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1. Introduction

Dislocations move in crystalline materials with a high

potential lattice relief (Peierls barriers), such as metals with

a body-centered cubic (BCC) structure, semiconductors,

intermetallic compounds, etc., via the emergence and

propagation of kinks [1–4]. A kink is a bend coupling

dislocation segments located in neighboring valleys of the

crystal relief. It is not exotic or unique in any way. Dis-

location kinks belong to the family of so-called topological

solitons [5]. Phenomena similar to those discussed below

may be observed in the propagation of steps on the surface

of a growing crystal, in biological macromolecules and

nanowires, in magnetization switching in spin chains and

molecular magnets with a chain structure, and in various

other similar one-dimensional and quasi-one-dimensional

structures [6–9]. The kinetics of a reversible transition

between crystalline and amorphous phases is also important

for data recording and readout in optical and electrical low-

dimensional data storage systems [10].

The dynamics of kinks governs dislocation mobility and

the rate of plastic strain of crystals [1–4]. In addition to

barriers for dislocations, which are associated with the

intrinsic crystal lattice, most materials feature impurity relief.

It may be induced by both uncontrolled impurities and

impurities that are introduced deliberately to modify the

material parameters. Foreign atoms diluted in crystals

normally form a disordered subsystem. Its influence within

different concentration and temperature intervals induces

various dislocation dynamics modes [11,12].

In the general case, the migration (along with forma-

tion) of kinks is one of the key stages of propagation

of dislocations; in certain modes in alloys, it is the

governing stage [13]. A superposition of these stages

is characterized in certain instances by a sum of the

formation time of a pair of kinks (τk p) and the time

of their propagation to the boundaries of a dislocation

segment (τkm). Dislocation velocity Vd is then written as

Vd = h/(τk p + τkm), where h is the lattice period. Arrhenius-

type expressions τk p,m = τk p,m0 exp(Ek p,m/kBT ) with certain

activation energies Ek p and Ekm and pre-exponential factors

τk p0 and τkm0 are used for τk p and τkm. Here, kB is the

Boltzmann constant and T is temperature. According as

which of the times τk p and τkm is greater, one of the stages

is assumed to be dominant and the corresponding simplified

expression Vd ≈ h/τk p,km is used. This approach is an

example of a unfounded representation of a phenomenon

and leads to its incorrect interpretation. This is evident

even from the fact that multiple events of production of

kink pairs and annihilation of kinks and antikinks occur

in a segment within the time of kink propagation to its

boundaries if τk p ≪ τkm; therefore, one needs to characte-

rize a completely different process instead of simply using

the Vd ≈ h/τkm expression. With this aspect taken into ac-

count, the following expression for dislocation velocity with

halved activation energies was obtained for pure crystals:

Vd ∼ h/
√
τk pτkm = h/

√
τk p0τkm0 exp[(Ek p + Ekm)/2kBT ] [1].

Naturally, this does not imply that the heights of barriers

in elementary events of kink kinetics changed; instead, it is

attributable to the self-consistent nature of competition be-

tween kink formation, migration, and annihilation processes.

Solution atoms, which are also called impurities for

brevity, contribute occasionally to the formation of kinks.

When this factor is dominant, the dislocation mobility

and, consequently, the plasticity of a material increases

(
”
softening“ occurs [14–18]). The propagation of kinks

in the presence of impurities is made harder than in pure

materials, since the interaction of a dislocation with impurity
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atoms produces energy relief variations that act as traps

or barriers for kinks. Thermal activation may be required

to overcome these barriers. An opposite trend is thus

set: dislocations slow down and the plasticity decreases,

contributing to
”
hardening“ [19–24]. The competition

between these trends plays an important role not only in

structural materials [25], but also in natural phenomena,

such as the mechanical properties of ice in the context of

climate warming [26].

The present study is focused on one aspect of the process

most prone to conflicting interpretations: the mechanism

of solid-solution hardening induced by the influence of

solution atoms on kink migration. This practically important

effect has a long-standing history of being modeled, but

the interest in such models has surged recently due to the

emergence of a new class of promising multicomponent or

high-entropy disordered alloys [27–30].

Studies relying on atomistic computer calculations of the

interaction between dislocations and impurities are being

published at present (see, e. g., [31] and other papers).
However, they are focused mostly on individual impurities

and, as was noted in [32], run into difficulties when

characterizing alloys. Rare events and low-probability or

extreme scenarios turn out to be significant in a disordered

alloy. It is hard to model their influence on a computer,

and conflicting interpretations often arise in such studies.

Elementary mechanisms of dislocation dynamics are often

left unrevealed in the results of modeling. If one needs to

obtain a clear overall pattern of mechanisms of dislocation

propagation in a disordered impurity subsystem, it is

advisable to divide the problem: use, where possible,

theoretical models with arbitrary values of microscopic

parameters and perform atomistic calculations separately for

the sole purpose of their parameterization. These atomistic

calculations for specific materials are a challenge on their

own and are not covered in the present study. Since

the kinetics of kinks is non-trivial and invites conflicting

interpretations, it is expedient, as a first step, to advance as

much as possible toward a clear analytical description of this

kinetics at the conceptual level, which is exactly the goal of

the present study.

2. Energy relief for kink migration

Quite naturally, a barrier in the way of a kink was

initially modeled by a local potential peak, as it is done

for a common particle (see, e. g., [33,34]). The barrier

height for identical impurities was characterized by equal

energies of thermoactivation crossing. A presumptive

dependence of activation energy on stress was used in

analytical calculations and Monte Carlo modeling [32]. It

has been understood eventually that the impurity barrier for

kink migration is non-local in nature, since the interactions

between an impurity and a dislocation on opposite sides of

a kink differ [19,35–37]. Therefore, a barrier includes a step
smoothed out over the kink width.

Step height U is the variation of the energy of interaction

between an impurity and a dislocation upon displacement

of this dislocation over a distance of lattice period h.
This modification of an impurity barrier leads to significant

qualitative changes, since steps from different impurities

overlap and produce a cumulative effect, memory of

past obstacles, and correlation. The cumulative effect

induces strong barriers in the way of a kink, which

also have random positioning and height. A statistical

approach is needed to characterize kink migration within

a chaotic relief of this kind. Such an approach was

applied in [19,36,37]. It was assumed in these studies

that the dislocation segment energy fluctuates proportionally

to a random number of impurities in the dislocation

core, producing a chaotic potential relief in the way of a

kink with a term established by external driving force F
superimposed on it:

Uk(x) = U [N f (x) − Ni(x)] − Fx . (1)

Here, x is the distance traveled by a kink along a dislocation;

F = σ bh; σ is the stress that is assumed to be small relative

to the Peierls stress at which barriers separating dislocation

positions in lattice valleys vanish; b is the Burgers vector

of a dislocation; h is the kink height that is equal to the

crystal relief period; and N f (x)−Ni(x) is the difference

between the numbers of impurities in the dislocation

core at the new and initial positions of a dislocation,

respectively. Only the maximum contact interaction of a

dislocation with impurities from the corresponding lattice

rows is featured in (1). The case of dilute solid solutions

with a low impurity concentration, where the average

distance between impurities is much greater than the crystal

period and the lattice discreteness may be neglected, is

considered.

The distribution of impurity atoms along a dislocation

was assumed to be completely chaotic and Poissonian with

the probability of finding n impurities within a segment

containing N lattice sites being PPois = (Nc)n exp(−Nc)/n!
(c is the segment-average impurity concentration) [38].
When a kink moves in the field of chaotically positioned

impurities, its potential shifts randomly along the energy

scale, making differently directed
”
steps“ with a magnitude

of U at random points of impurity positioning along

a dislocation. This
”
random walk“ along the energy

scale with drift under the influence of external driving

force F [36,37,39–42] superimposed on it is illustrated in

Figure 1.

Under certain conditions formulated below, a Poissonian

distribution of the number of impurities in the examined

problem may be approximated by Gaussian distribution

PGaus = exp[−(n−Nc)2/2Nc]/(2πNc)1/2 [38]. With a kink

traveling over distance L, the impurity potential then

undergoes
”
Brownian motion“ along the energy scale with

its fluctuations increasing in magnitude in proportion to
√

L.
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Figure 1. Particular realization of the energy landscape formed by

superimposed contributions from the chaotically fluctuating density

of solution atoms (upper curve) and driving force −Fx (lower
curve). Height Umax and size l of the most significant barrier to

kink propagation are indicated.

3. Kink migration under Gaussian
statistics of impurity clusters

Fluctuation nonuniformities of the potential relief shaped

by chaotic clustering and diffusion of impurity atoms

produce stochastic barriers to kink propagation. These

barriers grow in scale as the magnitude of potential relief

fluctuations increases with length of a traversed dislocation

segment. Average kink propagation velocity vav in the

Gaussian limit was estimated in [19] by analyzing the

fluctuations of a random relief ensemble. In a somewhat

simplified form (without a small correction for the finite

width of a kink), the result is written as

vav ≈ νL exp{−c1U
2 ln[c1L/(2π)1/2a ]/σ abhkBT}, (2)

where L is the length of a dislocation segment traversed by

a kink, c1 = z c , c is the impurity concentration, z is the

coordination number specified by the symmetry of lattice

rows adjacent to the dislocation core (z = 3 was set for

metals with a BCC lattice in [19,36]), a is the lattice period

along a dislocation, ν ≈ νDb/d, νD is the Debye frequency,

and d is the kink width.

It was noted in [19] that estimation of the average velocity

of a particle overcoming barriers in a random force field may

be regarded as an interesting (and still unsolved) problem in

mathematics of the probability theory. Although result (2)
was obtained intuitively, it turned out to be largely correct.

This was revealed in calculations [37] (by coincidence,

contemporaneous) performed on a more regular basis with

the use of an equation for the generating function of the

distribution of kink delay times at fluctuation impurity

clusters. Let us summarize the results reported in [37].
A spectrum of delay times associated with random

barriers forms in a disordered medium. The time of

delay at a potential barrier is commonly characterized by

Arrhenius formula τ = τ0 exp(Umax/kT ), where Umax is the

height of the barrier potential maximum measured from the

preceding minimum. If barrier potential E(x) is substantially
diffuse (as is the case when barriers from several impurities

overlap), a more general expression should be used [43]:

τ = C

∞
∫

0

exp[E(x)/kBT ]dx . (3)

The constant in (3) may be estimated roughly as the ratio

of characteristic time τ1 and distance x1 scales, C = τ1/x1

(see below). In [37], we examined distribution function

Pd(z ) for the integral in (3) with barrier potential (1)

z =

∞
∫

0

exp[Uk(x)/kBT ]dx = τ /C.

The following equation was derived for generating function

φ(s) =

〈 ∞
∫

0

exp(−sz )Pd(z )dz

〉

of distribution Pd(z ) (angular brackets denote averaging

over random positions of impurity atoms at lattice sites):

c1

a

{

φ[s exp(U/kBT )] + φ[s exp(−U/kBT )]
}

− s
σ bh
kBT

dφ
ds

− sφ(s) = 0. (4)

In the Gaussian limit (after expansion in U/kBT ≪ 1), a
simple equation is obtained. The inverse Laplace transform

of its solution is

Pd(z ) =
D exp(−1/dz )

Ŵ(δ)(z D)1+δ
, (5)

where D = (c1/a)(U/kBT )2 is the ratio of
”
coefficient of

diffusion“ (c1/a)U2 of the impurity potential along the

energy scale to thermal energy squared (kBT )2,

δ = σ bhakBT/c1U
2, Ŵ(δ) =

∞
∫

0

uδ−1 exp(−u)du

is the Euler gamma function. It follows from (5) that 1/D
is the characteristic scale of variable z . This value may

be used as the x1 distance scale introduced above. This

choice agrees with the estimates made in [39]. Inverse

frequency 1/ν may serve as the time scale. The distribution

function for delay times τ = Cz is

Pd(τ ) = Pd(z )dz/dτ ≈ x1νPd(z )z=τ /C .

It is rather inconvenient to characterize the propagation

of a kink using the concept of motion velocity, since
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the average velocity at δ ≤ 1 depends on the future

path length and tends to zero in the limit of long path

lengths. Kinetic dependences of typical (in the probabilistic

sense) path lengths on time appear to be more relevant

and intuitive. The path length statistics is governed by

probability P pr (t) =
∞
∫

t
Pd(t′)dt′ of encountering a barrier

with a time delay of t (or longer). According to [19,37],
L ∼ (a/c1)/P pr (t). It is seen clearly from (2) that

L = vavt ≈ (2π)1/2(a/c1)(νt)δ . (6)

Long delay times are of the utmost interest. It follows in

this case from (5) that

P pr (t) =

∞
∫

t

Pd(t
′)dt′ ∼ 1/[Ŵ(1 + δ)(νt)δ ],

which yields (if insignificant prefactors are ignored) the

same time dependence of the typical kink path length

L ∼ (a/c1)/P pr (t) ∼ (a/c1)(νt)δ, (7)

as (6).
As was noted in [37], anomalous dependence (7),

which corresponds to nonlinear kink drift, holds true at

δ ≤ 1, while the path length at δ > 1 is characterized by

a common linear dependence L = vkt, where vk is the

average kink velocity that is finite in this case. Thus,

although the magnitude of relief fluctuations and the scale

of barriers increase with path length, the spatiotemporal

nonuniformity of kink propagation in the statistical sense

is retained within the parameter range corresponding to

condition δ = σ abhkBT/c1U2 > 1. At δ = 1, a kinetic

phase transition occurs with a qualitative change in the

nature of kink propagation in the δ < 1 region. This

transition is associated with an expansion of influence

of extremely strong fluctuations (i. e., heterogeneity) of

a chaotic impurity relief due to the formation of slowly

decreasing asymptotics of times of kink delay at them with

an increase in the impurity atom concentration [37,44]. This
is inconsistent with attempts at characterizing the influence

of an impurity subsystem within
”
mean field“ approaches

(e. g., uniform renormalization of the Peierls relief). Rare

extreme fluctuations of the impurity relief produce fairly

localized and widely spaced energy relief distortions and

cannot yield uniform renormalizations.

A commonly accepted term characterizing the peculiar

nature of kink propagation at δ < 1 has not been found yet;

it is called anomalous kinetics,
”
creep“ phase or nonlinear

drift at δ < 1, heterogeneous dynamics, quasi-localization

mode (since average velocity L/t ∼ L1−1/δ → 0 at L → ∞),
etc. Slowly decreasing asymptotics of distribution functions

for large values of quantities are sometimes referred to as

fat-tailed or heavy-tailed distributions [45].
The specificity of energy relief within which a kink moves

in a disordered medium was emphasized in [39,46,47]. This

relief is not consistent with what is often called a random

potential; instead, it is a
”
field of random forces“. When

a kink travels a distance of x along a dislocation, this

dislocation acquires energy (without regard to the external

force)

Uk(x) =

x
∫

0

[Ud(x
′ + h) −Ud(x

′)]dx ′. (8)

Here, Ud(x) = (c1/a)ρ(x) is the actual energy relief of

a dislocation with allowance for impurities, which are

distributed with linear density ρ(x), that has the statistical

features of a random potential. The derivative of energy

Uk(x) with respect to displacement x (i. e., force) has

similar statistical properties. According to the terminology

proposed in [48], a random relief of the Uk(x) form features

strong correlation (i. e., the one extending over the entire

system). The motion in a field of random forces differs

significantly in its characteristics from the motion in a

random potential. For example, it was demonstrated in [49]
that diffusion displacement (without a driving force) follows
the x ∼ ln2(t) law instead of the x ∼ t1/2 root dependence

typical of Brownian motion.

The suggestion made by Suzuki [19] regarding several

intriguing problems associated with particle motion in a field

of random forces was verified in numerous studies (see, e. g.,
reviews [39,48,50,51,53]) in a broad context of statistical

physics and in a more general context of mathematical

and financial statistics [46,52]. Nonlinear drift law (7) was

formulated rigorously based on Lévy distributions [53] in

these and other studies.

Averaged characteristics (if, it should be pointed out,

they exist and have a correct physical interpretation) are of

prime importance in comparison of the results of theoretical

calculations for disordered systems with experimental data.

For example, it was demonstrated in [37] that average time

〈τ 〉 =
∞
∫

0

Pd(t)dt of kink traversal over fluctuation obstacles

is finite at δ > 1, but diverges in an unbounded interval

at δ ≤ 1. It is fairly evident if one examines the presented

asymptotics of probability of long delay times Pd(t) ∼ 1/tδ .
The primary contribution to the time of kink propagation

over distance L along a dislocation is the sum of times of

delay at individual obstacles. According to mathematical

statistics theorems [54], the sum of all terms at a large

number of delays Nt has a fairly small deviation from

average value Nt〈τ 〉 if average 〈τ 〉 exists. Therefore, average
time 〈τ 〉 within which a kink crosses an obstacle at δ > 1

may be regarded as a quantity with a credible physical

meaning, which is occasionally called a
”
self-averaging“ one.

The pattern changes at δ ≤ 1 and a diverging average

obstacle crossing time, when the primary contribution to

the sum is produced by the most significant obstacle with

the greatest barrier height Umax, which is crossed via

thermal activation in time τmax ≈ τ0 exp(Umax/kBT ), within

an interval. The authors of [41] characterized kink migration

with the use of the same statistics of potential reliefs (called
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a Wiener process with drift) as in [36,37]. A significant

amount of effort went in [41,42] into computer modeling of

an ensemble of random potential reliefs produced by an im-

purity subsystem, and the applicability of the Wiener model

with drift to their statistics was demonstrated convincingly.

However, no reasons for the application of average barrier

height 〈Umax〉 (i. e., logarithm of the maximum delay time

kBT 〈ln(τmax/τ0)〉) instead of, e. g., kBT ln(〈τmax〉/τ0) in

analytical characterization of the kink mobility at δ ≤ 1 were

given. Applying the rigorous mathematical theory of sums

of random variables [47,54], one arrives at the following: the

distribution of kink displacements with time is qualitatively

a diffuse packet that shifts at long times proportionally to

∼ tδ and has its width increasing as ∼ tδ/(1+δ) . Thus, as

expected, the relations between characteristic scales of kink

propagation time and path length in the case of motion

through a series of random obstacles and estimation based

on a single most formidable obstacle within an interval are

the same.

4. Kink migration under Poissonian
statistics of impurity clusters

It is believed that Gaussian statistics of impurities is

applicable if their number is small relative to the average

number within the considered interval. However, this may

not be the case when extreme fluctuations in the distribution

of impurity atoms happen to be important. The relations

obtained in [37] may be used to generalize the key results

presented in the previous section to the case with an

arbitrary number of impurities and clarify the conditions of

applicability of Gaussian statistics in the examined problem.

Since long kink delay times are of primary interest, one

should search for a solution of Eq. (4) at small values of

time-conjugate Laplace variable s . It is easy to show that

this solution is φ(s) ∼ s δ . Equation (4) provides a more

general expression for the index of power δ = (kBT/U)ϕ,
where ϕ is determined from relation [55]

σ bha
c1U

= [exp(ϕ) + exp(−ϕ) − 2]/ϕ. (9)

Inverting φ(s), we find that probability P pr (τ ) of encoun-

tering a kink delay in excess of τ behaves at large τ as

P pr (τ ) = B/τ δ, (10)

where B is a certain constant. At ϕ ≪ 1, ϕ ≈ σ bha/c1U
follows from (9), and the expression for δ = (kBT/U)ϕ
transforms into δ = (σ bhakBT/c1U2) that was discussed

in the previous section. Thus, the condition of applicability

of the Gaussian approximation is

ϕ ≈ σ bha/c1U ≪ 1, (11)

that is, the energy acquired within an average distance be-

tween atoms due to the external force should be insufficient

to cross a barrier produced by a single impurity. However,
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Figure 2. Dependence of index δ on stress γ = σ bha/c1U
at different values of temperature kBT/U , which are indicated

next to the curves. The inset shows the dependence of

stress of quasi-localization boundary δ = 1 on temperature (stress
and temperature are characterized by dimensionless parameters

γ = σ bha/c1U and kBT/U , respectively).

even in the case when condition (11) is not satisfied and this

energy is sufficient to cross a single barrier, rarer obstacles

produced by impurity clusters may come into play. The

expression for key parameter δ then assumes a more general

form of δ = (kBT/U)ϕ with ϕ given by formula (9) and

illustrated in Figure 2.

In the Gaussian limit, the value of δ given below for-

mula (5) is δ = σ bhakBT/c1U2 = γkBT/U , which agrees

with the behavior of curves in Figure 2 in the region

of a weak driving force γ = σ bha/c1U ≪ 1, but deviates

noticeably from the pattern specified by Poissonian statistics

in a wider parameter range. The inset in Figure 2

presents the relation that follows from Eq. (9) for param-

eters corresponding to quasi-localization boundary δ = 1

(ϕ = U/kBT ):

σ bha
c1U

=
kBT
U

[

exp

(

U
kBT

)

+ exp

(

− U
kBT

)

− 2

]

. (12)

Let us use it to estimate the stress of transition to quasi-

localization mode σq at typical (for BCC metals) energy

U ≈ 0.05 eV of interaction between an impurity atom

and a dislocation, low impurity concentration c1 ∼ 0.1,

and temperature T = 580◦ K. It follows from (12) that

σq ≈ 120MPa. As the temperature decreases, σq grows

rapidly and covers the region of plastic stress in most

mechanical tests [3].
Let us also discuss briefly certain more advanced and

formalized approaches using probability theory. If a kink

travels over a long distance under the influence of an exter-

nal force, it needs to overcome a series of obstacles, and the

times of delay at each obstacle are summed. Approximately

N ≈ (c1/a)x obstacles are encountered within a sufficiently
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long path length x . According to the statistical theory of dis-

tributions of sums of random variables (see, e. g., [50,54]),
the density of distribution of a normalized sum of N random

positive terms t = τ1 + τ2 + . . . τN , each of them having a

distribution with asymptotics B/τ δ (τ → ∞), is given by

Lévy function

Lδ,1(t/N1/δ) =
1

2πi

d+i∞
∫

d−i∞

exp

[

st/N1/δ − πB
sin(πδ)Ŵ(δ)

s δ
]

= −N1/δ

πt

∞
∑

k=1

( −πBN
Ŵ(δ) sin(πδ)tδ

)k
Ŵ(1 + kδ) sin(πδk)

k !
.

(13)
Function Lδ,1(t/N1/δ ) (13) provides a fairly complete de-

scription of propagation of the front of kink motion in a

field of randomly distributed impurities.

The key qualitative features of kink paths in the region

of anomalous mobility are illustrated in Figure 3 that

presents a particular case with δ = 1/2, where the Lévy

distribution is expressed in terms of elementary functions

L1/2,1(u) = [B/(π1/2u3/2)] exp(−B2/4u). Here u = νt/N2;

N = Lc1/a .
Extended asymptotics in Figure 3, b illustrate the slow

decrease of probability of long delays of kinks at obstacles

produced by random impurity clusters.

5. Conclusion

The peculiar nature of kinks, which is manifested, e. g.,

in the nonlocality of their interaction with impurity atoms

in solid solutions and alloys, and consequent effects are

accepted less than enthusiastically by many researchers. It is

no coincidence that the laws of motion of such objects are

commonly referred to as anomalous or strange kinetics [51].
The treatment of kinks as common particles successively

overcoming uncorrelated barriers of individual impurities is

entrenched too deeply. This approach is consistent with the

familiar rendering of an elementary event as a thermally

activated jump that is characterized by the Arrhenius law

with a certain activation energy. However, this leads

to several conceptual inaccuracies and inconsistency of

models of the discussed phenomenon. Let us list several

inaccuracies of this kind that are of crucial significance.

1. Treatment of the superposition of formation and

propagation of kinks as successive processes with additive

durations.

2. Characterization of an obstacle to kink propagation

produced by an impurity atom as a local barrier.

3. Treatment of the impurity relief affecting the motion of

a kink as a random potential instead of a field of random

forces.

4. Disregard of the cumulative effect of a superposition of

individual impurity barriers due to their nonlocality.

5. Disregard of the infinite correlation length of a potential

impurity relief.

6. Incorrect choice of statistical parameters for character-

ization of kink kinetics in a random impurity relief.

7. Disregard of the conditions and boundaries of appli-

cability of various types of potential relief statistics to kink

migration.

8. Disregard of the pivotal role of extreme fluctuations in

the anomalous mode of dislocation motion in an attempt

at characterizing the influence of an impurity subsystem by

uniform renormalizations of Peierls barriers.

Although a well-developed modern theory of random

walks in a random environment is available, studies into

dislocation kink dynamics correcting certain inaccuracies

from the above list to various degrees are still being

published today. The difficulty of isolating kink migration

from a multitude of overlapping processes in macroscopic

plastic flow of materials (or even in the propagation
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of individual dislocations) hampers direct verification of

theoretical models. The large number of influencing factors

often makes it difficult to compare experimental data even

for same-type materials. However, certain experimental

data for semiconductor materials agree with the above

simplified theory of anomalous kink migration [56,57]. Let
us outline, without going into details, several current trends

of development of models of kink kinetics in disordered

materials. These are, e. g., the transition from dilute solid

solutions to more concentrated ones, which is especially

relevant to multicomponent or high-entropy alloys [22]; the
inclusion of dynamic dislocation aging, which leads to an

asymmetric distribution of impurity atoms in the vicinity

of a dislocation core [58]; the competition between solid-

solution hardening and softening [14,59]; and the inclusion

of correlation of solution atoms [60].
The current trends toward tighter control over the

experimental conditions and toward the transition to a

deeper nanolevel hold out the promise of advances in such

research. Computer modeling may facilitate the verification

of theoretical concepts. Several items from the above list

have already been checked in [41,42], and the list itself

may serve as a useful guide for a more complete inspection

leading to a deeper understanding of the processes of solid-

solution hardening of materials.
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