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Probability of absorption and emission by an atom interacting with

ultrashort laser pulses
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We consider the process of transition of a two-level system to the excited state with subsequent photon emission

in the presence of a laser pulse with a high degree of unipolarity. Within the framework of quantum electrodynamics,

we obtain analytical expressions for the differential probability of the process depending on the temporal scales

of the problem: laser pulse duration, excited-state lifetime, inverse transition frequency, and inverse frequency of

the photon emitted. Besides, we calculate the total absorption probability by integrating over the three-dimensional

photon momentum and summing over polarizations. We compare the results obtained for unipolar and bipolar

(many-cycle) pulses.
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1. Introduction

The theoretical description of the processes of absorption

and emission of light by an atom was one of the most

important tasks as part of quantum theory even at the stage

of its formation at the beginning of the last century. First, a

quantum mechanical approach to this problem [1,2] was pro-
posed, and then a more rigorous formalism was developed

within the framework of quantum electrodynamics (QED),
which allowed, for example, to move on to the review of

the spectral line profile [3]. As part of the modern theory,

spontaneous emission of photons is accepted to occur when

an atom transitions from an excited state due to interaction

with a quantized electromagnetic field. The instability of the

excited state is associated with an imaginary addition to the

energy of the corresponding level, which arises due to the

radiative QED corrections and determines the level width Ŵ.

Thus, the process of spontaneous emission has been well

studied as part of QED and described in many textbooks

and monographs [4].

As is well known, for an atom to transition to an excited

state, it must absorb energy through interaction with some

other system. In many cases, such a system is a classical

external field with a given amplitude and frequency, which

simulates the laser radiation field. Since for non-stationary

problems within QED energy states are introduced only

asymptotically at large and small times, when there is

no interaction, the absorption process must be considered

together with radiation due to the presence of a finite

lifetime ∼ 1/Ŵ of the excited state [5]. In this work, such

a non-stationary formulation of the problem is reviewed

and the dependence of the probability of the process on

the parameters of the field and the atomic system in the

regime of very short interaction times, i.e. short laser pulse

durations, is studied. In this case, there is no concept of

laser frequency and, as a consequence, there is no concept

of resonance. In this mode, the probability depends in

a nontrivial way on the time scales in the problem: the

duration of the laser pulse τ , the lifetime of the excited

state 1/Ŵ, the inverse frequency of the transition 1/ω0

and the inverse frequency of the emitted photon 1/ω. In

this work, closed-form expressions for the probability will

be obtained that describe this dependence.

Our research is motivated by ongoing developments in

experimental capabilities in the generation of ultrashort laser

pulses. In particular, obtaining pulses of attosecond duration

is already possible [6]. These currently include an ∼ τ

width envelope, which contains several field oscillations. As

the number of these oscillations decreases, it is possible

to proceed to reviewing unipolar laser pulses of linear

polarization, for which the corresponding projection of

the electric field strength E(t) predominantly has one

sign [7–11]. In this case, the most important characteristic

of the laser pulse is its electric-field area

SE =

∞∫

−∞

E(t)dt. (1)

It will be shown below that in the regime of short durations

τ the probability of energy absorption followed by photon

emission is largely determined by the value SE .

In this work, the probability of interest to us will be

calculated as the square of the modulus of the amplitude
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Feynman diagram describing the process under study. An atom

(two-level system) transitions from the ground state
”
g“ to the

excited state
”
e“ due to the absorption of energy from the external

laser field, and then emits a photon with momentum k and

polarization λ, returning to the ground state. Photon ω = |k|
frequency. The double line denotes the wave function or Green’s

function, which accurately accounts for the Coulomb interaction in

the atom.

of the process demonstrated in the figure. The interaction

with the external classical field (vertex with a cross) is

taken into account in the first order of perturbation theory

(if the probability reaches values close to unity, then it

is required to take into account higher orders, which

imposes a limitation on the intensity of the laser field).
The atom is considered as a two-level system, which is a

reasonable approximation provided that the populations of

the remaining levels in the process under study are small.

The external field will mainly contain Fourier harmonics

of relatively low frequencies, and we consider that these

frequencies do not correspond to any resonances in the low-

energy part of the system spectrum. Given the fact that the

atom is initially in the ground state, we can take into account

only one excited state
”
e“. To calculate the required matrix

elements, we will use the dipole approximation, implying

that the size of the atom is significantly smaller than the

characteristic spatial scale of the laser field (for a multi-cycle

pulse this is the wavelength, and for a unipolar pulse — the

parameter cτ , where c is the speed of light).
The units used in this article are ~ = c = 1 (~ is the

Planck constant). Charge units correspond to α = e2/(4π)
(e < 0 is electron charge, α is fine structure constant).

2. Calculating the probability of a
process

Let us first obtain a general expression for the amplitude

of the process presented in the figure, without specifying

the explicit form of the 4-potential of the external field

A(x). We will follow the conclusion from the work [5].
In accordance with Feynman rules, the amplitude is given

by the following expression:

Sk,λ =e2
∫

d4x1

∫
d4x2ψg(x2)ε̂

∗
k,λ8

∗
k,λ(x2)

×S(x2, x1)Â(x1)ψg(x1), (2)

where ψ ≡ ψ†γ0, V̂ ≡ γµVµ, γµ — Dirac matrices, ε
µ
k,λ — 4-

vector of photon polarization (momentum and polarization

of the photon are denoted by k and λ, respectively), 8k,λ —
space-time part of the photon wave function and, finally,

S(x2, x1) — bound electron propagator. For 4-coordinate

vectors the designation x = {t, r} is used. The wave

function of the ground state of an atom can be written as

ψg(x) = ψg(r)e
−iE0t, (3)

where E0 — is the corresponding energy. The wave function

of the excited state of a two-level system has the form

ψe(x) = ψe(r)e
−iE1t . (4)

The transition energy is ω0 = E1 − E0. The wave function

of a photon has the following form:

8k,λ(x) =
1√
2ω

e−i(ωt−kr), (5)

where |k| = ω. The bound electron propagator is given by

S(x2, x1) =

∫
dω̃
2π

e−iω̃(t2−t1)
∑

n

ψn(r2)ψn(r1)

ω̃ − En(1− i0)
, (6)

the expression in which the summation is carried out over

the entire spectrum of the atomic system, En — energies

of states ψn. The integral over ω̃ is calculated using the

standard contour for the causal Green’s function. The

contribution from n = g is significant only when reviewing

soft photons, for which ω → 0. Since we will assume

that the energy of the emitted photons lies in the region

separated from zero, in the sum over n there remains only

one term with n = e.
Integrating over time t2 and variable ω̃ in expression (2),

we obtain the following result (t1 = t):

Sk,λ =
4πα√
2ω

∞∫

−∞

dt
∫

dr eiωt〈g|ε̂∗k,λe−ikr|e〉

×ψe(x)Â(x)ψg(x)
1

ω − ω0 + iŴ/2
. (7)

For the matrix element involving spatial coordinates, the

designation is used

〈n| f (r)|m〉 ≡
∫

drψn(r) f (r)ψm(r). (8)

Also in equation (7) the standard substitution

E1 → E1 − iŴ/2 was made in order to regularize the

denominator. The natural width Ŵ arises when radiative

corrections to the electron wave function are taken into

account and determines the lifetime of the excited state [4].
Let us consider the classical field of a laser pulse having

an electric component E(x) = eLE(x), where

E(x) = ELe
−t2/τ 2

sin(ωLt − kLr + ϕ0). (9)

Here eL is unit vector defining the polarization of the laser

pulse, EL — amplitude of the laser pulse, τ — its duration,
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ωL —
”
frequency“ of the laser field and ϕ0 — relative

phase between the Gaussian envelope profile and
”
carrier“.

In the case of pulses with a high degree of unipolarity,

the value of ωLτ is small and the frequency does not

have a standard definition as in the case of monochromatic

radiation. In the A0 = 0 gauge we have E(x) = −∂tA(x),
so the vector potential has the form A(x) = eLA(x), where

A(x) =

√
π

2
ELτ e

−ω2
Lτ

2/4Re

×
{
e−ikLr+iϕ0

[
erfi

(
it
τ

+
ωLτ

2

)
− erfi

(ωLτ

2

)]}
. (10)

In order to calculate the integral over t in expression (7),
we note that asymptotically lim

t→±∞
A(x) = A±(r), where

A±(r) are other than zero. Thus, this integral, which is

essentially a Fourier transform, will contain a contribution

with generalized functions that have support at the point

ω = 0. Since we are reviewing a situation where ω is far

from zero, these contributions can be neglected. Taking

this into account, integrating by parts in expression (7), we
obtain

∞∫

−∞

dt eiωt
A(x) = − i

ω

∞∫

−∞

dt eiωt
E(x). (11)

As a result, for amplitude (7) we have

Sk,λ =

√
2π3/2α

ω3/2
ELτ 〈g|ε̂∗k,λe−ikr|e〉 1

ω − ω0 + iŴ/2

×
[
〈e|êLeikLr|g〉e−iϕ0e−(ω−ωL)2τ 2/4−

−〈e|êLe−ikLr|g〉eiϕ0e−(ω+ωL)2τ 2/4
]
. (12)

Let us note that the multiplier containing Ŵ determines the

Lorentz contour, which has a maximum at ω = ω0. Strictly

speaking, in the current order of perturbation theory it is

also required to take into account a diagram in which the

order of the vertices is changed — first a photon is emitted,

then interaction with the laser field occurs. However, such

a diagram will contain a denominator (−ω − ω0 + iŴ/2),
which is significantly larger in magnitude than the denom-

inator in expression (12) due to the realistic condition

Ŵ ≪ ω0 and the fact that we are not interested in the

number density of photons with ω → 0, and the radiation

will mainly occur at frequencies close to the transition

frequency (ω ≈ ω0). Amplitude (12) contains two terms,

the origin of which is related to the expansion of the sine in

formula (9). In the mode of multicycle pulses with a well-

defined frequency (ωLτ ≫ 1), the second term is strongly

suppressed, since an atom in the ground state cannot emit a

photon and at the same time transfer energy to the laser

field. The exponential corresponding to the absorption

of the laser radiation quantum, on the contrary, makes a

large contribution at ω ≈ ωL, which, under the condition

of resonance ωL = ω0 , leads to a high probability of the

process. Various effects associated with the finite interaction

time in the case of ωLτ ≫ 1 were recently discussed in

work [5]. Since in this work we are interested in the mode

in which the laser pulse is close to unipolar, the ωLτ ≫ 1

condition is violated and the concepts of laser frequency and

laser field quanta cannot be introduced. In this case, it is

required to take into account both terms in expression (12).

In order to evaluate the matrix elements in square

brackets in formula (12), we will work in the dipole

(nonrelativistic) approximation. Let us replace exp(±ikLr)
by one and use the fact that the matrix element of the Dirac

matrices γ corresponds to the matrix element of the velocity

operator p̂/m in the non-relativistic approximation [4]. It is
not difficult to obtain

〈e|êLeikLr)|g〉 ≈ 〈e|êLe−ikLr)|g〉 ≈ −iω0eLreg, (13)

where reg = 〈e|r|g〉.
Now, squaring the amplitude (12) modulo, we obtain the

following expression:

|Sk,λ|2 =4π3α2 ω
2
0E

2
Lτ

2

ω3

∣∣〈g|ε̂∗k,λe−ikr|e〉
∣∣2 ∣∣eLreg

∣∣2

×
(
coshωωLτ

2 − cos 2ϕ0

) e−(ω2+ω2
L)τ 2/2

(ω − ω0)2 + Ŵ2/4
.

(14)
This value specifies the probability density of the process in

accordance with the rule

dWk,λ

d3k
=

|Sk,λ|2
(2π)3

. (15)

In expression (14), the trigonometric cosine containing the

phase ϕ0 arises due to the interference of the terms in

square brackets in formula (12). First of all, let us note that

in the limit of large ωLτ this cosine is small compared to

the hyperbolic cosine, which can be replaced by a growing

exponential, which will result in the square of the modulus

of the first term in (12), and we obtain the result that

was discussed in detail in work [5]. In the same work,

it was shown how, in the dipole approximation, sum over

polarizations λ, integrate over photon emission angles and

frequency ω in order to obtain the total probability of the

process W . We will first focus on analyzing the differential

probability (14), (15) in the short laser pulse mode, and

then find the total probability.

3. Unipolar and multi-cycle pulses

Expression (14) specifies the probability density for the

process of energy absorption by an atom followed by photon

emission depending on a number of parameters. Let us

rewrite the square of the amplitude modulus in the following

Optics and Spectroscopy, 2023, Vol. 131, No. 11



Probability of absorption and emission by an atom interacting with ultrashort laser pulses 1511

form:

|Sk,λ |2 =8π2α2 ω
2
0

ω3

∣∣〈g|ε̂∗k,λe−ikr|e〉
∣∣2

×
∣∣eLreg

∣∣2 e−ω2τ 2/2

(ω − ω0)2 + Ŵ2/4

×
[
1

2
22

(
coshωωLτ

2 − 1
)
e−ω2

Lτ
2/2 + S2

E

]
, (16)

where we introduced the electric area of the envelope

2 =

∞∫

−∞

ELe
−t2/τ 2

dt =
√
πELτ . (17)

The electric area of the pulse is equal to

SE =

∞∫

−∞

ELe
−t2/τ 2

sin(ωLt + ϕ0)dt

=
√
πELτ e

−ω2
Lτ

2/4 sinϕ0. (18)

Let us analyze the square of the amplitude module at

ω = ω0, when the Lorentz contour gives the maximum

value:
∣∣S(0)

k,λ

∣∣2 ≡ |Sk,λ|2
∣∣
ω=ω0

=
32π2α2τ

Ŵ2

×
∣∣〈g|ε̂∗k,λe−ikr|e〉

∣∣2 ∣∣eLreg
∣∣2S0, (19)

where we have introduced

S0 =
e−ω2

0τ
2/2

ω0τ

[
1

2
22

(
coshω0ωLτ

2 − 1
)
e−ω2

Lτ
2/2 + S2

E

]
.

(20)
Let us consider in more detail several limiting cases.

Multi-cycle pulse. Case ωLτ ≫ ω0τ ≫ 1.

We have

S0 ≈
1

4

1

ω0τ
22e−ω2

Lτ
2/2 =

π

4

E
2
Lτ

2

ω0τ
e−ω2

Lτ
2/2. (21)

Multi-cycle pulse. Case ω0τ ≫ ωLτ ≫ 1.

In this case, the small exponential factor will contain the

frequency ω0:

S0 ≈
1

4

1

ω0τ
22e−ω2

0τ
2/2 =

π

4

E
2
Lτ

2

ω0τ
e−ω2

0τ
2/2. (22)

Multi-cycle pulse. Case ωLτ = ω0τ ≫ 1.

Since the laser field frequency is in resonance with the

atomic transition energy, there will be no exponential factor:

S0 ≈
1

4

1

ω0τ
22 =

π

4

E
2
Lτ

2

ω0τ
. (23)

Let us note that in all these cases the result does not depend

on the phase of ϕ0, as noted above.

Let us now turn to consideration of extremely short

pulses.

Unipolar impulse. Case ωLτ ≪ 1, ω0 . ωL .

The hyperbolic cosine can be replaced by one, so that the

answer is proportional to the square of the electrical area of

the laser pulse:

S0 ≈
1

ω0τ
S2

E = π
E
2
Lτ

2

ω0τ
sin2 ϕ0. (24)

Depending on the phase of ϕ0, this quantity takes values

from zero to πE2
Lτ

2/(ω0τ ), i. e. may be significantly less

than probability (23), or may exceed it four times.

Finally, note that for ωLτ ≪ 1 and ω0τ ≫ 1, the argu-

ment of the hyperbolic cosine in formula (20) can be either

small or large. In appropriate limiting cases, the result is

given by one of the expressions presented above.

Function (20) has already been discussed in work [12],
where the excited state population of a two-level system

during interaction with the classical field of a laser pulse was

reviewed (see also works [13,14]). Formula (16) contains

this expression, since the excitation of an atom by a laser

field is part of the diagram in the figure (taking into account

the approximations made). On the other hand, differential

probability (16) also describes the process of emission of a

photon with arbitrary energy ω, given the finite lifetime of

the excited state. Next, we will calculate the total probability

by integrating expression (16) in the case of an extremely

short laser pulse ωLτ ≪ 1, taking into account ω0 . ωL and

Ŵτ ≪ 1.

This calculation can be performed by analogy with

work [5]. Let us write down the final result:

W ≈ 8πα2

3Ŵ
ω3
0

∣∣rge
∣∣2∣∣eLreg

∣∣2S2
E . (25)

Using the relation for the matrix element [4]

∣∣rge
∣∣2 =

3Ŵ

4αω3
0

, (26)

we obtain

W ≈ 2πα
∣∣eLreg

∣∣2S2
E =

1

2

∣∣eLdeg
∣∣2S2

E . (27)

Here deg is the matrix element of the electric dipole moment

operator d̂ = er. Thus, as in expression (24), we see that in

the case of extremely short pulses, the total probability of

radiation when excited by a laser field is determined by the

electrical area of the pulse. Since here we have integrated

over the photon momentum and summed over polarizations,

the total probability W can be associated with the population

of the excited level, so that formula (27) reproduces one of

the expressions obtained in the work [12] (a similar result

was also obtained in work [15], where the probability of

excitation of a hydrogen atom from the ground state was

considered within non-relativistic quantum mechanics).
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4. Conclusion

In this work, the process of photon emission by a two-

level system under excitation by a laser field of arbitrary

duration was studied. The main attention was focused on

the analysis of extremely short pulses that do not have a

well-defined frequency and have a non-zero electric-field

area. Within the framework of QED, a closed expression

was obtained for the differential probability of the process

in the first order of perturbation theory, which allows

one to obtain the spectrum of emitted photons. The

total probability was also calculated by summing over the

parameters of the emitted photon. It was shown that for

extremely short laser pulses the probability is, to first order,

proportional to the square of the electric-field area of the

pulse.
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