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Identification of quantum vortices in momentum space
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The quantum vortices formed as a result of barrier-suppression ionization of a two-dimensional hydrogen atom

by an ultrashort laser pulse are theoretically investigated. Using an analytical expression for the wave function of

a photoelectron in the momentum representation, the probability flux density is investigated. In this case, both the

standard definition of a flux and an alternative
”
symmetrical“ one are used. The latter, due to the sensitivity to the

phase of the wave function, makes it possible to identify quantum vortices in the momentum space.
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Introduction

One of the nontrivial effects that arise during the ioniza-

tion of an atom is the formation of quantum vortices [1–
10]. These vortices manifest themselves as perturbations in

the probability density for the photoelectron. The center of

the vortex is a region forbidden for the photoelectron and

probability flux circulates around it.

In [4–6], using both numerical and analytical approaches,

we studied the formation and evolution of quantum vortices

formed in above-barrier ionization of a two-dimensional

hydrogen atom by an ultrashort laser pulse. The analytical

approach was based on solving the Schrödinger equation

using nonstationary perturbation theory. The wave function

of the photoelectron was obtained, which was successfully

used for identification of the centers of quantum vortices and

further comparison with numerical calculations. However,

the vector field of the probability flux has not been analyzed

with its help. Here we fill this gap, using both the standard

expression for flux in momentum space and an alternative

expression that is sensitive to the phase of the wave function.

This alternative
”
flux“ was introduced in work [11] and is

a quantity
”
symmetric“ with respect to the flux written in

position space.

Theoretical model

We will use a system of atomic units in which the

Schrödinger equation for a two-dimensional hydrogen atom

interacting with a laser pulse has the form

i
∂

∂t
|9(t)〉 = (Ĥ0 + V̂ )|9(t)〉, (1)

where Ĥ0 — Hamiltonian of a free atom, V̂ = −d̂F(t) —
operator of interaction of an atom with the electric field of

a laser F(t), d̂ = −r̂ — dipole moment operator.

As in previous works [4–6], we will look for a solution to

equation (1) in the strong field approximation. This means

that in the calculations we will neglect the excited states of

the atom and will not take into account the Coulomb effect

on the photoelectron. We will also assume that changes in

the population of the ground (initial) state of the atom are

negligible. Then the solution to the Schródinger equation (1)
can be written as the following superposition:

|9(t)| = |9(0)
1,0〉e−iE1t +

∑

m=0,±1,...

∞
∫

0

bk,m(t)|9(0)
k,m〉e−iEk tkdk.

(2)
Here the first term corresponds to the ground state of

the atom with energy E1 = −1/2, characterized by the

vector |9(0)
1,0〉. Subscripts

”
1, 0“ indicate the values of the

principal quantum number n = 1 and the projection of

the moment onto the axis z m = 0. The second term

is represented by a superposition of photoelectron state

vectors |9(0)
k,m〉, which we will describe by cylindrical waves.

The indices
”
k, m“ indicate that this state is characterized

by the energy Ek = k2/2 = (k2
x + k2

y)/2 and the projection

of the moment m = 0,±1,±2, . . . .

Since our task is to identify quantum vortices in momen-

tum space, we rewrite (2) in the appropriate representation:

9(k, t) ≡ 〈k|9(t)〉 =
2

(k2 + 1)3/2
80(ϕk)e

−iE1t

+
∑

m=0,±1,...

bk,m(t)(−i)|m|8m(ϕk)e
−iEk t, (3)

where k = (k, ϕk) — electron momentum in the polar co-

ordinate system, 8m(ϕk) = eimϕk /
√
2π, and explicit expres-

sions were used for the wave functions in the momentum

representation [6]:

9
(0)
1,0(k) ≡ 〈k|9(0)

1,0〉 =
280(ϕk)

(k2 + 1)3/2
,
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9
(0)
k′,m(k) ≡ 〈k|9(0)

k′,m〉 = (−i)|m| δ(k
′ − k)

k ′
8m(ϕk). (4)

Expansion (3) allows us to derive a closed equation

for the unknown coefficients bk,m(t). For this, let us

substitute (3) (or (2)) into the Schrödinger equation (1).
Then, taking into account the explicit form of the interaction

operator in the momentum representation:

V̂ = F(t)i∂/∂k,

we obtain

∂bk,m(t)
∂t

=
(−i)
2

(δm,1 + δm,−1)Fx(t)
6keiωk1t

(k2 + 1)5/2

+
(−i)|m−1|−|m|

2
Fx(t)

(

∂

∂k
− ikt − m − 1

k

)

bk,m−1(t)

+
(−i)|m+1|−|m|

2
Fx(t)

(

∂

∂k
− ikt +

m + 1

k

)

bk,m+1(t),

(5)
where ωk1 = (k2 + 1)/2 and the field polarized along

the x axis is considered F(t) = (Fx(t), 0). The system of

equations (5) corresponds to the system we obtained earlier

in the work [6]. The difference is more convenient recording

without introducing characters ±,∓.

Solving system (5) using perturbation theory, the follow-

ing expression can be obtained for the part of the wave

function (3) corresponding to the continuous spectrum:

9̃(k, t) =−i
[

b(1)
k−1,10(t)8−1(ϕk) + b(1)

k1,10(t)81(ϕk)
]

e−iEk t

+ b(2)
k0,10(t)80(ϕk)e

−iEk t

−
[

b(2)
k−2,10(t)8−2(ϕk) + b(2)

k2,10(t)82(ϕk)
]

e−iEk t,

(6)
where the superscript of the amplitudes corresponds to

the order of perturbation theory [5,6], and the added

subscript
”
10“ indicates the initial bound state of the

electron. The tilde sign over 9 emphasizes (in [5,6]
the notation 9̃(k.t) = b(k, t)e−iEk t was adopted) that the

bound state is omitted, i. e. in the further consideration,

the interference between the initial and final states of the

electron is neglected.

Our task is to identify quantum vortices in momentum

space. For it, we will use the following two definitions for

the probability flux in momentum space k:

j(k, t) = k|9̃(k, t)|2,

j̄(k, t) = − 1

2i

[

9̃∗(k, t)∇k9̃(k, t) − 9̃(k, t)∇k9̃
∗(k, t)

]

.

(7)
Here j(k, t) — standard expression for the probability flux

in momentum space, j̄(k, t) —
”
symmetric“ probability

flux [11], where ∇k = ∂/∂k.

As shown earlier [5,6], quantum vortices that appear

during the ionization of an atom are caused by the

interference of photoelectron states. Therefore, in order to

correctly describe these vortices, it is required to know the

phase of the wave function. Let us highlight this phase in

the found wave function (6):

9̃(k, t) = |9̃(k, t)|eiχ(k,t),

where χ(k, t) — phase. If we substitute 9̃(k, t) into

the standard definition of the probability flux j(k, t), then
the χ(k, t) phase will disappear, and identification of the

quantum vortex will be possible mainly by the zeros of

the wave function. The situation is different for the

alternative stream j̄(k, t). In fact, substituting 9̃(k, t) into

the expression for j̄(k, t), we obtain

j̄(k, t) = −|9̃(k, t)|2∇kχ(k, t).

Calculation results and discussion

We simulate the non-zero component of the laser pulse

field strength with the following expression:

Fx (t) = F0 cos(ωt)[θ(T − t) − θ(−t)], (8)

where θ(x) — Heaviside function, F0 — constant amplitude,

ω — frequency, T — pulse duration. We choose the values

of the pulse parameters close to those for which quantum

vortices were previously identified [4–6]: F0 = 0.6, ω = π,

T = 2. We will be interested in the steady-state solution,

i. e. explore 9̃(k, t) (6) at times t > T .
Let us make a few comments regarding the selected

parameters. The field amplitude value is taken such

that above-barrier ionization predominates, but meanwhile

F0 < 1. This allows to remain within the limits of the

theoretical approximations used. The
”
scale“ of the vortex

is strongly influenced by the pulse duration T [4]. As

calculations show, at T < 1 the vortex does not have time

to form and it cannot be identified. When going to large

values of T > 10, the forbidden region gradually
”
smears

out“, and ultimately the vortex loses its individuality, and

the
”
picture “ becomes similar to that which occurs during

ionization by a monochromatic field.

The figure shows graphs of the photoelectron momen-

tum distribution |9̃(kx , ky , t > T )|2 (a, b) (for a clearer

display, the graph is plotted for ln |9̃|2) and the standard

probability flux j(kx , ky , t > T ) (c) and
”
symmetric“ flux

j̄(kx , ky , t > T ) (d).
For the selected parameters there are two symmetrical

vortices with centers at points kx = 0, ky ≈ ±2.3. In the

figure, a these centers are highlighted with circles, and in the

figure, b the center of the vortex with the positive coordinate

ky ≈ 2.3 is shown on an enlarged scale.

Figure, c illustrates the standard probability flux in mo-

mentum space. It can be seen that in the vicinity of

the center of the vortex kx = 0, ky ≈ 2.3 the flux is not

distinguished in any way and coincides with the average

flux in this region of momentum space. Only the darker
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Distribution of photoelectron momenta (a, b), standard probability flux (c) and
”
symmetric“ flux (d).

background on the graph indicates the presence of a

forbidden region for the photoelectron.

The
”
symmetric“ flux looks completely different, figure d.

It is clearly seen that around the zero of the wave function

the flux j̄(kx , ky , t > T ) has a vortex structure close to

solenoidal.

Conclusion

Thus, it is shown that using the symmetric expression for

the probability flux j̄(k, t) (7), introduced in [11], quantum
vortices in momentum space are possible to be identified.
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