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Radiation in the graphene: kinetic approach
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The work briefly summarized the latest results of the kinetic theory of radiation in the graphene, consisting of

both the quasiclassical component generated by plasma currents and the quantum component generated by direct

interaction with carriers, the excitement of which is described by nonperturbative methods. The achieved level of

development of theory allows us to talk about a qualitative level of consent with existing experimental data.
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Introduction

It is well known that graphene at the low-energy limit

is described by D = 2 + 1 massless two-velocity quantum

field model [1,2] with a non-analytical dependence on the

strength of the external electric field already in the region

of weak fields (e.g. [3]). This results in the experimental

accessibility in the study of electron-hole plasma (EHP)
generation in external fields (Landau−Zener effect [4,5]),
the equivalent of which in the strong field QED is the

Sauter−Schwinger effect [6,7]. A good agreement has been

reached with the experiment at this level [8,9]. Problems

occur at the stage of matching D = 2 + 1 dynamics of

graphene with D = 3 + 1 dynamics of the interaction of

internal currents with a plasma quasiclassical field and

with a quantum field generated by direct interaction with

carriers. The paper [10] outlined a solution for this problem

by semi-phenomenological D = 3 + 1 modification of QED

in graphene.

We implement this approach in this paper using the

nonperturbative kinetic theory both at the level of a self-

consistent description of interaction with a plasma field

(problem of back-reaction (sec. 2)), and at the level of the

interaction of the EHP with a quantized field (section 3).
A similar problem has to be considered when describing

radiation (quasiclassical and quantum) into the outer regions

of space with respect to the graphene plane. The results of

the study are briefly discussed in the Conclusion.

1. Kinetic equation

The basic kinetic equation (KE) in graphene in the

approximation of a self-consistent field was obtained in

a nonperturbative basis in Ref. [11] by the analogy with

electron-positron plasma in a strong field QED (for exam-

ple, [12]).
These studies assume that the effective electric field

with a vector potential A(k)(t) (indices k = 1, 2 correspond

to two spatial dimensions of three-dimensional Euclidean

space) and a field strength E(k)(t) = −(1/c)Ȧ(k)(t) is

spatially homogeneous and time-dependent. In general, it

consists of external and internal (plasma) fields,

A(k)(t) = A(k)
ex (t) + A(k)

in (t). (1)

It is sufficient to use the approximation of the external

field E(t) = Eex(t) for evaluation of the effectiveness of the

EHP creation, while a self-consistent description of plasma

oscillations requires the use of a full field.

The basic KE describes excitations in graphene in

terms of quasiparticles with quasienergy ε(p, t) = vF

√
P2

(vF = 106 m/s — Fermi velocity, p = (p(1), p(2), 0) —
quasiparticle momentum) and quasimomentum

P(k) = p(k) − (e/c)A(k)(t) using the distribution function

f (p, t). This KE takes into account the condition of

electroneutrality of the electron and hole subsystems

f (p, t) = f e(p, t) = f h(−p, t) and can be written either

in the form of non-Markov type integro-differential

equation [11]:

ḟ (p, t) =
1

2
λ(p, t)

t
∫

t0

dt′λ(p, t′)[1−2 f (p, t′)] cos θ(p; t, t′)

(2)
or in the equivalent form of a system of ordinary differential

equations

ḟ (p, t) =
1

2
λ(p, t)u(p, t),

u̇(p, t) = λ(p, t)[1− 2 f (p, t)] − 2ε(p, t)
~

v(p, t),

v̇(p, t) =
2ε(p, t)

~
u(p, t), (3)

where

λ(p, t) =
ev2F [E(1)(t)P(2) − E(2)(t)P (1)]

ε2(p, t)
, (4)
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θ(p; t, t′) =
2

~

t
∫

t′

dτ ε(p, τ ). (5)

It is assumed that the external field is turned on at time

t = t0. The paper [11] provides the procedure of the

transition from KE (2) to the system of equations (3). Some

properties of KE in the form (2) and (3) and their solutions

for various field models are discussed in papers [11,13].

The distribution function f (p, t) allows calculating the

average values of physical quantities. For example, the

density of the quasiparticles and the energy density are equal

to

n(t) = 2N f

∫

[d p] f (p, t), (6)

Eeh(t) = 2N f

∫

[d p]ε(p, t) f (p, t), (7)

where [d p] = d2p(2π~)−2 and N f = 4 — the number of

different quasiparticle flavors (two Dirac points and two

pseudospin states), factors 2 in (6) and (7) are attributable

to the equality of contributions of electrons and holes. The

total energy density of quasiparticle excitations

E(t) = Eeh(t) + Epol(t) (8)

also includes the polarization energy density [11]

Epol(t) = −N f ~

∫

[d p]λ(p, t)v(p, t). (9)

The total current density j (k)(t) consists of conductive and

polarization currents [11],

j (k)(t) = j (k)
cond(t) + j (k)

pol(t), (10)

j (k)
cond(t) = 2N f e

∫

[d p]v(k)
g (p, t) f (p, t), (11)

j (k)
pol(t) = −N f e

∫

[d p]v
(k)
pol(p, t)u(p, t), (12)

where

v(k)
g (p, t) =

∂ε(p, t)

∂ p(k)
=
v2FP(k)

ε(p, t)
, (13)

v
(k)
pol(p, t) = ε(p, t)

∂λ(p, t)

∂E(k)(t)
=

v2F
ε(p, t)

{

P(2), k = 1,

−P(1) k = 2,

(14)
wherein vgvpol = 0. The currents (11), (12) are determined

by the effective field (1). From formulas (12) and (9)
it follows that the auxiliary functions u(p, t) and v(p, t)
in system (3) describe polarization effects in current and

energy densities, respectively. The sign on the right side of

the polarization current (12) determines the dampening of

the conductive current (11) (see below).

2. Back-reaction problem

The next level of description takes into account the back-

reaction (BR) associated with the generation of internal

plasma currents and fields E(k)
in (t) = −(1/c)Ȧ(k)

in (k = 1, 2).
The problem occurs at the stage of formulation of the

Maxwell equation, where the electric field strength E(k)
in is

compared with the plasma current density. Some dimen-

sional modification has to be introduced in the graphene

dynamics due to the assumption of the fundamental nature

of the standard D = 3 + 1 QED.

Such modifications were proposed in Ref. [10]. The wave

function of carriers ψ(x, t) (x = (x (1), x (2))) of D = 2 + 1

dimension was modified to the case of D = 3 + 1 space-

time using the definition as

ψ(x, z ; t) = ψ(x, t)
1√
d
ϕ(z )ei p(3)z /~, z = x (3), (15)

where d ≃ 10−8 cm — the graphene layer thickness. The

dimensionless function ϕ(z ) describes the distribution of

carriers in the transverse direction and satisfies the condi-

tions of normalization and confinement (ϕ(z = 0, d) = 0).
The details of this distribution are further ignored, so that

ϕ(z )ei p(3)z /~ → 1, which leads to D = 3 + 1 modified wave

function

ψ̃(x, t) = d−1/2ψ(x, t). (16)

This result leads to the following rule for dimensional

modification of average quantities of type a :

〈ã〉 = d−1〈a〉, (17)

where 〈a〉 corresponds to D = 2 + 1 theory.

Now the Maxwell equation for back-reaction in graphene

can be written:

Ė(k)
in (t) = −4π j̃ (k)(t) = −4πd−1 j (k)(t), (18)

where D = 2 + 1 densities of conductive and polarization

currents are determined by the equations (10)−(12).
The system of kinetic equations (2)( or (3)) and the

Maxwell equation (18) describes a self-consistent evolution

of the EHP and the internal field. Two stages of the back-

reaction processes can be identified here: the excitation

of the EHP, which is limited by the period of action

of the external field, and the period of free evolution of

the system, which has the form of periodic self-consistent

plasma oscillations [11]. We study below the back-reaction

of graphene in the model of a field of a single Gaussian

pulse.

Eex(t) = E0e−t2/2τ 2

. (19)

In the case of electron-positron and parton plasmas, the

mechanism of back-reaction has been well studied on the

basis of nonperturbative kinetic theory in a large number

of papers, starting with [14]. The masslessness of the

theory is the principal feature of graphene. This results

in an almost inertialess response of the system and a sharp
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weakening of the memory effect in the kinetic description.

The internal plasma field strongly grows as a result and

almost offsets the external field, so that the effective field is

strongly dampened. This results in the suppression of the

EHP generation.

These features are very well manifested in case of nu-

merical study of the problem of back-reaction in graphene.

The strengths of electric fields (external (Eex), internal (Ein)
and effective (E)) are shown in Fig. 1, 2: the total field

E = Eex + Ein is strongly dampened. Plasma oscillations

appear after switching of the external field, but they are

weakly expressed.

This results in the depletion of EHP. The depletion

coefficient for particle densities in the out-state and the

current amplitude depletion coefficient is introduced to
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Figure 1. Evolution of electric fields in graphene.
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Figure 2. Evolution of the resulting field in graphene.
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Figure 3. Particle density depletion coefficient.
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Figure 4. Current density depletion coefficient.

characterize the efficiency of this process:

ξ (n) =
nout

BR

nout
, ξ ( j) =

jmax
BR

jmax
, (20)

where nout
BR and jmax

BR are calculated taking into account back-

reaction, and back-reaction is not taken into account in nout

and jmax (Fig. 3, 4). These figures show that both depletion

coefficients (20) are very small with a wide variation of

the parameters of the external field (19). The conclusion

about the depletion of EHP due to the back-reaction is

in qualitative agreement with the results of the semi-

phenomenological theory of cascade processes in electron-

positron plasma (review [15]), confirming N. Bohr’s idea

that a critical field strength Ec = m2/e cannot be achieved

in fields capable of generating electron-positron plasma.

E0- and τ -dependencies can be restored at a qualitative

level in the definitions of (20) densities:

nout ∝ E3/2
0 τ , nout

BR ∝ E2
0 , (21)
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Figure 5. Spectral power densities of radiation with

E0 = 250 kV/cm, τ = 2.46 · 10−13 c.

jmax ∝ E3/2
0 τ , jmax

BR ∝ E0τ
−1. (22)

These estimates lead to the following results for the

depletion coefficients

ξ (n) ∝ E1/2
0 τ −1, ξ ( j) ∝ E−1/2

0 τ −2. (23)

3. Quasi-classical and quantum radiation

The quasiclassical radiation (QCR) in the outer regions

relative to the graphene plane is determined by internal

plasma currents. The energy density of this radiation at

a great distance from the graphene plane is (see Appendix)

EQCR(t, z ) =
π

c2
j2(tret), (24)

where tret = t − z/c — delay time and j(t) — D = 2 + 1

current density in graphene. As expected, the quasiclassical

radiation is relatively weak (Fig. 5).

The interaction of the EHP with the photon field

generates quantum radiation (QR). The corresponding KE

system for the EHP and the photon subsystem in graphene

was obtained in Ref. [16] on a dynamic basis by the analogy

with the kinetic theory of electron-positron-photon plasma

in a strong external field [17,18].

We will consider below only the annihilation channel in

the integral of collisions of photonic KE, neglecting the

reverse effect of the birth of electron-hole pairs as a result

of photon absorption [16],

Ḟ(K, t) = 2

∫

d2p
(2π~)2

t
∫

t0

dt′Kγ(p, p + ~k; t, t′)

×
{

f (p, t′) f (p + ~k, t′) +
[

f (p, t′) + f (p + ~k, t′) − 1
]

× F(K, t′)
}

,

(25)
where the vector k belongs to the graphene plane,

K = (k, k(3)) — a three-dimensional wave vector with a

component k(3), orthogonal to the graphene plane; K = |K|.
The kernel of the photon collision integral here is equal to

Kγ(p, p
′; t, t′) =

(evF)2

2~cKd
Ŵαuv(p, p

′; t)Ŵα∗uv (p, p′; t′)

× cos2(+)(p, p′; t, t′). (26)

Phase 2(+)(p, p′; t, t′) corresponds to a single-photon anni-

hilation diagram

2(+)(p, p′; t, t′) =
1

~

t
∫

t′

dτ [ε(p, τ ) + ε(p′, t) − c~K] .

(27)
In case of a sufficiently slow process it is possible to neglect

the delay in the product of vertex functions in (26) and use

the relation [16]:

∑

α

|Ŵαuv(p, p′; t)| = 1. (28)

The time integral in (25) then leads to the law of

conservation of energy in the elementary act of annihilation

(a similar situation occurs in case of derivation of the kinetic

Boltzmann equation [19]). The process is inelastic in the

considered case and the law of conservation of energy does

not hold in the collision integral (25). The kernel of the

collision integral in KE (25) in the approximation (28) will

be equal to

Kγ(p, p
′; t, t′) =

(evF)2

2~cKd
cos2(+)(p, p′; t, t′). (29)

The appearance of the thickness d of the graphene sample

in the resulting collision integral here is caused by the use

of the same normalization volume V = Sd in the expansion

of the vector potential over plane waves

Â(±)α(x, t) =

√

~c
V

∑

K

1

2
√
2K

ǫαi (±K)Â(±)(±K, t)e−ikx.

(30)
Here α, i = 1, 2, and ǫαi — a polarization tetrad transverse

to the vector K. The final KE system in the electron-

hole and photon sectors is recorded in the thermodynamic

limit V → ∞ with a fixed sample thickness. As a result,
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the photonic KE in the annihilation channel (25) has the

following form

Ḟ(K, t) = 3(K)

∫

d2p
(2π~)2

t
∫

t0

dt′ cos2(+)(p, p + ~k; t, t′)

×
{

f (p, t′) f (p + ~k, t′) + [ f (p, t′) + f (p + ~k, t′) − 1]

× F(K, t′)
}

= C(K, t),
(31)

where C(K, t) — collision integral and

3(K) =
(evF)2

~cKd
. (32)

Given the similarity of the mathematical structures of the

integro-differential equations (2) and (31), it is not difficult
to write the photonic equation (31) in the form of a system

of integro-differential equations similar to (3):

Ḟ(K, t) = 3(K)

∫

d2p
(2π~)2

U(p,K, t),

U̇(p,K, t) = [ f (p, t′)+ f (p+~k, t′)−1] F(K, t′)+ f (p, t′)

× f (p + ~k, t′) − 1

~

[

ε(p, τ ) + ε(p′, t) − c~K
]

V (p,K, t),

V̇ (p,K, t) =
1

~
[ε(p, τ ) + ε(p′, t) − c~K]U(p,K, t). (33)

This system is convenient for numerical study of the

quantum radiation problem. The distribution function of

carriers f (p, t) is considered here as a solution of KE (2)(or
the system (3)).
We select the parameters of the external field in

the model (19) as E0 = 250 kV/cm and τ = 246 fs, which

they are close to the parameters of the work field [20]
for comparing the obtained results of the characteristics of

quasiclassical radiation and quantum radiation based on the

kinetic theory with the experimental results [20].
Spectral power densities of quasiclassical radiation

(QQCR = ĖQCR, (24)) and quantum radiation

QQR(ν) =
4π~

c3
ν3Ḟ(ν) (34)

are shown in Fig. 5. The quasiclassical radiation field has

a narrow spectrum with a sharp boundary in the high-

frequency region, whereas the quantum radiation spectrum

is much broader and reaches the ultraviolet spectral region.

Only the quantum radiation reaches the visible light range

in the considered situation. This result is close to the

experimental observation [20].
The radiation is emitted in both directions from the

graphene surface and orthogonally to it.

The situation shown in Fig. 5 is not universal and can be

very different depending on the parameters of the external

field (Fig. 6). The presented theory makes it possible to

make the necessary predictions in these cases.
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Figure 6. Spectral power densities of radiation with

E0 = 100 kV/cm, τ = 1.23 · 10−15 c.

It should be noted that radiation (quasiclassical and

quantum) leads to irreparable losses of energy introduced

by the external field. These losses are not taken into account

in this paper.

Conclusion

The work briefly summarizes the results of the develop-

ment of a consistent kinetic theory of radiation processes

in graphene, including a nonperturbative description of the

generation of EHP, the mechanism of the back-reaction dur-

ing the generation of internal currents and a quasiclassical

plasma field, as well as a quantum field excited by direct

interaction with carriers in the annihilation channel. An

essential element of such a description is the use of QED

methods [10], which allow combining D = 2 + 1dynamics

of graphene with D = 3 + 1 dynamics of quasiclassical

radiation and quantum radiation. The achieved level of

radiation description in graphene suggests a qualitative

agreement with the experiments [20]. It is possible to expect

that further development of the kinetic theory (for example,

taking into account the process of the back-reaction of

the photonic subsystem in the annihilation channel) will

allow reaching a quantitative level of description of radiation

processes in graphene. In particular, it would be interesting

to compare the mechanisms of depletion of the external

field in graphene and the simplest semiconductor model,

where a nonperturbative kinetic description of electron-hole

excitations is also possible [21,22].

Technical Physics, 2024, Vol. 69, No. 3



11th International Symposium on Optics and Biophotonics September 25–29, 2023, Saratov, Russia 337

Appendix

Plasma currents in graphene generate quasiclassical ra-

diation into regions of space external to the plane of S
graphene. The characteristics of this radiation can be found

using a model of spatially homogeneous currents in an

infinite conducting plane [23].
The expression for the delayed vector potential Ak

ret(r, t)
of the radiation field in point z located at a distance z from

the graphene plane is the initial expression [24].

Ak
ret(r, t) =

1

c

∫

Sd

d3x
ρ

j̃ (k)(t − ρ/c) =
1

c

∫

S

j (k)(t − ρ/c).

(A1)
where ρ =

√
r2 + z 2, r2 = x2 + y2, and d — thickness of

the graphene sample. The last equality (A1) is written

taking into account the matching rule (17). Since now

rdr = ρdρ, we derive the following from (A1).

Ak
ret(r, t) =

2π

c

∞
∫

z

j (k)(t − ρ/c). (A2)

The strength of the electric and magnetic fields in the

observation point z can be derived from (A2) by introducing

a single vector e(3) in the direction perpendicular to the

plane S

Erad(t0) = −2π

c
j(t0), (A3)

Brad(t0) = −2π

c
[e(3), j(t0)], (A4)

where t0 = t − z/c — delay time. The expression for the

Poynting vector follows from here

Srad(t0) = cErad(t0)e
(3), (A5)

where the energy density of the quasiclassical radiation is

Erad(t0) =
π

c2
j2(t0). (A6)

Let us now consider the quantum radiation in the outer

regions of space (
”
up“ and

”
down“) relative to the graphene

plane S.
Since the point at issue is the extension of the kinetic

description of photonic radiation to external regions, it is

advisable to use the mathematical physics method of the

Green’s function, considering the graphene plane as an

active radiation zone described by the photonic KE (31).
The photonic KE (31) with the collision integral C(K, t):

Ḟ(K, t) = C(K, t), (A7)

which is valid on graphene planes S, is extended to both

areas of free space (X = x, x (3) = z ),

L̂(X, t)F(X,K, t) ≡
(

∂

∂t
+ ce

∂

∂X

)

F(X,K, t)

= Q(X,K, t) ≡ C(K, t)δ(z/d), (A8)

where e = K/K. Now let’s define the Green’s function of

the equation (A8)

L̂(X, t)G(X − X′, t − t′) = δ(X− X′)δ(t − t′). (A9)

The Fourier image of the Green’s function of the equation

(ε > 0) can be obtained from here:

G(K, ω) =
−i

ω + iε − cK
. (A10)

Now it is possible to write the solution of KE (A8) via the

source function Q(X,K, t),

F(X,K, t) =

∫

d3Xdt′G(X− X′, t − t′)Q(X′,K, t′).

(A11)
We derive from here the following using the definition

Q(X,K, t) (A8) and formula (A10)

F(X,K, t) =
d
2c

C(K, tret), (A12)

where tret = t − z/c — delay time.
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