Особенности колебательных спектров алмазоподобных и полимероподобных пленок *a*-C:H

© Е.А. Коншина[¶], А.И. Вангонен

Всероссийский научный центр "ГОИ им. С.И. Вавилова", 199034 Санкт-Петербург, Россия

(Получена 16 февраля 2004 г. Принята к печати 15 октября 2004 г.)

Дан сравнительный анализ инфракрасных спектров МНПВО в интервале 4000–1000 см⁻¹ для алмазоподобных и полимероподобных пленок *a*-C:H с показателем преломления $n \ge 2.0$ и $n \le 1.7$ соответственно. Пленки были получены методом химического осаждения в плазме тлеющего разряда на постоянном токе из октана, циклогексана, толуола и ацетилена при вариации условий осаждения. Обнаружены характерные особенности в колебательных спектрах пленок *a*-C:H с разным показателем преломления. Пик 1250 см⁻¹ наблюдался в спектрах алмазоподобных пленок независимо от исходного углеводорода. Дополнительные пики 3400 и 1700 см⁻¹, соответствующие колебаниям O-H и C=H, присутствуют в спектрах полимероподобных пленок. Показано, что интегральная интенсивность полосы CH-колебаний с максимумом ~ 2900 см⁻¹ убывает экспоненциально на порядок величины при увеличении *n* в интервале от 1.55 до 2.4.

1. Введение

Показатель преломления (*n*) пленок на основе аморфного гидрогенизированного углерода (*a*-C:H), получаемых методом химического осаждения паров (CVD technique) в плазме тлеющего разряда на постоянном токе [1], можно изменять от 1.5 до 2.4 на длине волны 0.63 мкм [2]. Одновременно с увеличением показателя преломления наблюдается уменьшение ширины оптической щели от 2.3 до 0.8 эВ [3], уменьшение удельного сопротивления от ~ 10^{13} до ~ 10^7 Ом · см и рост поглощения пленок в видимой области спектра [4].

Пленки а-С:Н с показателем преломления более 2.0 условно можно отнести к алмазоподобным (diamondlike, DL) пленкам. Благодаря сочетанию химической стойкости, механической и лучевой прочности с прозрачностью в инфракрасной области спектра DL-пленки могут быть использованы в качестве защитных покрытий для инфракрасной (ИК) оптики, в частности для медных зеркал [5]. Пленки а-С:Н, прозрачные в видимой области спектра, с *n* < 1.7 и высоким удельным сопротивлением, $\sim 10^{13}\,{
m Om}\cdot{
m cm}$, условно можно называть полимероподобными (polymer-like, PL) пленками. PL-пленки были использованы нами в качестве ориентирующих слоев для жидких кристаллов (ЖК) [6]. Черные пленки а-С:Н, поглощающие свет в видимой области спектра, с $n \approx 2.2$ применяются как светоблокирующие слои в модуляторах света отражательного типа на ЖК [7]. Пленки *a*-C:H с $n \approx 2$ могут служить идеальным антиотражающим покрытием для германия с n = 4 [8–12]. От известных многослойных антиотражающих покрытий их отличают высокая химическая стойкость и механическая прочность. Мы использовали пленки а-С: Н для просветления выходного окна из германия в ЖК модуляторах излучения средней ИК области спектра [13].

Спектральные зависимости поглощения в интервале частот $25\,000{-}4000\,{\rm cm}^{-1}$ и их корреляция с другими

свойствами пленок *a*-C:Н были исследованы в работе [14]. Данная работа посвящена анализу ИК спектров многократного нарушенного полного внутреннего отражения (МНПВО) пленок *a*-C:Н в интервале от 4000 до 1000 см⁻¹. В работе обсуждаются особенности ИК спектров поглощения DL- и PL-пленок, корреляция показателя преломления с поглощением пленок, а также влияние на ИК спектры природы исходного углеводорода, используемого для осаждения в плазме тлеющего разряда.

2. Методы эксперимента и результаты

2.1. Приготовление пленок *a*-C:H в плазме тлеющего разряда на постоянном токе

Пленки *a*-C:Н получали CVD-технологией в плазме тлеющего разряда на постоянном токе. Для этого использовали специальное многоэлектродное устройство с областью магнетронной плазмы, локализованной вблизи анода [1]. Такое устройство позволяет варьировать давление в вакуумной камере в широком интервале от 0.3 до 0.01 Па. Пленки осаждали при температуре подложки 20–50°C из паров жидких и газообразных углеводородов: толуола, циклогексана, октана, ацетилена и смеси его с аргоном. Разогрев подложки происходил в результате бомбардировки поверхности энергичными ионами.

2.2. Получение инфракрасных спектров МНПВО пленок *a*-C:H

Метод ИК спектроскопии широко используется для исследования оптического поглощения и структурных особенностей пленок *a*-C:H [8–12,15–17]. Однако он не достаточно чувствителен для структур Гпленка *a*-C:H[¬]–^гполупроводник с высоким показателем преломления[¬] в случае таких полупроводников, как

[¶] E-mail: eakonshina@mail.ru, konshina@soi.spb.ru

Частота, см $^{-1}$	Природа колебания	Интенсивность			
	природа колеоания	$n \ge 2$	$n \le 1.7$		
~ 3400	$\nu(-OH)$		Средняя		
3300	$\nu \equiv CH$		Слабая		
3100	ν (=CH) аром. sp^2	Слабая	»		
3050	$v^{as}(=CH)$ аром. sp^2	»	»		
3000	$\nu(=$ CH) олиф. sp^2	»	»		
2920	v^{as} (–CH) sp^3	Сильная	Сильная		
2850	$v^{s}(-CH_{2})sp^{3}$	Средняя	Средняя		
1900-2100	$\nu(C\equiv C)$	Очень слабая	Очень слабая		
~ 1700	ν (C=O)		Сильная		
1600	$\nu(C-C)$ аром.		Средняя		
1540	$v^{as}(C=C)$ полиен.	Средняя			
1450	$\delta^{as}(- ext{CH}_3)$		»		
1440	$\delta(-CH)$	»			
1370-1375	$\delta^s(- ext{CH}_3)$		»		
1250	$\nu(C-C)$ сложное разветвление	»			

Таблица 1. Частота, интенсивность и природа колебаний в ИК спектрах пленок *a*-C:H с высоким и низким показателем преломления в интервале 4000–1000 см⁻¹

Примечание. v^s , v^{as} — валентные и δ^s , δ^{as} — деформационные симметричные и асимметричные колебания соответственно в ароматических (аром.), олифеновых (олиф.) и полиеновых (полиен.) соединениях.

кремний и германий, из-за сильного интерференционного эффекта. Использование метода МНПВО исключает влияние этого эффекта и позволяет получить колебательные спектры тонких пленок *a*-C:H [18–20]. ИК спектры МНПВО регистрировались на спектрофотометре РЕ с приставкой МНПВО в интервале частот $v = 4000-1000 \text{ см}^{-1}$. Элементом МНПВО служила призма, изготовленная из монокристаллического германия, которая обеспечивала 12 отражений ИК излучения от плоской поверхности под углом 45°. На рис. 1 приведены ИК спектры МНПВО пленок *a*-C:H с показателем преломления n = 2.3-2.4. Пленки были получены из паров толуола (*a*), октана (*b*) и циклогексана (*c*) при

Рис. 1. ИК спектры МНПВО пленок *a*-C:H с показателем преломления n = 2.3-2.4, приготовленных из паров толуола (*a*), октана (*b*) и циклогексана (*c*) при давлении 0.01-0.03 Па и мощности разряда 10-13 Вт.

давлении 0.01–0.03 Па и мощности разряда 10–13 Вт. Показатель преломления определяли методом многоугловой эллипсометрии на длине волны 0.63 мкм [2]. На рис. 2 приведены ИК спектры МНПВО пленок *a*-C:H с показателями преломления n = 1.64 и 1.55, которые были приготовлены при давлении в вакуумной камере ~ 0.3 Па и мощности разряда 2 Вт из паров толуола (*a*) и октана (*b*) соответственно.

Рис. 2. ИК спектры МНПВО пленок *a*-C:H с показателями преломления n = 1.64 и 1.55, приготовленных из паров толуола (*a*) и октана (*b*) соответственно при давлении 0.3 Па и мощности разряда 2 Вт.

В табл. 1 приведены частоты полос поглощения, наблюдаемых в ИК спектрах МНПВО DL- и PL-пленок *a*-C:H, их идентификация [15,18,20] и интенсивность.

2.3. Расчет коэффициента поглощения пленок

В спектроскопии МНПВО величина отражения может быть записана как

$$R^N = (1 - \alpha d_e)^N, \tag{1}$$

где R — отражение от одной грани элемента МНПВО, N — число отражений, α — натуральный коэффициент поглощения, d_e — эффективная толщина [21]. В нашем случае N = 12.

Если $\alpha d_e \ll 1$, то потери при отражении увеличиваются в *N* раз:

$$R^N \approx 1 - N\alpha d_e. \tag{2}$$

Отсюда коэффициент поглощения можно рассчитать как

$$\alpha = 1 - R^N / Nd_e. \tag{3}$$

Глубина проникновения ИК излучения (d_p) при угле падения $\theta = 45^{\circ}$ рассчитывается по формуле

$$d_p = \lambda_1 / 2\pi (\sin^2 \theta - n_{21}^2)^{1/2}, \tag{4}$$

где длины волны $\lambda_1 = \lambda/n_1$, $n_{21} = n_2/n_1$, $n_1 = 4$ — показатель преломления Ge, n_2 — показатель преломления пленки a-C:H.

Как было показано ранее в работе [22], дисперсия показателя преломления n2 для пленок а-С:Н в ИК области незначительна. Поэтому для расчета коэффициента поглощения по формуле (3) мы использовали значения n2, полученные с помощью метода эллиспометрии для $\lambda = 0.63$ мкм. Значения показателя преломления n₂ и толщины d для ряда пленок приведены в табл. 2. В ней также даны химические формулы исходного углеводорода, используемого для приготовления пленки *a*-C:H, и расчетные значения *d*_p для двух частот $\nu = 2920 \,\mathrm{cm}^{-1}$ и $\nu = 1250 \,\mathrm{cm}^{-1}$. В интервале $3300-2700 \,\mathrm{cm}^{-1} \, d > d_p$, поэтому эффективная толщина $d_e \approx d_p$. В интервале 1800–1000 см⁻¹ $d \ll d_p$, поэтому величину электромагнитного поля можно считать постоянной в пределах толщины пленки и $d_e \approx d$. Для расчета коэффициента поглощения в интервале 3300-2700 см⁻¹

Таблица 2. Показатели преломления и толщины пленок

Формула исходного	n_2	<i>d</i> , мкм	d_p , мкм			
углеводорода			$\nu=2920\mathrm{cm}^{-1}$	$\nu=1250\mathrm{cm}^{-1}$		
C ₈ H ₁₈	1.55	0.259	0.234	0.549		
C ₈ H ₁₈	2.4	0.468	0.376	0.883		
C ₆ H ₅ CH ₃	1.64	0.262	0.238	0.559		
C ₆ H ₅ CH ₃	2.32	0.556	0.342	0.796		
C_2H_2	2.05	0.72	0.278	0.648		

мы использовали значения d_p , рассчитанные по формуле (4) для соответствующей частоты, а в интервале 1800–1000 см⁻¹ — значения d, полученные с помощью метода эллипсометрии. Результаты компьютерного разложения этих полос на отдельные колебания — частота максимума (ν), ширина на полувысоте ($\Delta \nu$)_{1/2} и интегральная интенсивность (I) полосы, ограниченной кривой Гаусса, — даны в табл. 3.

3. Обсуждение результатов

3.1. Сравнение колебательных спектров DLи PL-пленок *a*-C:H

В спектрах МНПВО для DL- и PL-пленок, представленных на рис. 1 и 2, можно выделить две общие для них спектральные области поглощения: полоса в интервале $3300-2700 \text{ сm}^{-1}$ и полоса в интерале $1800-1000 \text{ сm}^{-1}$. Первая полоса соответствует валентным колебаниям C–H-групп, а во второй можно выделить пики валентных колебаний карбонильных групп, одинарных, C–C, и двойных, C=C, связей и деформационных колебаний C–H-групп. Кроме этого в спектрах наблюдались слабые пики 2100, 1900 см⁻¹ (рис. 1) и 2080 см⁻¹ (рис. 2), отвечающие валентным колебаниям C=C-связей.

Следует отметить, что в спектрах МНПВО DL-пленок *a*-C:H (рис. 1), приготовленных из разных углеводородов — октана, толуола и циклогексана, не наблюдается каких-либо существенных различий. Они подобны спектрам *a*-C:H пленок с $n \ge 2.0$, приготовленных из ацетилена [22]. Отсюда можно заключить, что независимо от химической природы исходного углеводорода DL-пленки *a*-C:H имеют типичные ИК спектры МНПВО. Из табл. 1 видно, что их отличают от спектров PL-пленок *a*-C:H следующие признаки: слабая интенсивность полосы валентных колебаний CH-групп, отсутствие полосы поглощения карбонильных C–O-групп с максимумом при 1700 см⁻¹, а также наличие полосы вблизи 1250 см⁻¹, обусловленной колебаниями C–C-связей в узлах разветвления структуры.

Вместе с тем ИК спектры МНПВО PL-пленок a-C:H, приготовленных из толуола и октана, на рис. 2 подобны спектрам PL-пленок, полученных из бензола, толуола [18] и ацетилена [18,19]. Для всех спектров PL-пленок характерно присутствие полос поглощения валентных колебаний карбонильной и гидроксильной $(\sim 3400\,{\rm cm}^{-1})$ групп. Как показали наши исследования, интенсивность этих полос может увеличиваться при хранении пленок а-С:Н в комнатных условиях [20]. Это свидетельствует о том, что природа их связана с хемосорбцией воды и кислорода из атмосферы поверхностью пленки после извлечения образцов из вакуумной камеры. Причиной адсорбционного процесса является наличие микропор в структуре PL-пленок. Эллипсометрические исследования пленок а-С:Н в работе [2] показали, что для пленок с низким показателем преломления пористость может достигать 7%.

Формула исходного углеводорода	C ₆ H ₅ CH ₃				C_8H_{18}			
n_2	2.31		1.65		2.4		1.55	
ν , cm ⁻¹	$(\Delta \nu)_{1/2}, { m cm}^{-1}$	<i>I</i> , отн. ед.	$(\Delta \nu)_{1/2}, { m cm}^{-1}$	I, отн. ед.	$(\Delta \nu)_{1/2}, { m cm}^{-1}$	<i>I</i> , отн. ед.	$(\Delta \nu)_{1/2}, { m cm}^{-1}$	<i>I</i> , отн.ед.
3300	76	2655	_	_	76	1082		
3100	88	7283	88	11077	90	6820		
3000	80	43126	78	43096	80	11112		
2963	_	_	_	_	_	_	69	46097
2920	89	35939	87	74985	87	45156	89	243590
2850	78	11777	76	31527	79	14826	77	127912
1600	154	43250			196	68933		
1429	130	31387			77	26303		
1250-1273	167	52976			212	81515		

Таблица 3. Результаты разложения спектральных полос

Свойства пленок а-С:Н зависят от мощности разряда, подводимой к подложке. Как видно из рис. 1 и 2, увеличение мощности в 5 раз от 2 до 10 Вт приводит к существенным изменениям в ИК спектрах МНПВО пленок а-С:Н. Осаждение пленок а-С:Н из углеводородной плазмы происходит при взаимодействии положительных ионов на подложке с нейтральными молекулами и их фрагментами, образующимися в результате деструкции. Чем больше мощность разряда, тем больше энергия положительных ионов и их воздействие на процесс конденсации. Взаимодействие ионов с поверхностью растущей пленки может приводить к разрыву химических связей, диффузии и десорбции отдельных атомов, слабо связанных с поверхностью пленки, а также сшиванию структуры пленки в результате образования 4-координированных атомов углерода. При осаждении PL-пленок доля и энергия положительных ионов, участвующих в процессе, во много раз меньше, чем при получении DLпленок, что проявляется в структурных особенностях и макроскопических свойствах пленок.

3.2. Полоса поглощения валентных колебаний СН-групп

Широкая полоса поглощения валентных колебаний СН-групп является типичной для всех пленок a-С:Н, полученных химическим осаждением паров углеводородов в плазме тлеющего разряда [9,11,17,18,23–25]. Интенсивность этой полосы в ИК спектрах может изменяться в зависимости от величины отрицательного потенциала и исходного углеводорода [9,10], мощности разряда [16], давления [11,17], а также температуры газа и последующего отжига пленок a-С:Н [11,24]. Анализ этой полосы позволяет получить качественную и количественную информацию о состояниях гибридизации атомов углерода в пленках, которая согласуется с результатами, полученными другими методами: ядерный магнитный резонанс, масс-спектроскопия и спектроскопия потерь электронов [16,26–28].

Из результатов компьютерного разложения этой полосы (табл. 3) видно, что колебания (-СН)- и (-CH₂)-групп в *sp*²-состоянии гибридизации вблизи 2920 и 2850 см⁻¹ характерны для ИК спектров DL- и PL-пленок, исследованных в этой работе. Интенсивность полос, отвечающих колебаниям (=CH) в *sp*²-состоянии во всех спектрах, была меньше интенсивности колебаний (-CH) и (-CH₂) в *sp*²-состоянии гибридизации. Это объясняется тем, что симметричные колебания атомов в *sp*²-состоянии слабо проявляются в ИК спектрах [29]. Полосы, соответствующие колебаниям (-СН)-групп в *sp*²-состоянии, отсутствовали в спектре PL-пленки с n = 1.55, полученной из октана, в то время как в DL-пленках, полученных из этого же углеводорода в других условиях конденсации, присутствовали полосы с максимумами вблизи 3100 и 3000 см⁻¹, характерные для колебаний (=CH)-групп в *sp*²-состоянии (табл. 3). В спектрах PL- и DL-пленок (n = 1.65 и 2.31 соответственно), полученных из ароматического углеводоро-

Рис. 3. Корреляция между показателем преломления пленок *a*-C:H и интегральной интенсивностью полосы 3400–2600 см⁻¹ в относительных единицах.

да — толуола, эти полосы присутствуют. Можно заключить, что химическая природа исходного углеводорода может влиять на структуру PL-пленок *a*-C:H в большей мере, чем на структуру DL-пленок.

Интенсивность полосы поглощения 3400-2600 см⁻¹ в спектрах PL-пленок *a*-C:H на рис. 2 значительно выше по сравнению со спектрами DL-пленок на рис. 1, что указывает на более высокое содержание связанного водорода в PL- по сравнению с DL-пленками. На рис. 3 показана корреляция между показателем преломления пленок а-С:Н и интегральной интенсивностью полосы с максимумом при 2900 см⁻¹ в относительных единицах. При изменении показателя преломления от 1.55 до 2.4 интегральная интенсивность полосы валентных колебаний СН-групп экспоненциально уменьшается на порядок величины. Из этого можно сделать вывод, что уменьшение содержания связанного водорода сопровождается ростом показателя преломления пленок a-C:H, что является косвенным доказательством уплотнения структуры.

3.3. Интерпретация структуры среднего порядка пленок *a*-C:H с помощью инфракрасных спектров МНПВО

Информации о ближнем порядке структуры, полученной на основе анализа полосы поглощения, обусловленной СН-колебаниями, недостаточно для интерпретации макроскопических свойств пленок а-С:Н, которые определяются средним порядком, или наноструктурой. Изучение особенностей полосы 1800-1000 см⁻¹ в ИК спектрах пленок а-С:Н дает информацию о среднем порядке их структуры. Так, например, пики около 1540 и 1600 см⁻¹, соответствующие колебаниям С=С-связей в полиеновых цепях и полициклических ароматических кольцах, свидетельствуют о существовании в структуре пленок таких элементов среднего порядка. Очевидные доказательства объединения полиеновых цепей и полициклических ароматических групп в *л*-сопряженные кластеры в структуре были получены нами ранее с помощью резонансной спектроскопии комбинационного рассеяния для пленок а-С:Н, приготовленных из ацетилена [30].

Кроме того, в структуре пленок *a*-C:Н присутствуют цепи полиинового типа ($-C\equiv C-$), о чем свидетельствуют очень слабые полосы в ИК спектрах вблизи 1900 и 2100 см⁻¹. Эти полосы характерны для спектров всех исследованных пленок независимо от показателя преломления.

По интенсивности полосы вблизи 1250 см^{-1} , соответствующей валентным колебаниям С-С-связей, можно судить о содержании в структуре *a*-С:Н 4-координированных атомов углерода. Так как их присутствие характерно для спектров DL-пленок *a*-C:H, можно предположить, что эти атомы углерода являются 4-функциональными узлами разветвления, которые соединяют отдельные π -связанные кластеры, состоящие

из 3- и 2-координированных атомов, что способствует уплотнению структуры и обеспечивает ее механическую прочность. Как было показано ранее, одновременно с уменьшением интенсивности полосы 1250 см^{-1} наблюдался рост интенсивности полосы 1700 см^{-1} в ИК спектрах МНПВО пленок *a*-C:H, приготовленных из ацетилена [19]. Наблюдаемая корреляция подтверждает влияние 4-функциональных узлов разветвления на плотность упаковки структуры. Более низкий показатель преломления 1.5 и высокое удельное сопротивление до 10^{13} Ом · см которые характерны для PL-пленок, связаны с наличием между *π*-сопряженными кластерами как пустот, так и CH-групп в *sp*³-состоянии, препятствующих их сближению, что приводит к менее плотной упаковке структуры, чем в случае DL-пленок *a*-C:H.

3.4. Применение пленок *a*-C:H для просветления германия

При применении пленок а-С:Н в качестве просветляющих покрытий для ИК области следует учитывать наличие полос поглощения, характерных для их колебательных спектров. Спектры на рис. 4 иллюстрируют влияние поглощения в пленках a-C:H с $n \approx 2$ на величину пропускания германия. Однослойные покрытия на основе a-C:H с оптической толщиной $\lambda/4$, равной соответственно 0.5 и 1.25 мкм для $\lambda = 4$ и 10 мкм, осаждались из ацетилена вышеописанным способом на обе стороны подложки. Благодаря отсутствию поглощения в а-С:Н в области 3.5-5 мкм было получено в этой области спектра просветление германия 100% (рис. 4). Для длин волн более 5 мкм влияние поглощения ИК излучения в пленке а-С:Н становится более существенным. Поэтому, как можно видеть на рис. 4, пропускание образца германия на длине волны 10 мкм, просветленного с обеих сторон покрытием а-С:Н, не превышает 90% из-за потерь на поглощение в последнем.

Рис. 4. Спектры пропускания (T) германия, просветленного с помощью четвертьволновых слоев *a*-C:H для длин волн 4 (I) и 10 мкм (2).

Физика и техника полупроводников, 2005, том 39, вып. 5

4. Заключение

В работе дан анализ инфракрасных спектров МНПВО алмазоподобных (n > 2.0) и полимероподобных ($n \le 1.7$) пленок *a*-C:H, полученных в плазме тлеющего разряда на постоянном токе из октана, циклогексана, толуола и ацетилена. Характерной особенностью ИК спектра МНПВО пленок с n > 2.0 является присутствие полосы $\sim 1250 \, {\rm cm}^{-1}$, соответствующей валентным колебаниям С-С-связей в 4-функциональных узлах разветвления структуры, которая слабо проявляется или практически отсутствует в спектрах пленок а-С:Н с показателем преломления менее 1.7. Для последних характерны спектры с интенсивными полосами поглощения в области валентных ($\sim 2920 \, {\rm cm}^{-1}$) и деформационных ($\sim 1450 \,\mathrm{cm}^{-1}$) колебаний СН-групп, а также карбонильных ($\sim 1700 \, \mathrm{cm}^{-1}$) и гидроксильных ($\sim 3400 \, \mathrm{cm}^{-1}$) групп. Последние обусловлены хемосорбцией воды и кислорода из окружающей среды, которой способствует наличие микропор в структуре, возникающих из-за слабой разветвленности структуры.

Установлена корреляция между показателем преломления пленок a-C:H и интегральной интенсивностью полосы поглощения с максимумом около 2900 см⁻¹. Показано, что с увеличением n в интервале от 1.55 до 2.4 интегральная интенсивность этой полосы поглощения убывает экспоненциально на порядок величины. Можно заключить, что полимероподобные пленки a-C:H отличаются от алмазоподобных большим содержанием связанного водорода.

Показано, что химическая природа исходного углеводорода, используемого для осаждения пленок в плазме, может проявляться в ИК спектрах пленок *a*-C:H с $n \leq 1.7$. Это объясняется тем, что элементами структуры полимероподобных пленок могут быть фрагменты исходных молекул, образующиеся при деструкции углеводорода в плазме тлеющего разряда. Это не характерно для алмазоподобных пленок, которые осаждают в условиях интенсивного взаимодействия энергичных ионов с подложкой, что способствует деструкции, разветвлению и сшивке конденсата.

Таким образом, можно заключить, что ИК спектры МНПВО пленок *a*-C:Н дают информацию об особенностях структуры и плотности ее упаковки, которая позволяет их идентифировать как алмазоподобные или полимероподобные. Полученные результаты могут быть использованы при конструировании моно- и многослойных оптических покрытий с разными показателями преломления для оптических устройств с использованием пленок *a*-C:H, работающих в ИК области спектра.

Список литературы

- [1] Е.А. Коншина. ЖТФ, 72 (6), 35 (2002).
- [2] V.A. Tolmachev, E.A. Konshina. Diamond Relat. Mater., 5, 1397 (1996).
- [3] Е.А. Коншина. ФТТ, 37, 1120 (1995).
- Физика и техника полупроводников, 2005, том 39, вып. 5

- [4] Е.А. Коншина. ЖТФ, 70 (3), 87 (2000).
- [5] Е.А. Коншина. ЖТФ, **68** (9), 59 (1998).
- [6] Е.А. Коншина. Кристаллография, 40, 1074 (1995).
- [7] Е.А. Коншина, А.П. Онохов. ЖТФ, **69** (3), 80 (1999).
- [8] J. Zelez. RCA Rev., 43, 665 (1982).
- [9] A. Bubenser, B. Dischler, G. Brandt, P. Koidl. J. Appl. Phys., 54, 4590 (1983).
- [10] K. Enke. Appl. Optics, 24, 508 (1985).
- [11] S.F. Pellicori, C.M. Peterson, T.P. Henson. J. Vac. Sci. Technol., A4, 2350 (1986).
- [12] L. Klibanov, N.I. Croitoru, A. Seidman, V. Gilo, R. Dahan. Opt. Eng., 39, 989 (2000).
- [13] М.В. Грязнова, И.И. Данилов, С.Г. Иванов, Е.А. Коншина, А.П. Онохов, М.А. Федоров, Н.А. Феоктистов, А.И. Хребтов. Сб. Трудов V Межд. конф. "Прикладная оптика" (СПб., 2002) т. 1, с. 163.
- [14] Е.А. Коншина. ФТП, 33, 469 (1999).
- [15] B. Dischler, A. Bubenzer, P. Koidl. Sol. St. Commun., 48, 105 (1983).
- [16] Fangoing Zhang, Guanghua Chen, Yafei Zhang, Gong Yu. Phys. Status Solidi A, **109**, K39 (1988).
- [17] Е.А. Коншина. Опт.-мех. пром-сть, № 2, 15 (1987).
- [18] R. Memming. Thin Sol. Films, 143, 279 (1986).
- [19] Е.А. Коншина, А.В. Баранов, В.Б. Яковлев. ЖПС, 48, 957 (1988).
- [20] А.И. Вангонен, Е.А. Коншина, В.А. Толмачев. ЖФХ, 71, 1102 (1997).
- [21] Н. Харрик. Спектроскопия внутреннего отражения (М., Мир, 1970) с. 335.
- [22] В.Б. Яковлев, Л.К. Васильева, В.В. Веремей, Е.А. Коншина. ЖПС, 53, 863 (1990).
- [23] M.P. Nadler, T.M. Donovan, A.K. Green. Thin Sol. Films, 116, 241 (1984).
- [24] I. Watanabe, S. Hasegawa, Y. Kurato. Jap. J. Appl. Phys., 21, 856 (1982).
- [25] D.R. McKenzie, R.C. McPhedran, N. Savvides, D.J.H. Cockayne. Thin Sol. Films, 108, 247 (1983).
- [26] K. Walters, P. Honeybone, D.W. Huxley, R.J. Newport, W.S. Howells. Phys. Rev. B, 50, 831 (1994).
- [27] M. Jäger, J. Gottward, H.W. Spiess, R.J. Newport. Phys. Rev. B, 50, 84 (1994).
- [28] J.R. Honeybone, R.J. Newport, J.K. Walters, W.S. Howells, J. Tomkinson. Phys. Rev. B, 50, 839 (1994).
- [29] J. Robertson. Progr. Sol. St. Chem., 21, 199 (1991).
- [30] А.В. Баранов, Е.А. Коншина. Опт. и спектр., 65, 856 (1988).

Редактор Л.В. Шаронова

Features of the vibration spectra for diamond-like and polymer-like a-C:H films

E.A. Konshina, A.I. Vangonen

All-Russian Research Center "S.I. Vavilov State Optical Institute", 199034 St. Petersburg, Russia

Abstract Comparative analysis of the vibration spectra obtained by the multiple attenuated total reflection method (ATR) into the interval 4000–1000 cm⁻¹ of diamond-like ($n \ge 2.0$) and polymer-like ($n \le 1.7$) *a*-C:H films has been done. The films were produced by the CVD technique in a dc glowdischarge from acetylene, toluene, cyclohexane and octane under different deposition conditions. Distinguished features of the spectra for the *a*-C:H films with different index of refraction were found. The peak at 1250 cm⁻¹ was observed in the spectra of diamond-like films regardless of a hydrocarbon precursor. The additional peaks at 3400 cm⁻¹ and at 1700 cm⁻¹ and corresponded to O–H and C=O vibrations presented in the spectra of polymer-like films. It was shown that the integral intensity of CH vibration band with maximum near ~ 2900 cm⁻¹ decreased by one order exponentially of magnitude when *n* increased from 1.55 up to 2.4.