Сильная анизотропия упругости неупорядоченного кубического монооксида титана ТіО,

© А.А. Валеева, А.И. Гусев

14

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: gusev@ihim.uran.ru

Поступила в Редакцию 23 марта 2024 г. В окончательной редакции 29 марта 2024 г. Принята к публикации 3 апреля 2024 г.

Впервые оценены упругие константы c_{11}, c_{12}, c_{44} как функции содержания кислорода y в области гомогенности TiO_{0.80}—TiO_{1.25} неупорядоченного кубического монооксида титана TiO_y. Константы упругой жесткости c_{ij} неупорядоченного кубического монооксида TiO_y увеличиваются с ростом относительного содержания кислорода y. Величины упругих модулей зависят от кристаллографического направления [hkl]. Большие изменения упругих характеристик TiO_y в зависимости от направления [hkl] свидетельствуют о сильной анизотропии упругих свойств неупорядоченного кубического монооксида титана. Монооксид титана TiO_y обладает гораздо большей анизотропией упругих свойств, чем родственный кубический карбид титана TiC_y. Неупорядоченный кубический монооксид титана механически стабилен во всей области гомогенности. По соотношению модулей всестороннего сжатия B и сдвига G поликристаллический монооксид титана титана температура Дебая поликристаллического неупорядоченного кубического монооксида TiO_y нелинейно увеличивается с ростом относительдея y.

Ключевые слова: упругие константы, нестехиометрия, анизотропия упругих свойств, механическая стабильность, температура Дебая.

DOI: 10.61011/FTT.2024.05.58088.66

1. Введение

Неупорядоченные кубические монооксид титана TiO_v и карбид титана TiC_v с базисными структурами типа B1 являются родственными нестехиометрическими соединениями внедрения титана. Разница между ними связана с наличием структурных вакансий (незанятых атомами узлов кристаллической решетки) сразу в неметаллической и в металлической подрешетках монооксида титана, тогда как в карбиде титана вакансии присутствуют только в неметаллической подрешетке [1]. Вследствие двойной дефектности монооксида TiO_v и одинарной дефектности карбида ТіСу эти соединения при прочих равных условиях будут иметь разные плотности упаковки атомов, что должно приводить к разнице их анизотропии. Анализ анизотропии упругих свойств неупорядоченного кубического карбида титана TiC_v в работе [2] показал, что карбид титана обладает слабой анизотропией, которая немного растет с увеличением дефектности углеродной подрешетки, но остается незначительной даже на нижней границе его области гомогенности ТіС_{0.50}. В настоящей работе будет изучена анизотропия неупорядоченного кубического монооксида титана ТіО_у в его области гомогенности.

Кубический (пространственная группа $Fm\bar{3}m$) монооксид титана TiO_y с базисной структурой типа B1имеет одну из самых широких областей гомогенности (от TiO_{0.80} до TiO_{1.25} при температуре ~ 1273 K) среди нестехиометрических кубических монооксидов и монокарбидов [1,3–6]. Состав монооксида титана с учетом содержания структурных вакансий в каждой из подрешеток имеет вид Ti_xO_z \equiv TiO_y или Ti_{x $\blacksquare 1-x$ O_{z $\square 1-z$} \equiv TiO_y, где y = z/x, \square и \blacksquare — структурные вакансии неметаллической (кислородной) и металлической (титановой) подрешетки соответственно. Монооксид титана, который формально имеет стехиометрический эквиатомный состав TiO_{1.0}, содержит по 16.7 at.% вакансий в подрешетках титана и кислорода, поэтому с учетом дефектности подрешеток его реальный состав TiO_{.833}O_{0.833} [3,7].}

В неупорядоченном состоянии атомы и структурные вакансии распределены по узлам каждой из подрешеток монооксида титана $Ti_x O_z$ случайным образом, но кубическая симметрия каждой подрешетки сохраняется, так как вероятность обнаружения атома на всех узлах своей подрешетки одинакова и совпадает с относительным содержанием занятых узлов подрешетки, т. е. равна *x* для подрешетки титана и равна *z* для подрешетки кислорода.

В зависимости от содержания кислорода и условий термообработки распределение атомов и вакансий в кристаллической решетке монооксида TiO_y может быть неупорядоченным или упорядоченным. Неупорядоченное состояние монооксида титана термодинамически стабильно при T > 1600 K, а при температуре ниже 1500 K в разных концентрационных и темпера-

турных интервалах образуются несколько упорядоченных фаз разного типа с различной симметрией [1,8,9]. Основной упорядоченной фазой нестехиометрического кубического монооксида титана является моноклинная (пр. гр. C2/m) фаза Ti₅ O₅.

Все свойства монооксида титана зависят от относительного содержания кислорода у и заметно меняются в его области гомогенности. Период решетки неупорядоченного кубического монооксида TiO_v монотонно понижается с ростом относительного содержания кислорода у [8] Согласно данным [6,10-13], все неупорядоченные монооксиды титана имеют малое удельное электросопротивление. В зависимости от содержания кислорода с ростом температуры удельное электросопротивление неупорядоченных монооксидов ТіО_v с $y \le 1.0$ слабо растет, а при y > 1.0 уменьшается; таким образом, монооксиды TiO_v с малым содержанием кислорода $y \le 1.0$ обладают электронной проводимостью, а с большим содержанием кислорода у > 1.0 ведут себя как узкощелевые полупроводники или изоляторы. Удельная теплоемкость неупорядоченного нестехиометрического монооксида титана ${\rm TiO}_y$ (0.81 $\leq y \leq$ 1.26) во всей области гомогенности кубической фазы растет при увеличении относительного содержания кислорода у [14]. Сведения о механических свойства неупорядоченного кубического монооксида титана ограничены измерениями микротвердости закаленных образцов TiO_v в области $0.92 \le y \le 1.26$ [15], где наблюдается нелинейный рост микротвердости при увеличении у.

Применение неупорядоченного монооксида титана связано с его механическими свойствами. Одним из путей регулирования упругих свойств является изменение нестехиометрии монооксида титана. Однако экспериментальные данные по упругим свойствам неупорядоченного кубического монооксида титана TiO_y в зависимости от содержания кислорода в литературе отсутствуют.

Теоретические расчеты упругих характеристик имеются только для эквиатомного квазистехиометрического монооксида $\text{TiO}_{1.00}$. Теоретические оценки упругих свойств, получены, как правило, в разных вариантах теории функционала плотности (DFT) с использованием приближений локальной плотности (LDA) и обобщенного градиента (GGA) для обменно-корреляционных потенциалов при 0 К. Константы упругой жесткости c_{ij} и упругие модули эквиатомного квазистехиометрического монооксида TiO_{1.00}, рассчитанные в работах [16–20], приведены в табл. 1.

В работе [20] с использованием первопринципных расчетов методом DFT наряду с кубическим (пр. гр. $Fm\bar{3}m$) эквиатомным монооксидом титана TiO изучена анизотропия упругих свойств оксидов TiO₂, Ti₂O₃, Ti₃O и Ti₃O₅. По данным [20], кубический монооксид TiO обладает наибольшей анизотропией упругих свойств по сравнению с другими изученными оксидами титана.

Согласно теоретическим данным [16–20], кубический монооксид титана TiO обладает очень заметной анизотропией упругих свойств.

-							
	с ₁₁ , GPa	c ₁₂ , GPa	c ₄₄ , GPa	B, GPa	<i>G</i> , GPa	Приближение	Ссылка
	693	73	130	280	-	LDA	16
	517.2	71.3	36.2	220.0	222.5	GGA	17
	650	72	145	270	-	TBPM*	18
	612	129	123	249.8	241.5	LDA	19
	511	53	31	205	78	GGA	20

Таблица 1. Теоретические упругие константы c_{ij} , модуль всестороннего сжатия B и модуль сдвига G эквиатомного квазистехиометрического монооксида титана TiO_{1.00}

* three-body potential model.

Матрица постоянных упругой жесткости кубических кристаллов включает 3 независимые упругие константы — с11, с12 и с44, а матрица констант упругой податливости s_{ij} включает три константы: s₁₁, s₁₂ и s₄₄. Для учета анизотропии упругих свойств нестехиометрического кубического монооксида титана TiO_v нужно знать, как константы упругости c_{11} , c_{12} и c_{44} или s_{11} , s_{12} и s44 меняются в зависимости от относительного содержания кислорода у. В связи с этим в настоящей работе на основе экспериментальных результатов [15] по микротвердости неупорядоченного кубического монооксида TiO_v с разным содержанием кислорода будут количественно определены упругие константы нестехиометрического монооксида TiO_v и оценена анизотропия его упругих свойств. Для сравнения анизотропии упругости неупорядоченного монооксида титана TiO_v будет использован родственный неупорядоченный кубический карбид титана TiC_v.

2. Результаты и обсуждение

2.1. Упругие константы монооксида титана

Изучение твердости карбидов, нитридов и других соединений [21] обнаружило общую тенденцию к понижению их твердости H_V при уменьшении модулей сдвига G и всестороннего сжатия B. Согласно [21,22], для нестехиометрических соединений зависимость микротвердости от модуля сдвига имеет вид $H_V(y) = 0.151G(y)$. Использование этой функции позволяет найти изменение модуля сдвига G(y) в зависимости от состава неупорядоченного монооксида TiO_y по данным [15] об изменении его микротвердости как

$$G(y) = H_V(y)/0.151.$$
 (1)

Выполненный количественный расчет показал, что модуль сдвига $G_{y=1}$ стехиометрического монооксида TiO_{1.00} равен 77.4 GPa, а концентрационная зависимость G(y) неупорядоченного монооксида титана TiO_y име-

791

ет вид

$$G(y) = G_{y=1}(-3.23902 + 7.17183y - 2.93282y^2)$$

± 10.0 GPa. (2)

Наличие концентрационных зависимостей микротвердости $H_V(y)$ и модуля сдвига G(y) закаленного неупорядоченного монооксида TiO_y дает возможность найти концентрационную зависимость модуля всестороннего сжатия B(y), используя эмпирическую функцию $H_V = [2(k^2G)^{0.585}-3]$, предложенную в работе [23]. Из этой функции следует, что

$$B(y) = [G(y)]^{3/2} / \left[\left(H_V(y) + 3 \right) / 2 \right]^{1.17}.$$
 (3)

Зависимость модуля всестороннего сжатия B неупорядоченного монооксида титана TiO_y, рассчитанная с помощью соотношения (3) из концентрационной зависимости $H_V(y)$ микротвердости закаленного монооксида титана [15] с использованием найденной количественной зависимости G(y) (2), имеет вид

$$B(y) = B_{y=1}(-2.60339 + 6.11632y - 2.51292y^2)$$

± 10.0 GPa. (4)

По расчету, модуль всестороннего сжатия $B_{y=1}$ стехиометрического монооксида титана TiO_{1.00} равен 123.8 GPa.

Для перехода от найденных количественных зависимостей модулей G(y) и B(y) монооксида титана к его константам упругой жесткости c_{11}, c_{12} и c_{44} далее применен подход, предложенный и развитый ранее в работе [22] по нестехиометрии и упругим свойствам неупорядоченного кубического карбида титана TiC_y.

Модуль всестороннего сжатия изотропных кубических кристаллов связан с константами упругой жесткости простым соотношением $B = (c_{11} + 2c_{12})/3$ [24,25]. В первом приближении зависимость B(y) монокристаллических частиц монооксида титана TiO_y от относительного содержания кислорода у имеет такой же вид, как зависимость B(y) (4), найденная на основе экспериментальных данных [15] по микротвердости $H_V(y)$. Поэтому

$$(c_{11}+2c_{12})/3 = B_{y=1}(-2.60339+6.11632y-2.51292y^2).$$

Сравнение теоретически рассчитанных в работах [16–20] модулей *B* и *G* квазистехиометрического TiO_{1.00} с найденными в этой работе величинами модулей $G_{y=1} = 77.4$ GPa и $B_{y=1} = 123.8$ GPa показывает, что теоретические значения модулей $G_{calc,y=1} = 78$ GPa и $B_{calc,y=1} = 205$ GPa квазистехиометрического TiO_{1.00}, рассчитанные в работе [20], наиболее близки к нашим оценкам $G_{y=1}$ и $B_{y=1}$. С учетом данных [20] по упругим модулям $B_{calc,y=1} = 205$ GPa и $G_{calc,y=1} = 78$ GPa и упругим константам $c_{11} = 511$, $c_{12} = 53$ и $c_{44} = 31$ GPa эквиатомного стехиометрического монооксида титана, между теоретическими упругими константами $c_{ij}(y = 1)$

и теоретическими значениями модуля всестороннего сжатия и модуля сдвига стехиометрического $TiO_{1.00}$, представленными в работе [20], можно установить эмпирические соотношения

$$c_{11}(y = 1) = 2.49268B_{\text{calc},y=1},$$

 $c_{12}(y = 1) = 0.25854_{\text{calc},y=1}$

И

$$c_{44}(y=1) = 0.39744G_{\text{calc},y=1}$$

Ранее на примере неупорядоченного кубического карбида титана TiC_y [2,22] было показано, что зависимости упругих констант c_{11} и c_{12} от состава нестехиометрического соединения качественно одинаковы. С учетом этого, упругие константы $c_{11}(y)$ и $c_{12}(y)$ как функции состава неупорядоченного монооксида TiO_y имеют вид

$$c_{11}(y) = c_{11}(y = 1)(-2.60339 + 6.11632y - 2.51292y^2),$$
(5a)

$$c_{12}(y) = c_{12}(y = 1)(-2.60339 + 6.11632y - 2.51292y^2),$$
(5b)

где $c_{11}(y = 1) = 511$ GPa и $c_{12}(y = 1) = 53$ GPa.

Согласно [26], модуль сдвига изотропных кубических кристаллов связан с упругой константой c_{44} как $G = c_{44}$. В работе [16] отмечено, что сопротивление сдвиговым искажениям кубического кристалла более точно характеризуется двумя модулями: c_{44} и $c' = (c_{11}-c_{12})/2$. Постоянная сдвига с 44 связана с орторомбической деформацией, тогда как с' связана с тетрагональной деформацией. Найденное изменение G(y) (2) от состава TiO_y является усредненной концентрационной зависимостью модуля сдвига, так как получено на основе зависимости $H_V(y)$ микротвердости ТіО_у [15], измеренной на поликристаллических образцах монооксида титана. Поэтому $G_{y=1} = c_{44}(y=1)$, и зависимость $c_{44}(y)$ монокристаллических частиц монооксида титана ТіО, от содержания кислорода у как функция состава неупорядоченного монооксида TiO_v имеет вид

$$c_{44}(y) = c_{44}(y=1)(-3.23902+7.17183y-2.93282y^2),$$
(5c)

где $c_{44}(y = 1) = 31$ GPa.

Упругие константы c_{ij} непосредственно связаны с механической стабильностью обсуждаемой фазы. В общем случае фаза является механически устойчивой, если удовлетворяет критериям Борна, представленным в работах [24,27], и необходимым и достаточным условиям упругой устойчивости разных кристаллических систем, описанным в работах [28,29]. Общий необходимый и достаточный критерий стабильности заключается в том, что все собственные значения матрицы констант упругой жесткости должны быть положительными. Упругая матрица кубических кристаллов включает всего 3 независимые положительные константы упругой жесткости c_{11} , c_{12} и c_{44} , и условия механической устойчивости кубических кристаллов имеют простой вид

$$c_{11} > c_{12}, \quad c_{44} > 0, \quad c_{11} + 2c_{12} > 0.$$
 (6)

у	c ₁₁ , GPa	<i>c</i> ₁₂ , GPa	<i>c</i> ₄₄ , GPa	s_{11}, Pa^{-1}	s_{12}, Pa^{-1}	$s_{44}, \mathrm{Pa}^{-14}$	A _{an}
0.80	348.2	36.1	19.3	$2.929 \cdot 10^{-12}$	$-0.275 \cdot 10^{-12}$	$51.91 \cdot 10^{-12}$	0.124
0.85	398.5	41.3	22.9	$2.559 \cdot 10^{-12}$	$-0.240 \cdot 10^{-12}$	$43.71 \cdot 10^{-12}$	0.128
0.90	442.4	45.9	26.0	$2.305 \cdot 10^{-12}$	$-0.217\cdot 10^{-12}$	$38.40 \cdot 10^{-12}$	0.131
0.95	479.9	49.8	28.7	$2.125 \cdot 10^{-12}$	$-0.200 \cdot 10^{-12}$	$34.79 \cdot 10^{-12}$	0.134
1.00	511.0	53.0	31.0	$1.996 \cdot 10^{-12}$	$-0.188 \cdot 10^{-12}$	$32.26 \cdot 10^{-12}$	0.135
1.05	535.7	55.6	32.8	$1.904 \cdot 10^{-12}$	$-0.179 \cdot 10^{-12}$	$30.49 \cdot 10^{-12}$	0.137
1.10	553.9	57.4	34.1	$1.841 \cdot 10^{-12}$	$-0.173 \cdot 10^{-12}$	$29.29 \cdot 10^{-12}$	0.138
1.15	565.7	58.7	35.0	$1.803 \cdot 10^{-12}$	$-0.169 \cdot 10^{-12}$	$28.55 \cdot 10^{-12}$	0.138
1.20	571.1	59.2	35.5	$1.786 \cdot 10^{-12}$	$-0.168 \cdot 10^{-12}$	$28.20 \cdot 10^{-12}$	0.139
1.25	570.1	59.1	35.4	$1.789 \cdot 10^{-12}$	$-0.168 \cdot 10^{-12}$	$28.22 \cdot 10^{-12}$	0.139

Таблица 2. Константы упругой жесткости c_{ij} ,константы упругой податливости s_{ij} и критерий упругой анизотропии A_{an} неупорядоченного кубического монооксида титана TiO_y

Соотношения между константами упругости c_{11} , c_{12} , c_{44} и s_{11} , s_{12} , s_{44} кубических кристаллов [25] описываются как

$$s_{11} = (c_{11} + c_{12})/[(c_{11} - c_{12})(c_{11} + 2c_{12})],$$

$$s_{12} = -c_{12}/[(c_{11} - c_{12})(c_{11} + 2c_{12})], \quad s_{44} = 1/c_{44}.$$
 (7)

Оцененные по (5) и (7) упругие константы c_{ij} и s_{ij} неупорядоченных кубических монооксидов титана TiO_y разного состава приведены в табл. 2. Ясно, что для любого состава неупорядоченного кубического монооксида титана TiO_y в его области гомогенности выполняется условие (6) механической стабильности.

2.2. Анизотропия упругих свойств неупорядоченного кубического монооксида TiO_v

Согласно теории упругости, кубические кристаллы обладают анизотропией упругих свойств. В частности, в работе [30] представлены зависимости модуля Юнга E_{hkl} , коэффициента Пуассона μ_{hkl} и модуля сдвига G_{hkl} кубических кристаллов от кристаллографического направления [hkl], свидетельствующие об их анизотропии. Эти упругие характеристики кубических кристаллов с учетом фактора анизотропии Г являются функциями констант упругой жесткости c_{11} , c_{12} и c_{44} и имеют вид [30]:

$$E_{hkl} = \frac{(c_{11} - c_{12})(c_{11} + 2c_{12})c_{44}}{(c_{11} + c_{12})c_{44} - (2c_{44} - c_{11} + c_{12})(c_{11} + 2c_{12})\Gamma},$$
(8)

$$\mu_{hkl} = 1/2 - \frac{E_{hkl}}{2(c_{11} + 2c_{12})},\tag{9}$$

$$G_{hkl} = \frac{2(c_{11} - c_{12})c_{44}}{4c_{44} - 6(2_{44} - c_{11} + c_{12})\Gamma}.$$
 (10)

В формулах (8)-(10) величина Г представляет собой фактор анизотропии кубических кристаллов, равный

$$\Gamma = \frac{h^2 k^2 + h^2 l^2 + k^2 l^2}{(h^2 + k^2 + l^2)^2}$$
[30]

Модуль всестороннего сжатия B кубических кристаллов не зависит от направления [hkl] и равен

$$B = (c_{11} + 2c_{12})/3.$$
(11)

Найденные концентрационные зависимости $c_{ii}(y)$ (5) неупорядоченного кубического монооксида титана ТіО_у и количественные данные по упругим константам c_{11} , с12, с44 и s11, s12, s44 монооксида титана с разным относительным содержанием кислорода у (см. табл. 2) были использованы для расчета по формулам (8)–(11) распределений упругих характеристик монокристаллического кубического монооксида ТіОу в зависимости от направления [hkl] и относительного содержания кислорода у. На рис. 1 показаны построенные распределения модуля Юнга $E_{hkl}(y)$ и модуля сдвига $G_{hkl}(y)$ в плоскости (100) кубического монооксида ТіО_у с разными величинами относительного содержания кислорода у. Коэффициент Пуассона $\mu_{hkl}(y)$ монооксида титана очень слабо зависит от у, поэтому его распределение показано только для y = 0.8 и 1.0 (см. рис. 1). Вследствие кубической симметрии монооксида титана распределения его упругих характеристик $E_{hkl}(y)$, $G_{hkl}(y)$ и $\mu_{hkl}(y)$ в плоскостях (010) и (001) такие же, как в плоскости (100).

Величина модуля Юнга E_{hk0} моноксида титана TiO_{0.80}, соответствующего нижней границе области гомогенности неупорядоченной кубической фазы, в плоскости (100) меняется от ~ 341 до ~ 70 GPa. Для эквиатомного монооксида TiO_{1.00} модуль Юнга меняется от ~ 499 до ~ 111 GPa, а для монооксида TiO_{1.20} —

Рис. 1. Зависимости модуля Юнга E (y = 0.8, 0.9, 1.0 и 1.2), коэффициента Пуассона μ (y = 0.8 и 1.0), модуля сдвига G (y = 0.8, 1.0 и 1.2) и модуля всестороннего сжатия B (y = 0.8, 1.0 и 1.2) от кристаллографического направления [hkl] в плоскости (100) кубического монооксида титана TiO_y с разным относительным содержанием кислорода y.

от ~ 558 до ~ 128 GPa (рис. 1). Максимальная и минимальная величины модуля сдвига G_{hk0} меняются от ~ 156 до ~ 25 GPa для монооксида TiO_{0.80}, от ~ 229 до ~ 39 GPa для эквиатомного TiO_{1.00} и от ~ 256 до ~ 45 GPa для TiO_{1.20} (см. рис. 1). Коэффициент Пуассона μ в плоскости (100) монооксидов титана в зависимости от направления [hkl] изменяется в интервале от ~ 0.094 до ~ 0.417 и почти не зависит от состава TiO_y (см. рис. 1). Модуль всестороннего сжатия *B* кубического монооксида титана не зависит от направления [hkl] и имеет сферическую форму, величина *B* монооксидов TiO_{0.80}, TiO_{1.00} и TiO_{1.20} составляет ~ 194, ~ 217 и ~ 230 GPa соответственно. Большие изменения

 E_{hk0} , G_{hk0} и μ_{hk0} от направления [hkl] указывают на сильную анизотропию упругих свойств неупорядоченного кубического моноксида титана TiO_y с любым относительным содержанием кислорода у в его области гомогенности.

Пространственные трехмерные распределения модуля Юнга E_{hkl} и модуля всестороннего сжатия B_{hkl} неупорядоченных кубических монооксидов титана TiO_{0.80}, TiO_{1.00} и TiO_{1.20} с разным относительным содержанием кислорода у показаны на рис. 2. Монооксид TiO_{0.80} соответствует нижней границе области гомогенности и имеет наименьшие константы упругой жесткости c_{11} , c_{12} и c_{44} , а монооксид TiO_{1.20} по составу почти доходит

Рис. 2. Рассчитанные пространственные распределения *a*) модуля Юнга *E*_{*hkl*} и *b*) модуля всестороннего сжатия *B*_{*hkl*} неупорядоченных кубических монооксидов титана TiO_{0.80}, TiO_{1.00} и TiO_{1.20} с разным относительным содержанием кислорода *y*.

Рис. 3. Пространственные распределения модуля Юнга *E*_{hkl} кубических карбидов титана TiC_{0.50} и TiC_{1.00} [22].

до верхней границы области гомогенности и отличается наибольшими значениями констант упругой жесткости *c*₁₁, *c*₁₂ и *c*₄₄ (см. табл. 2). Монооксид ТіО_{1.00} эквиатомного состава занимает промежуточное положение между оксидами TiO_{0.80} и TiO_{1.20}. Для всех монооксидов титана наибольший модуль Юнга E_{max} наблюдается вдоль одной из кристаллографических осей $[00 \pm 1]$, $[0 \pm 10]$ или $[\pm 100]$. Наименьшая величина E_{\min} наблюдается в восьми эквивалентных направлениях $[\pm 1 \pm 1 \pm 1]$. Наибольшие и наименьшие значения модуля Юнга монооксидов титана $TiO_{0.80}$, $TiO_{1.00}$ и $TiO_{1.20}$ равны ~ 341 и $\sim 67,~\sim 499$ и $\sim 109,~\sim 558$ и $\sim 125\,{\rm GPa}$ соответственно (см. рис. 2, а). Величины модулей всестороннего сжатия B_{hkl} монооксидов TiO_{0.80}, TiO_{1.00} и TiO_{1.20} равны \sim 194, \sim 217 и \sim 230 GPa соответственно, модули B_{hkl} имеют сферическую форму и не зависят от направления [*hkl*] (см. рис. 2, *b*).

Для сравнения, на рис. З показаны рассчитанные в работе [22] пространственные трехмерные распределения модуля Юнга E_{hkl} неупорядоченных кубических карбидов титана TiC_{0.50} и TiC_{1.00}, соответствующих нижней и верхней границам области гомогенности карбида титана. Согласно [22], для нестехиометрического карбида титана TiC_{0.50} наибольший и наименьший модули Юнга равны $E_{\text{max}} = 440 \text{ GPa}$ и $E_{\text{min}} = 346 \text{ GPa}$, а для стехиометрического карбида TiC_{1.00} наибольший и наименьший модули E_{max} и E_{min} равны 477 и 450 GPa соответственно. Таким образом, E_{max} и E_{min} карбида титана ТіС_у очень мало различаются один с другим по сравнению с модулями E_{max} и E_{min} монооксида титана ТіО_у. Следовательно, монооксид титана ТіО_у обладает гораздо большей анизотропией упругих свойств, чем родственный кубический карбид титана TiC_v.

В целом из выполненного анализа изменения упругих свойств в зависимости от состава TiO_y следует, что

неупорядоченный кубический монооксид титана во всей области гомогенности характеризуется сильно выраженной анизотропией.

Для оценки анизотропии можно использовать отношение наименьшего и наибольшего модуля Юнга, т. е. E_{\min}/E_{\max} . Для монооксидов титана TiO_{0.80} и TiO_{1.25}, соответствующих нижней и верхней границам области гомогенности, это отношение равно 0.205 и 0.227 соответственно, т. е. E_{\min} и E_{\max} различаются почти в 5 раз. Для карбидов титана TiC_{0.50} и TiC_{1.00} отношения минимального и максимального моделей Юнга E_{\min}/E_{\max} составляют 0.786 и 0.943, т. е. различаются очень мало. Это сравнение также подтверждает очень сильную анизотропию упругости монооксида TiO_y и крайне слабую анизотропию упругости TiC_y.

Для количественной характеристики анизотропии упругих свойств кубических кристаллов в работе [31] предложен простой критерий $A_{an} = 2c_{44}/(c_{11}-c_{12})$, величина которого для изотропных кубических кристаллов равна 1. Согласно [31], чем меньше величина A_{an}, тем больше анизотропия упругих свойств. Рассчитанный критерий анизотропии Aan неупорядоченных кубических монооксидов титана TiO_{ν} меняется от 0.124 до 0.139 для моноооксидов от $TiO_{0.80}$ до $TiO_{1.25}$ (см. табл. 2). Это указывает на очень большую анизотропию упругих свойств кубического монооксида титана, которая немного ослабляется с ростом относительного содержания кислорода у в TiO_v. Такое заключение согласуется с выводом о сильно выраженной анизотропии, сделанным на основе изменения упругих свойств в зависимости от состава неупорядоченного кубического монооксида ТіО_у в его области гомогенности. Величина A_{an} родственного кубического карбида титана меняется от ~ 0.68 до ~ 0.91 для карбидов от $TiC_{0.50}$ до $TiC_{1.00}$ [22], что указывает на малую анизотропию упругости TiC_v в сравнении с TiO_v. В общем случае анизотропия кристаллов обусловлена различной плотностью упаковки атомов в кристаллической решетке соединения в разных направлениях. Наличие вакансий в металлической и кислородной подрешетках монооксида TiO_y обусловливает значительно бо́льшую разность плотностей атомных упаковок в TiO_y по сравнению с карбидом титана TiC_y , где вакансии присутствуют только в неметаллической подрешетке. Результатом этого является заметно бо́льшая анизотропия упругих свойств монооксида титана в сравнении с карбидом титана.

3. Пластичность и температура Дебая поликристаллического монооксида TiO_y

В работе [32] предложено использовать отношение модуля всестороннего сжатия *B* к модулю сдвига *G* поликристаллических металлов для предсказания хрупкого и пластичного поведения материалов. Согласно оценкам, сделанным для металлов, оксидов, карбидов, нитридов и других соединений, высокие значения B/G > 1.75 соответствует пластичным (ductile) материалам, а низкие величины B/G < 1.75 присущи хрупким (brittle) материалам. В настоящее время как критерий используют обратное отношение: k = G/B. Критическая величина обратного отношения G/B, которая отделяет пластичные вещества от хрупких, равна примерно 0.57, т.е. вещества с k = G/B < 0.57 обладают пластичностью.

Изотропные упругие модули поликристаллических материалов рассчитывали методом [33], используя упругие константы жесткости c_{ij} и податливости s_{ij} (см. табл. 2). Рассчитанные методом [33] изотропные модули упругости *B* и *G* поликристаллических монооксидов титана TiO_{0.80}, TiO_{1.00} и TiO_{1.25} (табл. 3) равны 140.1 и 51.8, 205.7 и 78.8, 229.4 и 88.8 GPa соответственно. С учетом этого, величина *B/G* монооксида титана TiO_y во всей области гомогенности велика и меняется от 2.70 до 2.58, а обратное отношение k = G/B меняется от ~ 0.370 до ~ 0.387, поэтому монооксид титана можно рассматривать как пластичный материал. Это согласуется с работой [20], в которой величина k = G/B монооксида титана TiO_{1.00} равна 0.382, и отмечено, что монооксид TiO_{1.00} является ковким и пластичным веществом.

Распространение упругих колебаний в твердом теле зависит от его упругих характеристик. Продольную v_L и поперечную v_t скорости звука в изотропном поликристаллическом веществе можно рассчитать по его упругим модулям *B* и *G*, усредненным методом [33]. Согласно [34], продольная v_L , поперечная v_t и средняя v_m скорости звука имеют вид

$$v_L = \sqrt{(3B + 4G)/3\rho} \,[\mathrm{m} \cdot \mathrm{s}^{-1}],$$
 (12a)

$$v_t = \sqrt{G/\rho} \,[\mathbf{m} \cdot \mathbf{s}^{-1}], \qquad (12b)$$

Таблица 3. Рассчитанные модули Юнга *E*, всестороннего сжатия *B* и сдвига *G* и прямой B/G и обратный k = G/B критерии пластичности поликристаллического монооксида TiO_y

y	<i>E_V</i> , GPa	$E_R,$ GPa	E, GPa	<i>G</i> _V , GPa	<i>G</i> _{<i>R</i>} , GPa	<i>G</i> , GPa	B, GPa	B/G	k=G/B
0.80	188.7	76.5	132.6	74.0	29.7	51.8	140.1	2.704	0.370
0.85	217.1	90.7	153.9	85.2	35.1	60.1	160.4	2.667	0.375
0.90	241.8	103.1	172.5	94.9	39.9	67.4	178.1	2.641	0.378
0.95	263.0	113.8	188.4	103.2	44.0	73.6	193.2	2.623	0.381
1.00	280.5	122.6	201.6	110.2	47.4	78.8	205.7	2.610	0.383
1.05	294.4	129.6	212.0	115.7	50.1	82.9	215.6	2.601	0.385
1.10	304.7	134.9	219.8	119.8	52.1	85.9	222.9	2.594	0.385
1.15	311.4	138.4	224.9	122.4	53.5	87.9	227.7	2.589	0.386
1.20	314.5	140.1	227.3	123.6	54.1	88.9	229.9	2.586	0.387
1.25	314.0	140.0	227.0	123.5	54.1	88.8	229.4	2.585	0.387

$$v_m = \left[\frac{1}{3}\left(\frac{2}{v_t^3} + \frac{1}{v_L^3}\right)\right]^{-1/3} [\mathbf{m} \cdot \mathbf{s}^{-1}].$$
(12c)

Температуру Дебая θ_D можно определить, используя среднюю скорость распространения упругих колебаний (среднюю скорость звука) v_m (12с), которая непосредственно зависит от модулей всестороннего сжатия B и сдвига G. Согласно [34], зависимость температуры Дебая θ_D от средней скорости звука v_m имеет вид

$$\theta_{\rm D} = \frac{h}{k_{\rm B}} \left(\frac{3nN_{\rm A}\rho}{4\pi M}\right)^{1/3} \upsilon_m, \ [\rm K], \tag{13}$$

где $h = 6.6262 \cdot 10^{-34} \text{ J} \cdot \text{sec}$ — постоянная Планка, $k_{\text{B}} = 1.3807 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$ — постоянная Больцмана, $N_{\text{A}} = 6.022 \cdot 10^{23} \text{ mol}^{-1}$ — число Авогадро, ρ — плотность, M — молекулярная масса, n — число атомов на одну формульную единицу соединения. Молекулярная масса монооксида титана $\text{Ti}_{x}\text{O}_{z} \equiv \text{TiO}_{y}$ с учетом содержания вакансий в подрешетках титана и кислорода равна $M = xA_{\text{Ti}} + zA_{\text{O}}$.

Используя найденные изотропные модули всестороннего сжатия *B* и сдвига *G* поликристаллических монооксидов титана TiO_y (см. табл. 3) и плотность ρ моноксида TiO_y, измеренную в работе [35], мы рассчитали скорости звука и температуру Дебая θ_D в зависимости от состава поликристаллического монооксида TiO_y (рис. 4).

Рассчитанные температуры Дебая $\theta_{\rm D}$ увеличиваются от ~ 490 К для монооксида TiO_{0.80} до ~ 715 К для TiO_{1.25}. Согласно теоретической оценке [19], температура Дебая эквиатомного монооксида TiO_{1.00} равна ~ 521 К, что достаточно близко к рассчитанному значению $\theta_{\rm D} = 603$ К. Ранее температуры Дебая неупорядоченных кубических монооксидов TiO_y (0.81 $\leq y \leq$ 1.26) были оценены на основе экспериментальных измерений

Рис. 4. Изменение температуры Дебая θ_D в зависимости от состава поликристаллического неупорядоченного кубического монооксида титана TiO_y: *1* — данные [19], *2* — данные [14], *3* — расчет θ_D в настоящей работе.

теплоемкости в области температур 340-600 K [14]. Найденные нами величины θ_{D} составляют примерно 65% от экспериментальных оценок θ_{D} неупорядоченных кубических монооксидов TiO_y из температурных зависимостей теплоемкости $C_p(T)$ [14]. По-видимому, бо́льшие величины температур Дебая θ_{D} , оцененные в работе [14], обусловлены использованием теплоемкости $C_p(T)$, измеренной при T > 300 K. В настоящей работе упругие характеристики, использованные для оценки температур Дебая, соответствуют 0 K.

4. Заключение

В работе впервые оценены упругие константы c_{ij} и s_{ij} в зависимости от содержания кислорода у в области гомогенности $TiO_{0.80}-TiO_{1.25}$ неупорядоченного монооксида титана TiO_y . Неупорядоченный кубический монооксид титана является механически стабильным и характеризуется сильно выраженной анизотропией во всей области гомогенности. По соотношению модулей всестороннего сжатия *B* и сдвига *G* монооксид титана можно рассматривать как пластичный материал.

Финансирование работы

Исследование выполнено по государственному заданию МОН РФ FUWF-2024-0010 в Институте химии твердого тела Уральского отделения Российской Академии наук.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- [1] А.И. Гусев. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. Физматлит, М. (2007). 856 с.
- [2] Α.И. Гусев. ΦΤΤ 63, 11, 1921 (2021). [A.I. Gusev. Phys. Solid State 63, 13, 2173 (2022)].
- [3] S. Andersson, B. Collén, U. Kuylenstierna, A. Magnéli. Acta Chem. Scand. 11, 10, 1641 (1957).
- [4] E. Hilti. Naturwissenschaften 55, 3, 130 (1968).
- [5] D. Watanabe, O. Terasaki, A. Jostsons, J.R. Castles. In: The Chemistry of Extended Defects in Non-Metallic Solids / Eds L. Eyring, M. O'Keeffe. North-Holland Publishing Co, Amsterdam–London (1970). P. 238–257.
- [6] M.D. Banus, T.B. Reed, A.J. Strauss. Phys. Rev. B 5, 8, 2775 (1972).
- [7] D. Watanabé, J.R. Castles, A. Jostsons, A.S. Malin. Acta Crystallographica 23, 2, 307 (1967).
- [8] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Письма в ЖЭТФ 71, 11, 675 (2000). [А.А. Valeeva, А.А. Rempel', А.I. Gusev. JETP Lett. 71, 11, 460 (2000)].
- [9] А.И. Гусев. Письма в ЖЭТФ 74, 2, 96 (2001). [А.І. Gusev. JETP Lett. 74, 2, 91 (2001)].
- [10] S.P. Denker. J. Appl. Phys. 37, 1, 142 (1966).
- [11] S. Takeuchi, K. Suzuki. J. Jpn. Inst. Met. Mater. 33, 3, 284 (1969).
- [12] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Письма в ЖЭТФ 73, 11, 702 (2001). [А.А. Valeeva, А.А. Rempel', А.I. Gusev. JETP Lett. 73, 11, 621 (2001)].
- [13] Y. Fan, C. Zhang, X. Liu, Y. Lin, G. Gao, C. Ma, Y. Yin, X. Li. J. Alloys Compd. 786, 607 (2019).
- [14] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Журн. структур. химии 44, 2, 269 (2003). [А.А. Valeeva, А.А. Rempel, А.I. Gusev. J. Struct. Chem. 44, 2, 235 (2003)].
- [15] А.А. Валеева, С.В. Ремпель, Х. Шретнер, А.А. Ремпель. Неорган. материалы 53, 11, 1194 (2017). [А.А. Valeeva, S.V. Rempel, H. Schroettner, А.А. Rempel. Inorg. Mater. 53, 11, 1174 (2017)].
- [16] R. Ahuja, O. Eriksson, J.M. Wills, B. Johansson. Phys. Rev. B 53, 6, 3072 (1966).
- [17] L.S.A. Marques, A.C. Fernandes, F. Vaz, M.M.D. Ramos. Plasma Process. Polym. 4, S195 (2007).
- [18] R. Chauhan, S. Singh, R.K. Singh. Centr. Eur. J. Phys. 6, 2, 277 (2008).
- [19] Y.O. Ciftci, Y. Ünlü, K. Colakoglu, E. Deligoz. Phys. Scripta 80, 2, 025601 (2009).
- [20] Y.-T. Luo, Z.-Q. Chen. MATEC Web of Conferences 67, 06014 (2016).
- https://doi.org/10.1051/matecconf/20166706014
- [21] D.M. Teter. MRS Bull. 23, 1, 22 (1998).
- [22] A.I. Gusev. Phys. Chem. Chem. Phys. 23, 34, 18558 (2021).
- [23] X.-Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li. Intermetal. 19, 9, 1275 (2011).
- [24] Ф.И. Федоров. Теория упругих волн в кристаллах. Наука, М. (1965). 386 с. [F.I. Fedorov. Theory of Elastic Waves in Crystals. Plenum Press, N.Y. (1968). 375 p.].
- [25] Р.Э. Ньюнхем. Свойства материалов. Анизотропия, симметрия, структура. Институт компьютерных исследований, М. (2005). [R.E. Newnham. Properties of Materials. Anisotropy, Symmetry, Structure. Oxford Univ. Press, N.Y. (2005). P. 109–113].
- [26] A. Zaoui, B. Bouhafs, P. Ruterana. Mater. Chem. Phys. 91, 1, 108 (2005).

- [27] M. Born. Math. Proceed. Camb. Phil. Soc. 36, 2, 160 (1940).
- [28] F. Mouhat, F.-X. Coudert. Phys. Rev. B 90, 22, 224104 (2014).
- [29] А.И. Гусев, С.И. Садовников. ФТТ 64, 6, 671 (2022).
 [A.I. Gusev, S.I. Sadovnikov. Phys. Solid State 64, 6, 659 (2022)].
- [30] T. Gnäupel-Herold, P.C. Brand, H.J. Prask. J. Appl. Crystallogr. 31, 6, 929 (1998).
- [31] К. Зинер. Упругость и неупругость металлов. ИЛ, М. (1954). 394 с. [С. Zener. Elasticity and Anelasticity of Metals. University of Chicago, Chicago (1948). 170 р.].
- [32] S.F. Pugh. Phil. Mag. 45, 367, 823 (1954).
- [33] R. Hill. Proceed. Phys. Soc. A 65, 5, 349 (1952).
- [34] E. Schreiber, O.L. Anderson, N. Soga. Elastic Constants and Their Measurements. McGraw-Hill, N.Y. (1973). 196 p.
- [35] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Неорган. материалы 37, 6, 716 (2001). [А.А. Valeeva, А.А. Rempel', A.I. Gusev. Inorg. Mater. 37, 6, 603 (2001)].

Редактор Е.В. Толстякова