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A new approach to solution of the light scattering problems for particles

with a symmetry plane by using the field expansions in wave functions
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Solving the light scattering problem for particles with the middle symmetry plane (e.g., spheroids), by applying

the exact methods based on the field expansions in basis functions, leads to the linear systems with half matrix

elements equal to zero. We suggest an approach that allows one to replace such a system with two ones having

a twice smaller size, which significantly reduces the computational time. The approach is applied to the recently

derived solution to the light scattering problem for homogeneous spheroids with the field expansions in spheroidal

functions. The approach can be used in the case of the field expansions in spherical and other functions as well as

for other scatterers, e.g., finite length cylinders, Chebyshev particles with the even parameter n, and so on, including

both homogeneous and layered ones.
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1. Introduction

The approximation of real scatterers by particles of simple

shapes is quite often encountered in various applications of

the theory of light scattering [1–3]. The implementation of

such an approach in many cases requires a quick solution to

the problem of scattering of a plane electromagnetic wave

incident on a particle of the corresponding (non-spherical)
shape.

Numerical solutions to this problem obtained by universal

methods (for example, discrete dipole approximation, DDA,

finite difference time domain method, FDTD, etc. [4,5])
often require very long computation time and thus, are

significantly limited in application.

Solutions based on the field expansion on a selected

basis as part of different methods (separation of vari-

ables method, SVM, extended boundary condition method,

EBCM, etc. [6]) have a wider range of applicability. Here,

when reviewing particles with a large diffraction parameter,

etc., as a rule, it is required to take into account many terms

of the expansion, i. e. large linear systems need to be solved.

Since in this case the computation time grows approximately

as N4, where N — the order of the system matrix, reducing

this parameter can give a significant acceleration

This effect, in particular, can be expected when dividing a

system of equations for relatively unknown field expansion

coefficients into two systems, half the size, which is possible

for particles with a median plane of symmetry. As is known,

in this case the matrix of the system contains half of the zero

elements [7], and their elimination is equivalent to splitting

the system into two parts with matrices not containing such

elements.

In this work we review the application of a similar

approach to solving the problem of light scattering by a

homogeneous spheroid, which we recently obtained using

the EBCM method applying field expansions in spheroidal

functions and described in detail in the work [8]. The basic

elements of solving the problem in [8] are briefly presented

in Section 2. The proposed new approach is described

in Section 3, some data from numerical calculations are

presented and the actual acceleration of calculations are

discussed in Section 4. The results of this work are

summarized in the Conclusion.

2. General relations

In the work [8], as usual in the EBCM method, not

the Helmholtz (wave) equations for harmonic fields E, H

were solved together with boundary conditions [1], but the
surface integral equations equivalent to them, often called

extended boundary condition,

∇×
∫

S

n× Eint(r′)G(r, r′)ds′ − 1

ikε
∇×∇

×
∫

S
n×Hint(r′)G(r, r′)ds′

=







−Eint(r), r ∈ D,

Esca(r), r ∈ D̄ \ S,
(1)
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where G(r, r′) = exp(ik0|r− r′|)/(4π|r − r′|) is Green’s

function of the scalar Helmholtz equation for free space,

k0 = 2π/λ — wave number in vacuum, λ — radiation

wavelength, S — particle surface, n — outer normal to S,
D — region inside S, ε and µ — dielectric permittivity and

magnetic susceptibility of the medium, while k = k0
√
εµ —

wave number in the medium, Ein and Esca — fields of

incident and scattered radiation, respectively, Eint,Hint —
field inside particles.

Electromagnetic fields were represented in infinite series

as follows:

E(r) =
∑

ν

(aνM
s
ν(r) + bνN

s
ν(r)) , (2)

where aν and bν — expansion coefficients, and

Ms
ν(r), N

s
ν(r) — basis functions, which are solutions of the

Helmholtz equation that satisfy the required conditions,

Ms
ν(r) = ∇× (sψν(r)), Ns

ν(r) =
1

k
∇×Ms

ν(r), (3)

where s is either the radius vector r or the unit vector iz,

and ψν is a solution to the corresponding scalar Helmholtz

equation.

In the spheroidal coordinate system (ξ, η, ϕ) we have

ψ̄
( j )
ν (ξ, η, ϕ) = c̃mnR

( j )
mn(c, ξ)S̄mn(c, η)e

imϕ, (4)

where ν = {m, n}, n = 0, 1, . . ., m = −n, ..., n, c̃mn —

some coefficient of order 1, R( j )
mn(c, ξ) — spheroidal

radial functions of the j -th kind ( j = 1, 3). The

parameter c is equal to kd/2 and −ikd/2 for prolate

and oblate spheroidal coordinates, respectively, d —
their focal distance [9]. Normalized spheroidal angular

functions S̄mn(c, η) = Smn(c, η)/Nmn were used, where

Nmn = [2(n + m)!/(2n + 1)/(n− m)!]1/2 according to [10].
The solution is somewhat simplified if trigonometric

functions ϕ are used in formula (4), as is done below. Then

the concepts of TE- and TM-mode, etc. [8] appear. Note

that in expansion (2) we use the functions in the TM mode

Mr
ν ,M

z
ν , and in TE mode — Nr

ν ,N
z
ν .

The spheroidal coordinate system is naturally associated

with the surface of the spheroidal particle, so that the

coordinate ξ at its boundary is constant. Then substitution of

relations (2)−(4) and the known expansion of the Green’s

function [11] into equation (1) taking into account the

properties of spheroidal functions leads in a standard way

to a system of linear algebraic equations

{

Zin = −Ã31Z
int,

Zsca = Ã11Z
int.

(5)

Here the vectors have two parts (in accordance with

expansion (2)): Zin =
{

Zin
U, Z

in
V

}T
, Zint =

{

Zint
U , Z

int
V

}T
,

Zsca = {Zsca
U , Zsca

V }T
with the components

zin
U,ml = k1ā

in
mlR

(1)
ml (c1, ξ0), zin

U,ml = 0,

zint
U,ml = k1ā

int
mlR

(1)
ml (c2, ξ0),

zint
V,ml = c1b̄

int
mlR

(1)
ml (c2, ξ0),

zsca
U,ml = k1ā

sca
ml R

(3)
ml (c1, ξ0),

zsca
V,ml = c1b̄

sca
ml R

(3)
ml (c1, ξ0), (6)

where ξ0 — the value of the coordinate ξ on the surface

S, c1 and c2 — the value of the parameter c outside and

inside the particle, k1 — the wave number in the medium

surrounding the particle.

Let us note that for axisymmetric particles the operator

corresponding to the light scattering problem commutes

with the rotation operator Lz = ∂/∂ϕ, which allows to

divide the problem with respect to one of the variables —
the azimuthal angle ϕ, i. e. the problem can be solved

independently for each value of the azimuthal number m [6].
Although all vectors and matrices below should have

index m (as in [8]), we omit it for simplicity in all but a

few cases.

Both matrices in the system (5) have 4 blocks (i = 1, 3;

k = 1)

Ãik =

(

αU,ik αV,ik

βU,ik βV,ik

)

. (7)

In the work [8] the expressions of the matrix elements in

formula (7) for the TE mode are given. We review the case

of the TM mode below, for simplicity, but without loss of

generality. The transition from the first to the second mode

occurs by cyclic replacement: ε → µ, µ → ε. With the usual

values of the magnetic susceptibility of µ1 = µ2 = 1 media

for Ã31 elements in the TM mode, we obtain

αU,31 = W

{

R3,111,2 −
ε1

ε2
11,2R1,2 +

(

ε1

ε2
− 1

)

× ξ20Q1,2R1,2 −
(

1− ε1

ε2

)

f ξ0
ξ20 − f

Q1,2E2,2

}

, (8)

αV,31 = W

{(

ε1

ε2
− 1

)

f ξ0Q1,2Ŵ2,2R1,2 −
(

1− ε1

ε2

)

× f

ξ20 − f

[(

ξ20Q1,2 − 11,2

)

K2,2 + Ŵ1,2
]

}

, (9)

βU,31 = W

{

−
(

ε1

ε2
− 1

)

ξ0Q1,2Ŵ2,2R1,2

+

(

1− ε1

ε2

)

ξ20
ξ20 − f

Q1,2, K2,2

}

, (10)

βV,31 = W

{

R3,111,2 − 11,2R1,2 −
(

ε1

ε2
− 1

)

×ξ20Q1,2R1,2 +

(

1− ε1

ε2

)

ξ0

ξ20 − f
[Q1,2E2,2 + 11,2]

}

,

(11)
where ε1 and ε2 — dielectric permittivity outside and inside

the particle, f = −1 and 1 for oblate and prolate spheroidal

Optics and Spectroscopy, 2023, Vol. 131, No. 11



1494 V.G. Farafonov, D.G. Turichina, V.B. Il’in

coordinates, I — unit matrix. The elements of the matrix

Ã11 look similar [8].
With our choice of spheroidal coordinates, the radial

functions used are constant on the surface of the particle

and, therefore, are taken out of the sign of the integral over

its surface in the matrix elements in system (5). Therefore,
such functions are present only in the following diagonal

matrices:

Rk, j =

{

R(k)′

ml (c j , ξ0)

R(k)
ml (c j , ξ0)

δnl

}∞

n,l=m

, (12)

W = − [R3,1 − R1,1]
−1

=
{

ic1(ξ
2
0 − f )R(1)

ml (c1, ξ0)R
(3)
ml (c1, ξ0)δnl

}

∞

n,l=m
,

(13)

where R(k)′

ml (c, ξ) — derivative of the spheroidal radial

function of the k-th kind, δnl — Kronecker symbol, k = 1, 3

and j = 1, 2.

The elements of the matrices 1i , j , Ŵi , j , Ki , j , Ei , j

(i = 1, 2; j = 1, 2) represent, respectively, the following

integrals of normalized spheroidal angular functions and

their derivatives:

δnl(ci , c j ) =

1
∫

−1

S̄mn(ci , η)S̄ml(c j , η) dη, (14)

γnl(ci , c j ) =

1
∫

−1

S̄mn(ci , η) S̄ml(c j , η) η dη, (15)

κnl(ci , c j ) =

1
∫

−1

S̄′

mn(ci , η) S̄ml(c j , η)(1− η2) dη, (16)

εnl(ci , c j ) =

1
∫

−1

S̄′

mn(ci , η) S̄ml(c j , η) (1− η2) η dη, (17)

where n, l = m, m+ 1, ...

Finally,

Q1,2 = 11,2

[

ξ20 I − f Ŵ2(c2, c2)
]−1

. (18)

In the case of a single particle, solving system (5), we
obtain the elements zsca

U,ml, zsca
V,ml and then the expansion

coefficients (2) of the scattered field āsca
ml , b̄sca

ml . These data

allow to find any cross sections and scattering matrix for a

given particle [8].
On the other hand, for ensembles of particles (in

particular, chaotically oriented ones) from the matrices of

system (5), one can construct an analogue of the T ma-

trix: T̃ = Ã11(Ã31)
−1which in general has 4T̃i j (i , j = 1, 2)

blocks:
(

Zsca
U

Zsca
V

)

=

(

T̃11 T̃12

T̃21 T̃22

)(

Zin
U

0

)

. (19)

This allows to define 2 blocks of a normalized spheroidal

T matrix (TM mode case)

āsca = −T̄sp
11 ā

in, b̄sca = −T̄sp
21 ā

in, (20)

where

T̄sp
11 = R̃−1

3 T̃11R̃1, T̄sp
21 =

k1

c1

R̃−1
3 T̃21R̃1, (21)

diagonal matrices R̃i =
{

R(i )
mn(c1, ξ0)δnl

}

∞

n,l=m
.

Based on T̄sp, in the work [8] a standard T matrix was

constructed that relates the scattered and incident fields

expansion coefficients on a certain spherical basis and funda-

mentally accelerates the calculation of the optical properties

of ensembles of (chaotically oriented) particles [4].

3. Description of the proposed approach

The new approach uses the fact that for particles with a

plane of symmetry, with a suitable choice of basis in the

SVM, EBCM, etc. methods, half of the matrix elements

in emerging systems of linear algebraic equations with

respect to unknown field expansion coefficients, which are

essentially similar to the system (5), turn out to be zero.

This feature of systems is associated with the odd-

ness of angular functions. For example, in the case

described in Section 2, the matrix elements include

the integrals (14)−(17). The functions S̄mn(c, η) and

η S̄′

mn(c, η) included in these integrals are even and odd

functions η when the difference n− m is even and odd,

correspondingly [9]. Therefore, regardless of m, the integrals

δnl(c1, c2) and εnl(c1, c2) are zero when n− l is odd, and

the integrals γnl(c1, c2) and κnl(c1, c2) are zero when n− l
is even.

As a consequence, the Ã31, Ã11 matrices in system (5)
contain two types of matrices involving spheroidal angular

functions: matrices like 1 and Ŵ. In the first case (matrices

1, E,Q), elements the indices of which have different

parities are equal to zero, and in the second (Ŵ, K) — the

same (8)−(11) and (14)−(17).
For 1-type matrices, the reduced matrices can be entered

that do not contain zeros as follows:

11 =









δ11 δ13 ...

δ31 δ33 ...

... ... ...









, 12 =









δ22 δ24 ...

δ42 δ44 ...

... ... ...









. (22)

These matrices are obtained by deleting even rows and

columns in the first case, and odd ones in the second.

Let us note that the matrices are almost symmetric:

δnl(c1, c2) = δln(c2, c1).
For Ŵ-type matrices, the reduced analogues respectively

have the form

Ŵ1 =









γ12 γ14 ...

γ32 γ34 ...

... ... ...









,
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Ŵ2 =









γ21 γ23 ...

γ41 γ43 ...

... ... ...









. (23)

In this case, to obtain matrices Ŵ1, even rows and odd

columns are crossed out in matrix Ŵ, and odd rows and

even columns are excluded to obtain Ŵ2. These integrals are

also related γnl(c1, c2) = γln(c2, c1).
Thus, in system (5) it is advisable to divide the vectors of

coefficients ZY
X for each upper and lower indices (X =U,V;

Y = in, int, sca) into two: ZY
1,X and ZY

2,X, thinning out parts

of ZY
X in different ways. The components of the new vectors

for each m are equal to

zY
1,X,ml = zY

X,ml, l = m, m+ 2, . . . , (24)

zY
2,X,ml = zY

X, ml, l = m+ 1,m+ 3, . . . , (25)

where the right-hand sides are similar to those given in

relations (6).
Then, for example, the first equation of system (5) splits

into two ( j = 1, 2) equations:

(

−α j ,U,31 −α3− j ,V,31

−β3− j ,U,31 −β j ,V,31

)(

Zint
j ,U

Zint
3− j ,V

)

=

(

Zin
j ,U

0

)

. (26)

For the TM mode, under the condition µ1 = µ2 = 1, we

respectively have ( j = 1, 2)

α j ,U,31 = Wj

{

R j ,3,11 j ,1,2 −
ε1

ε2
1 j ,1,2R j ,1,2 +

(

ε1

ε2
− 1

)

× ξ20Q j ,1,2R j ,1,2 −
(

1− ε1

ε2

)

f ξ0
ξ20 − f

Q j ,1,2E j ,2,2

}

,

(27)

α j ,V,31 = W3− j

{

f ξ0Q j ,1,2Ŵ j ,2,2R3− j ,1,2 −
(

1− ε1

ε2

)

× f

ξ20 − f

[(

ξ20Q j ,1,2 − 1 j ,1,2
)

K j ,2,2 + Ŵ j ,1,2
]

}

,

(28)

β j ,U,31 = Wj

{

−
(

ε1

ε2
− 1

)

ξ0Q3− j ,1,2Ŵ3− j ,2,2R j ,1,2

+

(

1− ε1

ε2

)

ξ20
ξ20 − f

Q3− j ,1,2K3− j ,2,2

}

, (29)

β j ,V,31 = W3− j {R3− j ,3,113− j ,1,2 − 13− j ,1,2R3− j ,1,2

−
(

ε1

ε2
− 1

)

ξ20Q3− j ,1,2R3− j ,1,2

(

1− ε1

ε2

)

× ξ0

ξ20 − f
[Q3− j ,1,2E3− j ,2,2 + 13− j ,1,2]

}

. (30)

Obviously, the Rik diagonal matrices must contain ei-

ther the 1st, 3rd, etc. rows (this will be a matrix

R1,ik = {(r ik)nl}n,l=m,m+2,...), the 2nd, 4th, etc. rows (matrix

R2,ik = {(r ik)nl}n,l=m+1,m+3,...). The matrices W1 and W2 are

constructed in a similar way.

Also, the second equation of the system (5) splits into

two equations when using the variables ZY
1,X and ZY

2,X

(X = U,V; Y = in, int, sca).
Thus, from the system of equations (5), having dimension

2N × 2N, where N — the number of terms retained during

calculations in the field expansions (2), we obtained 2

systems with dimension N × N. Next, for a single particle,

it is easy to collect the expansion coefficients of the

scattered field from two solutions, which have the form

Zsca
1 =

{

Zsca
1,U, Z

sca
1,V

}

and Zsca
2 =

{

Zsca
2,U, Z

sca
2,V

}

and determine

any optical characteristics of the particle. For ensembles of

particles, both obtained T matrices, which do not contain

zero elements, should be transformed, as described in the

work [8], until two reduced analogues of the standard T-
matrix are found, and only at this stage they should be

combined into one, final.

Let us add that when using trigonometric functions of the

azimuthal angle ϕ in the basis functions (4), the potential

V in of the incident plane wave is equal to zero [6] and,

therefore, the vector of expansion coefficients Zin
V = 0. A

modification of the system of equations (5), using this

fact, allows to make numerical calculations even more

economical.

Let us write the first equation of the system (5) taking

into account the block diagram (6), (7)

−
(

αU,31 αV,31

βU,31 βV,31

)(

Zint
U

Zint
V

)

=

(

Zin
U

0

)

. (31)

Let us represent the second equation of this system in the

form

Zint
V = − (βV,31)

−1
βU,31Z

int
U . (32)

Now the first equation of system (31) can be solved with

respect to the vector Zint
U

Zint
U =

[

αV,31 (βV,31)
−1
βU,31 − αU,31

]

−1

Zin
U = A−1

U Zin
U,

(33)
and after simple transformations we obtain a solution for

the vector Zint
V

Zint
V =

[

αU,31 (βU,31)
−1
βV,31 − αV,31

]

−1

Zin
U = A−1

V Zin
U,

(34)
where notations are introduced for matrices written in

square brackets.

The final solution for the expansion coefficients of the

scattered field will be found from the second equation of

the system (5) taking into account relations (33), (34):

Zsca
U =

(

αU,11A
−1
U + αV,11 A−1

V

)

Zin
U,

Zsca
V =

(

βU,11A
−1
U + βV,11A

−1
V

)

Zin
U. (35)

A simplification of the original solution is that instead of

inverting the block matrix Ã31, you need to find four inverse

Optics and Spectroscopy, 2023, Vol. 131, No. 11
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Figure 1. Convergence of extinction cross sections Cext with

increasing number of terms taken into account in field expansions,

N, for TE and TM modes in the case of the initial system 2N × 2N
and each of the two systems N × N obtained after eliminating

zeros. An oblate spheroid with a/b = 2, m̃ = 1.5 and xV = 30

with α = 45◦ is reviewed.

matrices A−1
U , A−1

V , β−1
U , β−1

V , the dimension of which is

half the original one.

Certainly, as part of this diagram, the exclusion of zero

elements in the matrices of the system (35) can also be

done. Dividing the coefficient vectors into two parts, as was

done above, we obtain ( j = 1, 2)

Zsca
j ,U =

(

α j ,U,11A
−1
j ,U + α3− j ,V,11A

−1
3− j ,V

)

Zin
j ,U,

Zsca
3− j ,V =

(

β3− j ,U,11Aj ,U11
A−1

j ,U + β j ,V,11A
−1
3− j ,V

)

Zin
j ,U,

(36)
where

Aj ,U = α3− j ,V,31 (β j ,V,31)
−1
β3− j ,U,31 − α j ,U,31,

A3− j ,V = α j ,U,31 (β3− j ,U,31)
−1
β j ,V,31 − α3− j ,V,31. (37)

The expressions for matrices α j ,X,ik and β j ,X,ik are the same

as above (27)−(30).
Let us note that a simple modification of the system of

equations, described by the relations (31)−(37), addition-
ally accelerates the calculations in a noticeable way.

4. Results of numerical tests

We applied the zero-elimination approach proposed in

Section 3 to the algorithm outlined in [8] and briefly

described in Section 2. Using the algorithm in its original

form and after modification, excluding zero elements in

the matrices of system (5) and dividing the latter into two

systems of half the size, calculations of the optical properties

of spheroids of various shapes with different refractive index

m̃ were carried out. The diffraction parameter of the

particles varied xV = 2πrV/λ, where rV — the radius of

the sphere, the volume of which is equal to the volume of

the spheroid, λ — the wavelength of the radiation, and the

minimum number of terms in the fields expansion Nmin was

determined, allowing one to obtain cross sections with an

error of approximately 10−6. The accuracy of the calculated

sections was assessed as in [8].

The dependence of the computation time on Nmin is most

important for discussing the effectiveness of the proposed

modification of the algorithm from [8]. However, before this,
the question of the convergence of solutions in the original

and modified algorithms for each of the modes with an

increase in the number of terms taken into account in the

field expansions N should be reviewed. Standard results

of such review are presented in Fig. 1. They illustrate

the convergence of extinction cross sections Cext for an

oblate spheroid with semi-axial ratio a/b = 2, refraction

index m̃ = 1.5, diffraction parameter xV = 30 (Nmin = 32)
at oblique incidence of radiation (the angle between the

symmetry axis of the particle and the wave vector α = 45◦).
These results, as well as our study as a whole, show that

for each mode the rate of convergence of solutions of both

reduced systems is almost similar to the rate of convergence

for the original system.

100

T
im

e,
 s

N

1

10

Without zero-exclusion
With zero-exclusion
N 3

Figure 2. Time to solve the problem of light scattering (for
one azimuthal mode) by oblate spheroids with a/b = 2, m̃ = 1.5,

α = 45◦ and different diffraction parameters xV, which required

taking into account the N = Nmin ≈ xV E terms of the field

expansion to achieve a section error of the order of 10−6 . Crosses

and pluses — calculations without and with the exclusion of zeros,

respectively.
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Figure 3. Left: time required for calculations after eliminating zero elements in different parts of the algorithm (see text for more details)
for the same spheroids as in Fig. 2 with different numbers of terms taken into account in the field expansion, N = Nmin . The dot-dash

line shows the N3 relationship. Right: ratio of calculation times without exclusion (twith) and with exclusion (twithout) of zero elements in

different parts of the algorithm for the same spheroids with different numbers of terms N = Nmin.

After analyzing these and other results obtained, we

found the following. The time for solving the problem

(calculating part of the standard T matrix) for one azimuthal

mode (one number m) depends on the number of terms

of the expansion (system size) Nmin approximately as N3
min

with Nmin > 40. In this case, the acceleration due to the

application of the proposed approach, i.e. the ratio of

calculation times without exclusion and with exclusion of

zero elements is on average 2.5.

These conclusions are illustrated in Fig. 2, in which

we showed the time for calculating cross-sections and

T-matrices for oblate spheroids with a/b = 2, m̃ = 1.5,

α = 45◦ and different xV when using a PC with an Intel

Core i7 2.7GHz processor (1 core was used). Particles of

different sizes were reviewed in the range xV = 30− 100

(for given parameter values Nmin ≈ xV).

Let us note that to completely solve the problem it is

required to review mmax azimuthal modes (2)−(4), where

mmax is largely determined similarly to Nmin by reviewing

the internal convergence of the calculation results. For

spheroids of the same shape with the same refraction

index, it is known to be mmax/Nmin ≈ const, and therefore

the total computation time for one particle is t ∼ N4
min.

However, the convergence of the results with increasing

azimuthal number m (and, consequently, the value of

mmax) is obviously not affected by the considered division

of the systems into 2 parts.1 Therefore, the maximum

acceleration with this approach should not be 24/2 = 8,

1 Accordingly, Figs. 2, 3 shows the times for the m = mmax mode.

but approximately 2p/2 ≈ 3.3− 4, where, depending on

the optimization of matrix multiplication and inversion,

p ≈ 2.7− 3.

Further, it is obvious that the approach with excluding

zeros should have different effects on different blocks of the

algorithm, and accordingly, the actual acceleration of calcu-

lations within the approach should be significantly less than

the maximum noted above. We have divided the algorithm

into the following parts: 1) integrals — calculating matrix

elements 1i , j , Ŵi , j , Ki , j , Ei , j (i = 1, 2; j = 1, 2), using the

series representation of these integrals [12]; 2) core —
calculation of matrix elements Ãik (i = 1, 3; k = 1) using

the following formulae (7), (8)−(11) and etc.; 3) inver-

sion — matrix inversion Ã31; 4) multiplication — matrix

multiplication Ã11 Ã−1
31 .

The operating times of these blocks for spheroidal

particles, which were reviewed in Fig. 2, are shown in

the left panel of Fig. 3. As can be seen, with Nmin > 40

the operating times of all blocks are proportional to N3
min

(despite the fact that optimization was used in the Fortran

compiler). The relative contribution of blocks to the total

calculation time (in the figure — TOTAL) weakly depends

on Nmin and is: integrals — ∼ 20%, multiplication —
∼ 15%, inversion — ∼ 25%, core — ∼ 40%. The last three

are designated in the figure as T-matrix total and add up to

∼ 80%.

Certainly, the application of the proposed approach gives

different effects for different blocks (see the right panel of

Fig. 3): the acceleration is minimal for integrals (∼ 1.3)
and maximum for core (∼ 3.4). In the first case, the
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formulae involve matrix inversion, which, however, takes

only a small part of the time. In the second case we

have almost maximum acceleration (see discussion above).
Matrix inversion was slightly accelerated (∼1.8), since in

the program it was initially done in blocks using the Frobe-

nius formula. Nevertheless, on average, the acceleration

coefficient is consistently on the order of 2.5 both for the

particles reviewed and for spheroids of a different shape and

with a different refraction index.

Let us note that the proposed approach accelerates calcu-

lations in all blocks, and not just in the most expensive core

block. On the other hand, the obtained assessment of the

acceleration coefficient shows that the simple acceleration

of calculations described at the end of Section 3 can be as

important as eliminating zeros.

It is appropriate to compare the obtained effect with

the acceleration of calculations in this problem when using

standard MPI parallelization of calculations. In [8] it was

found that the parallelized code ran ∼ 4 times faster with

8 processors than the original. A simple assessment using

Amdahl’s law then shows that the maximum acceleration

is by eliminating zeros, supplemented by the simplification

described at the end of Section 3.

5. Conclusion

When analytically solving the problem of light scattering

by a particle with a plane of symmetry using methods based

on the fields expansion in the corresponding basis functions,

systems of linear equations arise for unknown scattered field

coefficients. In these systems, half of the matrix elements

are zero. We proposed to use this fact for the acceleration

of the calculations. By excluding the zero elements, we

obtained two linear systems half the size of the original one.

This general approach is applied to a recent solution to the

problem of light scattering by spheroids obtained by EBCM

with a non-standard spheroidal basis. Numerical calculations

have shown that the approach accelerates the calculations

by approximately 2.5 times, which is comparable to the

acceleration provided by parallelization of calculations,

especially if we further simplify the systems that arise for

the TE and TM modes.

Let us note that the proposed approach can be applied to

non-axisymmetric scatterers, as well as layered particles by

choosing a suitable spherical, cylindrical or spheroidal basis.
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