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The effect of noise on the change of intensity of axisymmetric flows of viscous incompressible fluid in spherical

layers at rotation of boundaries with equal angular velocities is numerically investigated. Noise is introduced into

the flows by adding random fluctuations with zero mean value to the time constant mean rotation velocity of

the inner sphere. The response of the flows to the introduction of two types of noise with different spectra was

investigated. Power laws between the increase in the time-averaged parameters of the flows and the increase in the

noise amplitude were found, which qualitatively retain their form when the noise spectrum, the thickness of the

spherical layer, and the Reynolds numbers are changed. It was found that noises with the same amplitude, but with

different types of spectra, lead to relative changes in the time-averaged values of friction force moments, kinetic

energy of the flows, and RMS deviations of kinetic energy that differ by more than an order of magnitude.
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Introduction

The presence of timing random in time coincidental

fluctuations is a typical property of most natural processes

and systems [1]. Such fluctuations differ both in the type

of spectrum and in the wide range of time scales, varying

from seasonal fluctuations in the intensity of solar radiation

entering the Earth’s atmosphere [2] to short-term oscillations

in the Earth’s rotation speed [3]. Random fluctuations in

the Earth’s rotation speed are being intensively studied at

present, both with the aim of improving satellite navigation

models [4], and in connection with the study of seismic

activity [5]. Random fluctuations are extraneous noise that

affects large-scale flows both in the atmosphere and in

the liquid core of the Earth. Such flows are formed in

spherical geometry with rotation; therefore, in this work

we consider a model spherical Couette flow caused by

the action of unidirectional rotation of spherical boundaries

on a incompressible viscous fluid located between these

boundaries. Noise added to fluid flows can lead to the

generation of oscillations and turbulence [6,7], and to

increasing the threshold for generating magnetic fields [8].
Under the influence of noise, the appearance of unstable

states that differ from each other is possible [9,10], as well as
a shift in the position of the stability limit of flows [11–13].
The last two of the above effects were observed in flows in

rotating spherical layers [10,11,13] in the case where
”
white“

noise was introduced by adding random fluctuations in the

rotation speed with zero average value to the time-constant

average rotation speed of the inner sphere. The same

method of introducing various types of noise into flows is

considered in this work. Such disturbances, regardless of the

type of noise, are symmetrical relative to the equator and

the axis of rotation. In this regard, when calculating flows

with this method of introducing noise, an axisymmetric

approximation was used [11,13], the admissibility of which

is discussed below.

White noise with equal amplitudes of spectral compo-

nents over the entire frequency range used, on the one

hand, and periodic oscillations with a single frequency,

on the other, are limiting cases of perturbations modeling

unevenness in time of the Earth’s rotation. It is shown

numerically that in rotating spherical layers both periodic

oscillations of rotation speed [14] and white noise which are

added to the time-constant average rotation speed [11,13]
are leading to the generation of an average flow. To study

the effects arising from the uneven rotation of the Earth,

not only white noise is used, which is characterized by

the absence of time correlations, and its spectrum can be

represented as 1/ f α, where α = 0, but also other types of

noise with nonzero amount of time correlation,as: α 6= 0 [4].
At the same time, the question remains open about the

nature of the dependence of flow parameters on the type

of spectrum and the amplitude of noise supplied to the

flow, which is the purpose of the study of this work.

In this work, the purpose was not to study such well-

studied phenomena in the case of periodic oscillations of

the rotation speed of one of the spherical boundaries during

unidirectional rotation as instability of flows [15] and/or

inertial waves [16]. Therefore, the effect of noise on time-

averaged flow parameters is considered here.

In this work, based on the solution of the complete

system of Navier−Stokes equations for the isothermal flow

of a viscous incompressible fluid, the dependence of the
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moments of friction forces, the average values of the kinetic

energy of flows and fluctuations of the latter on the noise

amplitude is studied numerically. The response of flows

developing in rotating spherical layers to two types of noise,

differing in the slope of the spectrum, is studied. It is

shown that for the types of noise used in this work, the

ratios of the sizes of spherical boundaries and Reynolds

numbers, the dependences of the relative values of each of

the above parameters on the noise amplitude are described

by qualitatively similar exponential functions.

1. Calculation method and study area

Isothermal flows of a viscous incompressible fluid in a

rotating spherical layer are described by the Navier−Stokes

and continuity equations, which in this case have the form

∂U

∂t
= U× rotU− grad

(

p
ρ

+
U2

2

)

− ν rot rotU,

divU = 0.

Here U — velocity field, p — pressure, both parameters

are functions of time and coordinates, ρ — density, ν —
kinematic viscosity of the liquid in the layer. The boundary

conditions for no-slip and impermeability in a spherical

coordinate system with radial (r) direction, polar (θ) one

and (ϕ) one azimuthal have the form

uϕ(r = rk) = �k(t)rk sin θ, ur(r = rk) = 0,

uθ(r = rk) = 0, k = 1, 2,

where uϕ, ur uθ — azimuthal, radial and polar components

of velocity, respectively, �1 and �2 — angular velocities

of rotation, and r1 and r2 — radii of the inner and

outer spheres, respectively (index 1 refers to the internal

sphere, 2 — to the external). The numerical solution

method is based on a conservative finite-difference scheme

for discretizing the Navie−Stokes equations in space and a

semi-implicit Runge−Kutta scheme of 3rd order accuracy

for integration over time [17]. The time integration scheme

includes an estimate of the local error and automatic

selection of the time step. When discretized over space,

some important properties of the Navier−Stokes equations

are preserved, including the exact invariance of law of

conservation of energy by nonlinear and pressure gradient

terms [17]. The algorithm and features of the finite-

difference schemes used in the calculations were studied

in detail in the work [17], and in the particular case of a

three-dimensional problem in a spherical coordinate system

using non-uniform θ and r mesh models — in work [18].
A system of equations was solved that described unsteady

flows formed under the influence of rotation of boundaries

with equal average angular velocities �0 symmetrical

with respect to the equatorial plane and the axis of

rotation. Two configurations of a spherical layer with

relative layer thicknesses δ = 1 and 1.76 were considered,
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Figure 1. Dependence of the normalized quantities Eϕ (red
square symbols, vertical axis on the left),T (black triangular

symbols) and Eψ (blue round symbols) on the number of

computational grid nodes G at Re = 4000; a — δ = 1, b —
δ = 1.76.

where δ = (r2−r1)/r1. The δ = 1 layer allows comparison

with experimental results. For example, in [11,13] a

good agreement was obtained between the calculated and

experimental results regarding the increase in uϕ with

increasing amplitude of white noise. Layer δ = 1.76 is

closer to currently known data on the internal structure

of the Earth. In the calculations, uniform in θ and non-

uniform in r meshes were used with the ratio of the smallest

mesh size (near spherical boundaries) to the largest size

equal to 0.5. Parametric study was carried out aimed

at selecting the number of nodes of the computational

mesh at different δ . Precision of results as the number

of nodes increases is shown in Fig. 1 using the example of

normalized values of the kinetic energy of the flow and the

moment of friction forces transmitted to the outer sphere.

The kinetic energy of currents is presented as the sum of

the azimuthal Eϕ and meridional Eψ flows determined by

integrating the corresponding components of the velocity

component over the entire volume of the spherical layer:

Eϕ =

∫

u2
ϕ(r, θ, t), Eψ =

∫

(

u2
r (r, θ, t) + u2

θ(r, θ, t)
)

.

Further, the components of kinetic energy in the absence

of additional noise will be denoted as Eϕ0 and Eφ0, but

and with the noise dithered — Eϕn and Eψn . For the type of

flow under consideration, the conditionEψ ≪ Eϕ is satisfied.

The moment of friction forces M is determined as [19]:

M = νr32

2π
∫

0

π
∫

0

{

∂νϕ

∂r
−
νϕ

r

}

sin2 θdθdϕ.
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The values shown in Fig. 1 represent the ki-

netic energy components normalized to the square

of the maximum flow velocity: Enorm
ϕ = Eϕ0/(�0r2)2,

Enorm
ψ = Eψ0/(�0r2)2, as well as dimensionless frictional

moment Mnorm = M/(νr32�0). In accordance with the data

presented in Fig. 1, in the case δ = 1 of the total number

of nodes 4.8 · 104 selected, and in the case δ = 1.76 of all

number of nodes — 5.76 · 104 is selected. The time step 1t
was chosen constant in all cases: 1t = 6 · 10−4 s, which

provided 1178 and 2356 time steps per revolution of the

spheres. Additional noise was introduced at each time step

in the form of random fluctuations in the rotation speed

of the inner sphere: �(t) = �0 + N rn( j). Here N noise

amplitude and rn( j) is pseudo-random number, the value

of which changes at each time step. These numbers were

selected one after another from a sequence calculated in

advance for the selected type of spectrum with a standard

normal distribution and a average zero-mean value. The

number corresponded to the time step number. Two types

of noise with spectral tilts α = 0.1 and 1 were used in

the calculations. The first type of noise is close to white,

the second type is — well-studied flicker−noise. Methods

for obtaining noise with different types of spectrum can

be found, for example, in [20]. As in [11,13], the same

sequence of the random numbers has been used in all the

calculations. The calculations used dimensional parameters

corresponding to the experimental conditions [10,11,13]:

ν = 5 · 10−5 m2/s, r2 = 0.15m, r1 = 0.075m for δ = 1

and r1 = 0.0544m for δ = 1.76. In [13] it is shown

that relative flow speed variation under the influence of

white noise increase with decreasing Reynolds numbers

Rek = �kr2k/ν , determined for the inner (k = 1) and

outer (k = 2) spheres. Therefore, the calculations were

carried out at average angular velocities of rotation of the

boundaries �0 = 4.4444 and 8.8888 1/s, which corresponds

to relatively small numbers Re2 = 2000 and 4000, further

designated as Re (number of Re1 is not used in the

presentation of the results). The sequence of stages in

the numerical experiment is similar to their sequence in

the laboratory experiment [13]. First, flows were calculated

without introducing noise, the initial conditions for which

were a stepwise change in the angular velocities of the

spheres from a state of rest to selected values. The moment

of completion for calculations without noise was determined

by the achievement of stationaryby the achievement of

stationary in time of all flow parameters In turn, the results

of calculating flows without noise were chosen as the initial

conditions for calculations with noise. The duration of one

version of the calculation with noise was 1120 s, counted

from the moment noise introduce begin into the signal

of stationary rotation of the inner sphere, is amounted to

792 and 1584 revolutions of the spheres Time averaging

was carried out based on the results of calculations in the

last 420 s, which amounted to 297 and 594 revolutions of

the spheres. The calculation results are presented below

depending on the relative noise amplitude N:

1 =

√

√

√

√

1

I − 1

I
∑

i=1

(

�(ti ) −�0

)2
, N =

1

�0

. (1)

Here I is time sampling length. The noise amplitude N
varied from 0.01 to 0.06.

2. Results

The flows of a viscous incompressible fluid considered

in this work are caused by the rotation of the boundaries

of a spherical layer in the same direction with equal

average angular velocities. At the above Re numbers,

flows with stationary rotation are stable, and their structure

is symmetrical with respect to the equatorial plane and

the rotation axis. Both in the absence of additionally

introduced noise and in its presence, such flows are not

solid-state, since all three velocity components are non-

zero ones. As shown first analytically in [21], and later

numerically in [22], with stationary rotation of the layer

boundaries at high velocities in the flow, a cylindrical

Stewartson layer is formed, parallel to the rotation axis

and touching at the equator internal sphere, in which the

movement of fluid in the meridional plane is concentrated,

i.e. meridional circulation. As noted above, in this work

the calculations were carried out at low Re numbers, and

the Stewartson layer at the boundary between circulations

of the opposite direction has not yet been formed. However,

in the meridional plane the lines of the stream function 9

are clearly visible:

ur =
1

r2 sin θ
∂9

∂θ
, 9(r = r1) = 0,

almost parallel to the axis of rotation and separating vortices

of the opposite direction (Fig. 2). The flow structures are

shown at N = 0 at different δ they are qualitatively similar in

the position of the maxima and the direction of the stream

function lines.

When random fluctuations in the rotation speed are

introduced, all components of the flow velocity become time

incidental. From the boundary conditions presented above

it follows that the structure of disturbances transmitted

during the flow is symmetrical relative to the equatorial

plane,and at each moment of time it does not depend on

the azimuthal angle. It is necessary to determine whether at

such a structure of perturbations the axial symmetry of the

flow is preserved For this purpose, test three-dimensional

calculations of one of the flow options were carried out.

The degree of asymmetry relative to the axis of rotation was

determined by the following quantity [17]:

A3D(t) =
1

V

∑

β

∫

V

(

uβ(r i , θ j , ϕk , t) − uϕβav(r i , θ j , t)
)2

dνi jk,

β = r, θ, ϕ,
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Figure 2. Levels of the stream function 9 (10−10 m3
· s−1) in meridional plane of an axisymmetric stationary flow (the dotted line

indicates negative level values); a — δ = 1, Re1 = 1000, Re2 = 4000; b — δ = 1.76, Re1 = 525, Re2 = 4000.
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Figure 3. Results of three-dimensional calculations with

Re= 4000, δ = 1, N = 0.04, number of computational mesh

nodes G = 1.152 · 106 . Dependences of �1(t) (top, vertical axis
on the right) and A3D(t) (bottom, vertical axis on the left) are

presented as a function of time t .

uϕβav(r i , θ j , t) =
1

K

K
∑

1

uβ(r i , θ j , ϕk , t).

Here uβ(r i , θ j , ϕk , t) and uϕβav(r i , θ j , t) — one of the ve-

locity components and its value averaged over the angle ϕ,

K — the number of nodes in the azimuthal direction, V —
the volume of the spherical layer. If the flow is symmetrical

relative to the axis of rotation, then the value of A3D(t) is

close to zero.

If the flow is asymmetrical relative to the axis of rotation,

for example, after loss of stability by the flow caused by the

rotation of only the inner sphere, then the value of A3D(t)
is in the range 10−4 < A3D(t) < 10−3 [17]. Fig 3 shows the

value of A3D(t) for the flow considered here in the absence

and presence of random fluctuations in the rotation speed

(N = 0.04). With the used dimensions of the computational

grid and time step in the case of stationary rotation of the

spheres A3D(t) < 10−15, which proves the axisymmetricity

of such a flow. When additional noise is introduced, the

average value of this quantity practically does not change,

which indicates the preservation of the symmetry of the

flow relative to the axis of rotation. Thus, the assumption

adopted in the present and earlier works [11,13] that the

types of flows under consideration are axisymmetric in the

presence of low-amplitude noise is completely justified.

Fig. 4 shows the spectra of the angular velocity of rotation

and the components of the kinetic energy of the flow at

the same numbers δ,Re and N, but at different α. The

types of spectra Eψn and Eϕnare significantly different: the

former are practically independent of the magnitude of α

and in the frequency range less than 1Hz represent white

noise, while the slope angle of the Eϕnαϕ spectrum depends

on α: at Iα = 0.1 αϕ = 1.12 and at α = 1 αϕ = 1.97. Thus,

the slope of the spectra Eϕn is greater than the slope of

the spectrum of noise supplied to the flow from outside.

At δ = 1 (αϕ−α) ∼ 1, and this relationship is preserved

for all numbers Re and values N used in our work. It

should be noted that the issues of transformation of the

noise spectrum as it propagates in various media have

been studied for a long time [23]. In our calculations,

indicated attenuation of the spectrum amplitude Eψn at high

frequencies corresponds to the results [24], in which energy

transfer from high frequencies to low frequencies was

observed during rotational oscillations with two frequencies

in a spherical layer, as well as a more rapid attenuation of

the oscillation amplitude at high frequencies compared to

low frequencies as you move away from the noise source.

It was discovered that under the influence of noise,

not only the kinetic energy of flows can increase [10,11],
but also the moment of friction forces transmitted to the

boundaries of the layer can change. Let us consider

Technical Physics, 2024, Vol. 69, No. 2
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Figure 4. Spectra of the angular velocity of rotation (1),
Eϕn (2) and Eψn (3); a — α = 0.1, b — α = 1, N = 0.02,

δ = 1, Re1 = 1000, Re2 = 4000. The dot-dash lines show the

approximation of the slope of the spectra.

N
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1

Figure 5. Dependence of time-averaged values T from N: light

(blue) symbols — α = 1, dark (green) symbols — α = 0.1,

square symbols — δ = 1, triangular — δ = 1.76, solid lines —
approximation of the dependence of T from N at Re2 = 4000,

dashed lines — at Re2 = 2000.

the magnitude of the relative change in the moment

of friction forces T , transmitted to the outer sphere

T = (Mn−M0)/M0, where M0 and Mn are respectively, the

moments of friction forces without noise and with noise

(Fig. 5). Regardless of the values of spectrum slope α,

relative layer thickness δ and numbers Re considered in

this work, all the results obtained can be presented in the

form T ∼ Nτ , where τ = 1.81± 0.06. At the same noise

amplitudes N, the values T corresponding to α = 1 (light
symbols in Fig. 5) are two orders of magnitude higher

than the values Tcorresponding to α = 0.1(dark symbols in

Fig. 5). At the same time, for the same noise amplitudes N,

N
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Figure 6. Normalized values of root-mean-square deviations

Eψn (a) and Eϕn (b) depending up N. Light (blue) sym-

bols are α = 1, dark (green) symbols are α = 0.1, square

symbols are δ = 1, triangular ones are δ = 1.76, solid lines are de-

pendency approximation changes rms(Eψn) and rms(Eϕn) up N
at Re2 = 4000, broken lines are at Re2 = 2000.

the values T strongly depend up the layer thickness δ and

very weakly depend up on the Re number.

In the case when the spectrum of random fluctuations

corresponds to the spectrum of white noise, an increase

in its intensity leads to an increase in the average values

of kinetic energy in flows caused by the rotation of both

the internal sphere and the codirectional rotation of the

spherical boundaries [11,13]. In this case, the increase in

the average values Eϕn could be accompanied by both an

increase and a decrease in root-mean-square deviations Eϕn.

The normalized root-mean-square deviations Eϕn and Eψn

are determined as follows:

rms(Eϕn)

(�0r1)2
=

1

(�0r1)2

√

√

√

√

1

I − 1

I
∑

i=1

(

Eϕn(ti ) − Eϕn av
)2
,

rms(Eψn)

(�0r1)2
=

1

(�0r1)2

√

√

√

√

1

I − 1

I
∑

i=1

(

Eψn(ti) − Eψn av
)2
.

Here Eϕn(ti), Eψn(ti) are instantaneous values,

and Eϕnav , Eψnav are time-averaged values of the cor-

responding components of kinetic energy. The calculation

results show that the dependence of the quantities

rms(Eψn)/(�0r1)2 (Fig. 6, a) and rms(Eϕn)/(�0r1)2

(Fig. 6, b) up the noise amplitude N for all considered

values α, δ and Re can be represented in the form

rms(Eψn)/(�0r1)
2 ∼ Nβ , β = 2± 0.002,

rms(Eϕn)/(�0r1)
2 ∼ Nγ , γ = 1± 0.006.
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Figure 7. Relative change in the time-averaged values of the

meridional (a) and azimuthal (b) components of the kinetic energy

of flows with increasing N. Light (blue) symbols are α = 1, dark

(green) symbols are α = 0.1, square symbols are δ = 1, triangular

ones are δ = 1.76, solid lines are dependency approximation of the

dependences of the relative change in the components of kinetic

energy up N at Re2 = 4000, dashed lines — at Re2 = 2000.

It should be noted that for the same

noise amplitudes and values α, δ and Re,

rms(Eϕn)/(�0r1)2 ≫ rms(Eψn)/(�0r1)2, the differences

are at least three orders of magnitude. For the same

values of α, the results weakly depend up δ (always
more in the case of δ = 1). At δ = 1.76 the results

independent up the numbers Re. At the same noise

amplitudes, the normalized root-mean-square deviations of

both components of the kinetic energy of the flow in the

case of α = 1 (light symbols in Fig. 6), other things being

equal, are more than an order of magnitude higher than

the similar values obtained in the case of α = 0.1 (dark
symbols in Fig. 6). Qualitatively similar results are observed

for the dependences describing the relative change in the

time-averaged values of the meridional (Eψnav−Eψ0)/Eψ0

(Fig. 7, a) and azimuthal (Eϕnav−Eϕ0)/Eϕ0 (Fig. 7, b)
component of the kinetic energy of the flow from the noise

amplitude N. As well as for the flow parameters considered

above (Figs. 5, 6), so as the values of (Eψnav−Eψ0)/Eψ0

and (Eϕnav−Eϕ0)/Eϕ0 when increasing noise amplitude,

they strongly depend up α: in the case of α = 1 (light
symbols in Fig. 7), the results are 2 orders of magnitude

or more higher than the results obtained with α = 0.1

(dark symbols in Fig. 7). As well as the normalized root-

mean-square deviations (Fig. 6), both (Eψnav−Eψ0)/Eψ0

and (Eϕnav−Eϕ0)/Eϕ0 at the same noise level are slightly

higher for δ = 1 than for δ = 1.76. The dependences of

both (Eψnav−Eψ0)/Eψ0 and (Eϕnav−Eϕ0)/Eϕ0up the noise

amplitude for the considered values of α, δ and Re are

qualitatively similar (Fig. 7):

(Eψnav − Eψ0)/Eψ0 ∼ Nλ, λ = 2± 0.001,

(Eϕnav − Eϕ0)/Eϕ0 ∼ Nµ, µ = 2.05± 0.05,

but in absolute value, the relative change in the meridional

component (Eψnav−Eψ0)/Eψ0 under the influence of noise

significantly, by several orders of magnitude, exceeds the rel-

ative change in the azimuthal component (Eϕnav−Eϕ0)/Eϕ0.

The same result was observed earlier in [14] in the case of

using white noise with α = 0.

The presented results, i.e. quadratic dependence on the

noise level regardless of the type of its spectrum, higher

growth of all components at δ = 1, significant differences in

the change in the meridional and azimuthal components

of kinetic energy, can be obtained from the following

approximate slightly expanded compared to the [13] model.

For the flows parameters under consideration (Re = 4000,

δ = 1) without adding additional noise, the ratioEψ0/Eϕ0

is of the order 10−12, which suggests that the ratio

of the average values of the meridional and azimuthal

velocities is equal to uψ/uϕ = ε = 10−6 . The azimuthal

component of the kinetic energy can be represented in

the form Eϕ0 ∼ (�0L)2, where L is linear layer size,

L = r2−r1. Then the meridional component can be

defined as Eψ0 ∼ (ε�0L)2 . Both components of the kinetic

energy of flows increase under the influence of noise,

and this increase can be approximately expressed using

the value defined in section 1 (1) Eϕn av ∼ (�0L + F1L)2,
Eψn av ∼ (ε�0L + F1L)2, where F is the coefficient that

takes into account the type of spectrum of the input noise;

for simplicity, we do not take into account the remaining

coefficients. Then

(Eϕnav − Eϕ0)/Eϕ0 = (Eϕnav /Eϕ0) − 1

= 2F1/�0 + F212/�2
0 = 2FN + F2N2,

(Eψnav − Eψ0)/Eψ0 = (Eψnav/Eψ0) − 1 =
(

(ε2�2
0 + 2Fε�01

+ F212)/(ε2�2
0)

)

− 1 = 2FN/ε + F2N2/ε2.

Since ε ≪ N, from this model we get a faster growth

of the meridional component under the influence of

noise compared to the azimuthal one For the same noise

amplitudes N and other equal parameters, the condition

(Eψnav−Eψ0)/Eψ0 ≫ (Eϕnav−Eϕ0)/Eϕ0 is always satisfied.

In both cases, there is a quadratic dependence on the

noise amplitude, regardless of the type of its spectrum

(regardless of the value F). Changing in the value of F
at the same N leads to a changing in both components of

kinetic energy, but the qualitative form of the dependence

up Ndoes not change. On the other hand, an increase in

F at the same values of the noise amplitude N leads to an

increase in both components of kinetic energy. Thus, the

simplified analytical model considered above corresponds

to the numerically obtained patterns.

The results of the numerical study on the influence of

the type of spectrum of additionally introduced noise on

Technical Physics, 2024, Vol. 69, No. 2
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changes in the properties of viscous incompressible fluid

flows are quite difficult to compare with experiment due

to the difficulties in obtaining experimental date at N = 0.

Indirect confirmation of the obtained numerical data can be

the results of experiments [25]. According to these results,

a reduction in the low-frequency part of the noise spectrum

of the section with α = 0 (i.e., removal of the spectrum type

from white noise) at the same noise amplitudes leads to an

increase in the time-averaged values of both flow velocity

fluctuations and average values flow speed. Qualitatively,

the experimental results completely correspond to the

numerical results: with increasing spectrum slope, i.e., as the

spectrum type moves away from white noise, at the same

noise amplitudes, a higher relative increase in the averaged

values of flow parameters is observed.

Conclusion

The results of a numerical study of the influence of noise

in the form of time incidental broadband fluctuations of the

rotation speed with zero average value, added to a constant

average rotation speed, on changes in the properties of

viscous incompressible fluid flows in a spherical layer are

presented. Calculations were carried out for two relative

layer thicknesses δ = 1 and 1.76 at Reynolds numbers

calculated from the parameters of the outer boundary

of the layer Re = 2000 and 4000. Two types of noise

with different spectrum slopes 1/ f α were considered:

α = 0.1 and 1. For all noise amplitudes N and Re numbers,

the using of the slope of the spectrum for the azimuthal

component of the kinetic energy of the flow is per unit

less than the slope of the spectrum of input noise, while

the low-frequency part of the spectrum of the meridional

component of the kinetic energy is white noise. It is shown

that both when using white noise (α = 0) [13] and with

α = 0.1 and 1, an increase in the noise amplitude N leads

to an increase in the time-averaged values of the azimuthal

and meridional components of the kinetic energy of flows.

It has been established that for all types of noise spectrum

used in the work, ratios of the sizes of spherical boundaries

and Reynolds numbers, for the same noise amplitudes, the

relative increase in the meridional component of the kinetic

energy of the flow is several orders of magnitude higher than

the relative increase in the azimuthal component. Previously,

the same relationship between the increase in various

components of kinetic energy was discovered in [11,13]
in the case of using white noise (α = 0). The opposite

relationship is observed for the root-mean-square deviations

of the kinetic energy components. In the case of using

in the work the types of noise spectrum, ratios of the

sizes of spherical boundaries and Reynolds numbers, the

increase in the root-mean-square deviations of the azimuthal

component of kinetic energy is several orders of magnitude

higher than the increase in the root-mean-square deviations

of the meridional component at the same noise amplitudes.

It is shown that the relative values of such flow

parameters as moments of friction forces on the outer

sphere, fluctuations and average values of the azimuthal

and meridional components of kinetic energy depend on

the noise amplitude N as power functions Nn (n — this is

one of theexponential factor: τ , γ, λ or µ). All values of n

are in the range from 1 to 2, and the resulting scaling is

independent of the δ, Reynolds numbers, and α numbers

used in the work. It is shown that the response of flows to

noise effect is determined by the type of spectrum of this

noise: for the same noise amplitudes, the relative increase

in flow parameters at α = 1 is several orders higher of

magnitude than at α = 0.1. At the same time with the

self-same N the influence of the type of noise spectrum

on the relative change in all considered flow parameters is

much stronger than the influence of the numbers δ and Re.

Considered in the work, a simplified analytical model

qualitatively corresponds to the obtained numerical results,

and, according to this model, the type of spectrum of noise

supplied to the flow does not affect the qualitative form

of the dependence of the change in the components of

the kinetic energy of flows. The dependences of changes

in the kinetic energy of flows and their root-mean-square

deviations from the noise level obtained in the work retain

their qualitative form for any physically realizable values

of the slope of the noise spectrum α. It can be assumed

that the numerical results obtained are of a fairly universal

nature. Firstly, the structure of the meridional circulation

remains unchanged (Fig. 2), so the obtained dependencies

will be valid for any values δ that are in the range of

1 < δ < 1.76. Secondly, it can be assumed that with

physically realized slopes of the noise spectrum 0 ≤ α ≤ 1,

the dependences of the considered flow parameters on the

noise amplitude are preserved (Figs. 5−7): spectra Eϕ retain

a constant slope; the spectra of Eψ are similar to those

of white noise at low frequencies for α = 0 [13], α = 0.1

and α = 1. The main result of the work is that for the same

noise amplitudes, an increase in α is accompanied by an

increase in the time-averaged relative values of the moment

of friction forces, kinetic energy and its fluctuation
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