7-16 К динамика доменных стенок связана только с их скольжением, а при T = 7 К наблюдается переход в режим ползучести. Дебаевская релаксация доменных стенок наблюдается при $T \leq 5$ К.

рацемических кристаллах BN-rac зависимо-В сти $\chi''(\chi')$ при $T = 20 - 14 \,\mathrm{K}$ практически идентичны зависимостям $\chi''(\chi')$ для хиральных кристаллов *BN-R* и BN-S, т.е. хиральность кристаллической и спиновой структур не влияет на режимы переключения и скольжения. Сглаживание зависимости $\chi''(\chi')$ и переход к режиму ползучести в рацемических кристаллах наблюдается при температуре T = 13 К. Подъем в области высоких частот, обусловленный дебаевской релаксацией доменных стенок, возникает при температуре $T = 9 \,\mathrm{K}$ (рис. 5, b). Таким образом, в рацемических кристаллах BN-гас переходы к режиму ползучести и дебаевскому режиму происходят при бо́льших температурах, чем в хиральных кристаллах BN-R и BN-S. Температура магнитного упорядочения хиральных и рацемических кристаллов различается на 0.4 К, что на порядок величины меньше, чем наблюдаемое различие температур переходов между режимами движения доменных стенок в этих кристаллах. Различия в режимах перемагничивания хиральных и рацемических кристаллов свидетельствуют о чувствительности динамики доменных стенок к кристаллическим полям. Одним из возможных объяснений может быть различие рельефа Пайерлса в указанных кристаллах.

5. Заключение

В хиральном и рацемическом молекулярных ферримагнетиках [Mn^{II}(HL-pn)(H₂O)][Mn^{III}(CN)₆] ·2H₂O разделены вклады режимов переключения, скольжения, ползучести и дебаевской релаксации доменных стенок в низкочастотную спиновую динамику. Обнаружено влияние хиральности на температуры переходов от режима скольжения к режиму ползучести и от режима ползучести к режиму релаксации. В хиральных кристаллах температуры этих переходов равны 7 и 5 К, соответственно. В рацемических кристаллах эти переходы наблюдаются при бо́льших температурах: соответственно 13 и 9 К. Хиральность кристаллов не влияет на режимы переключения и скольжения доменных стенок.

Список литературы

- C. Train, R. Cheorghe, V. Krstic, L. Chamoreau, N.S. Ovanesyan, G.L.J.A. Rikken, M. Gruselle, M. Verdaguer. Nature Mater. 7, 729 (2008).
- [2] R.B. Morgunov, M.V. Kirman, K. Inoue, Y. Tanimoto, J. Kishine, A.C. Ovchinnikov, O. Kazakova. Phys. Rev. B 77, 184 419 (2008).
- [3] Р.Б. Моргунов, Ф.Б. Мушенок. Письма в ЖЭТФ **90**, 29 (2009).
- [4] M. Mito, K. Iriguchi, H. Deguchi, J. Kishine, K. Kikuchi, H. Ohsumi, Y. Yoshida, K. Inoue. Phys. Rev. B 79, 012406 (2009).
- [5] Р.Б. Моргунов, В.Л. Бердинский, М.В. Кирман, К. Иное, Ж. Кишине, И. Йошида, И. Танимото. Письма в ЖЭТФ 84, 524 (2006).
- [6] И.В. Блохин, А.С. Маркосян, Р.Б. Моргунов, К. Inoue, Y. Tanimoto, Y. Yoshida. ФТТ 47, 2019 (2005).
- [7] Р.Б. Моргунов, Ф.Б. Мушенок. ФТТ 51, 1951 (2009).
- [8] W. Kaneko, S. Kitagawa, M.Ohba. J. Am. Chem. Soc. 129, 248 (2007).
- [9] Р.Б. Моргунов, Ф.Б. Мушенок, М.В. Кирман ФТТ **50**, 1252 (2008).
- [10] I.F. Lyuksyutov, T. Nattermann, V.Pokrovsky. Phys. Rev. B 59, 4260 (1999).
- [11] K.S. Novoselov, A.K. Geim, S.V. Dubonos, E.W. Hill, I.V. Grigorieva. Nature **426**, 812 (2003).
- [12] K.S. Cole, R.H. Cole. J. Chem. Phys. 9, 341 (1941).
- [13] W. Kleemann Ann. Rev. Mater. Res. 37, 415 (2007).
- [14] O. Petracic, S. Sahoo, Ch. Binek, W. Kleemann, J.B. Sousa, S. Cardoso, P.P. Freitas. Phase Trans. 76, 367 (2003).
- [15] T. Nattermann, V. Pokrovsky, V.M. Vinokur. Phys. Rev. Lett. 87, 197 005 (2001).
- [16] X. Chen, O. Sichelschmidt, W. Kleemann, O. Petracic, Ch. Binek, J.B. Sousa, S. Cardoso, P.P. Freitas. Phys. Rev. Lett. 89, 137 203 (2002).
- [17] O. Petracic, A. Glatz, W. Kleemann. Phys. Rev. B 70, 214432 (2004).