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General approach to the calculation of elastic properties of axially

symmetric quantum dots in nanowires
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A general approach to the calculation of elastic fields and energies of quantum dots (QDs) featuring dilatational

eigenstrain and positioned along the symmetry axis of a nanowire (NW) is examined. The problem of elastic fields

of an infinitely thin dilatational disk buried completely in a matrix in the form of a NW, which is represented by a

straight infinitely long elastic cylinder with a constant radius, is solved for this purpose within the classical linear

elasticity theory. It is demonstrated how an analytical solution for a dilatational disk may be used to calculate the

elastic properties of axially symmetric QDs of various shapes in hybrid QD/NW nanostructures.
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Nanowires (NWs) are currently attracting increased re-

search attention. Owing to their unique physical and

chemical properties [1], NWs find application in numerous

modern instruments and devices with fundamentally new

functional capabilities [2,3].
Semiconductor NWs may also be used in practice to

fabricate hybrid nanostructures incorporating quantum disks

(nanodisks, NDs) or quantum dots (QDs) [4,5]. While NDs

fill the entire NW cross section, QDs are buried completely

in NWs (i.e., are surrounded by the NW material from all

sides).
The elastic behavior of quantum disks in hybrid ND/NW

structures, which is governed by the effect of misfit between

the lattice parameters of ND and NW materials, has already

been examined in [6,7]. It was demonstrated, e.g., that the

screening influence of the free NW surface causes NDs with

like-sign dilatation to attract each other at distances shorter

than the NW radius [6].
A limited number of solutions in the special case with

cylindrical QDs featuring uniaxial eigenstrain are available

for QDs buried completely in NWs (see a brief review

in [7]). Similar problems for QDs of other shapes have

not been considered yet, although elastic characteristics of

such objects in NWs are needed both for analysis of the

structural evolution of hybrid QD/NW nanostructures and

for examination of their physical and chemical properties.

This is largely attributable to the lack of analytical solutions

for elastic fields and energies of these QDs in NWs.

An approach providing in opportunity to determine elastic

fields and energies of axially symmetric QDs of a complex

shape in NWs is detailed in the present study. This approach

involves solving a boundary-value problem of the classical

linear elasticity theory for a dilatational disk (DD) of a

finite radius that is completely buried in a coaxial elastically

isotropic straight infinitely long cylinder with a constant

radius, which serves as a continuum mechanical model of

an NW.

Figure 1 presents a schematic diagram of dilatational QDs

of different possible shapes (spherical (a), cylindrical (b),
and conical (c ones) positioned on the axis of symmetry

of a cylindrical NW. Within material micromechanics,

a dilatational QD is a region within an NW where a

dilatational eigenstrain is specified [8]:

ε∗ii = ε∗δ(�)

(i = x , y, z or i = r, ϕ, z ;

no summation over i), (1)

where ε∗ is the lattice misfit, δ(�) = 1 within a QD, and

δ(�) = 0 outside of it.

The idea of the proposed approach consists in presenting

the mentioned axially symmetric QDs as sets of infinitely

thin DDs (see the examples of such
”
sample“ disks for each

QD shape in Fig. 1). The elastic QD parameters may then

be presented in an integral form. For example, stress field

σi j is

σi j =

z 2
∫

z 1

dσi j
(

r, z − z 0; c(z 0)
)

ρ(z 0)dz 0, (2)

where integration is performed over the QD height

(see the example in Fig. 1, c for a conical QD),
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Figure 1. Axially symmetric QDs of various shapes in NWs: a — spherical, b — cylindrical, and c — conical QDs. A sample infinitely

thin dilatational disk (DD) is shown. The integration limits and the position of the sample DD on (axial) coordinate axis z are also

indicated for a conical QD.
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Figure 2. Dilatational disk (DD) with radius c in a cylinder with

radius a . Cartesian (x, y, z ) and cylindrical (r, ϕ, z ) coordinate

systems are shown.

dσi j
(

r, z − z 0; c(z 0)
)

is the stress field of a sample DD

with radius c(z 0) located at distance z 0 from the origin

of coordinates, and ρ(z 0) is the density of DD distribution

along the NW axis (in the present study, its is assumed to

be constant).

The DD eigenstrain may be written as [8]

dε∗ii = bH

(

1−
r
c

)

δ(z ), (3)

where b is a dimensional coefficient accounting for the

eigenstrain concentrated in the DD, H(. . . ) is the Heaviside

step function, and δ(z ) is the Dirac delta function. A

relation similar to formula (3) may be used to determine the

eigenstrain of axially symmetric QDs under the assumption

of constant DD density ρ = ε∗/b:

ε∗ii =

z 2
∫

z 1

dε∗ii
(

r, z − z 0; c(z 0)
)

ρdz 0

=

z 2
∫

z 1

bH

(

1−
r

c(z 0)

)

δ(z − z 0)ρdz = ε∗δ(�). (4)

In order to implement the proposed approach, one needs

to determine the elastic characteristics of a sample DD in the

geometry illustrated in Fig. 2 by solving a boundary-value

problem of elasticity theory wherein boundary conditions

on the stress-free lateral surface of an infinite cylinder are

imposed on the elastic field of a source (i.e., DD).

If a DD is positioned in an infinite elastically isotropic

continuum, its elastic fields are defined unambiguously

by eigenstrain (3). The DD stresses in this case [10]

were determined with the use of defect micromechanics
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relations [9]:

∞dσrr =
G(1 + ν)b

1− ν

[

1

c
J(1, 0; 1) −

1

r
J(1, 1; 0)

]

−
2G(1 + ν)b

1− ν
H

(

1−
r
c

)

δ(z ), (5a)

∞dσϕϕ =
G(1 + ν)b

1− ν

1

r
J(1, 1; 0)

−
2G(1 + ν)b

1− ν
H

(

1−
r
c

)

δ(z ), (5b)

∞dσz z = −
G(1 + ν)b

1− ν

1

c
J(1, 0; 1), (5c)

∞dσrz = −
G(1 + ν)b

1− ν

sgn(z )

c
J(1, 1; 1), (5d)

∞dσrϕ = ∞dσϕz = 0. (5e,f)

Here, G is the shear modulus, ν is the Poisson’s ratio,

sgn(z ) is the sign function, and

J(m, n; p) =

∞
∫

0

Jm(κ)Jn(κr/c) exp(−κ|z |/c)κ pdκ

are Lipschitz−Hankel integrals that are defined using Bessel

functions of the first kind Jm and Jn [11].
The DD stress field in a cylinder (dσi j) may be plotted

as a sum of DD stress field in an infinite medium ∞dσi j (5)
and additional

”
image“ stress field iσi j :

dσi j = ∞dσi j + iσi j , i = x , y, z or i = r, ϕ, z . (6)

Additional field iσi j should be determined in a form having

no singularity within a cylinder and ensuring that the

following boundary conditions are satisfied on its lateral

surface r = a :
(

∞dσrr + iσrr
)∣

∣

r=a
= 0, (7a)

(

∞dσrz + iσrz
)
∣

∣

r=a
= 0. (7b)

The expression for image stress field iσi j is retrieved using

the general solution obtained by Lur’e [12] for an elastic

problem of an axisymmetrically loaded cylinder. Omitting

the details of analytical calculation, we give the end result:

iσrr =
2G(1 + ν)b
(1− ν)πa

∞
∫

0

[

β
(

C̃1(3− 2ν) − D̃1β
)

I0

+
1

r̃

(

C̃1(4ν − r̃2β2 − 4) + D̃1β
)

I1

]

cos β z̃ dβ, (8a)

iσϕϕ =
2G(1 + ν)b
(1− ν)πa

∞
∫

0

[

C̃1β(2ν − 1)I0 −
1

r̃

×
(

4C̃1(ν − 1) + D̃1β
)

I1

]

cos β z̃ dβ, (8b)

iσz z =
2G(1 + ν)b
(1− ν)πa

×

∞
∫

0

β
[(

2C̃1ν + D̃1β
)

I0 + r̃C̃1βI1
]

cos β z̃ dβ, (8c)

iσrz =
2G(1 + ν)b
(1− ν)πa

×

∞
∫

0

β
[

r̃C̃1βI0 +
(

2C̃1(ν − 1) + D̃1β
)

I1
]

sin β z̃ dβ, (8d)

iσrϕ = iσzϕ = 0, (8e,f)

where

C̃1 = I∗1 t̃/
[

β2I20 − (β2 − 2ν + 2)I21
]

,

D̃1 = −C̃1

[

β2I0K0 +
(

β2 − 2ν + 2)I1K1 + 2ν − 2
]

/β,

I∗1 = I1(t̃β), I0 = I0(r̃β) and I1 = I1(r̃β) are modified

Bessel functions of the first kind, K0 = K0(β) and

K1 = K1(β) are modified Bessel functions of the second

kind (Macdonald functions), t̃ = c/a , r̃ = r/a , z̃ = z/a ,
β > 0, and a is the cylinder radius that was introduced

above.

Summing up the determined image stress field and the

DD stress field in an infinite medium in accordance with

formula (6), we obtain the sought-for result for DD stresses

in an elastically isotropic cylinder. Figure 3, a illustrates the

application of the obtained analytical solution in plotting a

map of radial DD stress dσrr for which boundary condition

(7a) is satisfied. The map of radial DD stress ∞dσrr for

an infinite medium is shown in Fig. 3, b for comparison.

Similar maps (not shown here) were plotted for the other

stress tensor components specified by formulae (5) and (8).
The obtained solution allows one to calculate the accumu-

lated elastic strain energy for a DD. This energy is calculated

using the Mura formula [9]:

dE = −
1

2

∫

V

σi jε
∗

i jdV = −
1

2

∫

V

(

∞dσ + iσ
)

bH

×

(

1−
r
c

)

δ(z )dV = ∞dE + idE, (9)

where ∞dE is the DD energy in an infinite medium, idE is a

correction due to the screening influence of the free cylinder

(NW) surface, and integration is performed over the entire

cylinder volume (V ).
In virtue of the singular DD model, term ∞dE is formally

infinite, which is unphysical. Instead, we consider a

sufficiently thin DD with a finite thickness h ≪ c . The

following formula for the energy of a cylindrical dilatational

inclusion with a limited height may be used in this case [13]:

∞dE ≈
2G(1 + ν)ε∗2

1− ν
πc2h. (10)
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Figure 3. Maps of radial stresses of a dilatational disk in plane y−z . a — dσrr in a cylinder, b — ∞dσrr in an infinite medium. The

double red line denotes the cross section of the dilatational disk (a color version of the figure is provided in the online version of the

paper). Stresses are given in units of Gb/a ; ν = 0.3.

Term idE may be calculated without introducing the

assumption of finiteness of the DD thickness. The result

is

idE = −
4G(1 + ν)2b2c2

(1− ν)a

∞
∫

0

I∗21
β2I20 − (β2 − 2ν + 2)I21

dβ.

(11)
One needs to take the relations between parameters ε∗,

h, and b into account to perform qualitative and quantitative

analysis of energy dE of a DD in an NW. It is fair to assume

that an atomically thin DD (atomic cluster) has h = l, where

l is the lattice parameter under condition l ≪ a . Assuming

that b specifies the variation of the lattice parameter in the

DD plane, we find ε∗ = b/l, which then yields the following

expression for the energy of a thin DD in an NW:

dE ≈
2G(1 + ν)πε∗2ac2

1− ν

×

(

λ̃ −
2(1 + ν)λ̃2

π

∞
∫

0

I∗21
β2I20 − (β2 − 2ν + 2)I21)

dβ

)

,

(12)
where λ̃ = l/a . It follows from our analysis that the

effect of screening by the cylinder surface exerts only a

weak influence on the total DD energy if λ̃ varies within

reasonable limits (e.g., from 0.001 to 0.03). However, the

influence of the free NW surface becomes decisive in the

case of QDs of a finite height (Fig. 1) comparable to their

radial dimension.

Thus, a general approach to the calculation of elastic fields

of axially symmetric QDs in hybrid QD/NW nanostructures

was developed. It was proposed that a QD should be

treated as a dilatational inclusion for this purpose, while

a NW should be regarded as an elastically isotropic straight

infinite cylinder with a constant circular cross section.

An Infinitesimally thin dilatational disk, which is buried

completely in this cylinder and is coaxial with it, was

introduced as a basic element that allows one to obtain

solutions for QDs of various shapes. Analytical expressions

for elastic fields and energies of this DD were found.
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