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Based on the RP model, the dependences of the specific surface energy σ and surface pressure Psf on the size

(N) and shape of the nanocrystal at different values of pressure P and temperature T are studied. Calculations for

a gold nanocrystal have shown that at P = 0, the Psf(N) function lies in the negative region, i. e. the nanocrystal

is stretched by surface pressure the more the temperature is higher, or the more the nanocrystal shape deviates

from the most energy-optimal shape. With a decrease in N value at P = 0, the σ (N) function decreases the more

noticeably the higher the temperature, or the more the nanocrystal shape deviates from the most energy-optimal

shape. Based on these results, it is shown that obtained in some articles the increase in the σ (N) function with

an isomorphically-isothermal decrease in N does not correspond to the physical properties of the nanocrystal.

In these articles, the nanocrystal was compressed by surface pressure, which increased with an isomorphically-

isothermal decrease in N value. This compression led to a corresponding increase in the σ (N) function both with

an isomorphic-isothermal decrease in size and with an isomeric (i. e., at N = const) increase in the temperature of

the nanocrystal.
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1. Introduction

The specific (per unit area) surface energy (σ ) of a

macrocrystal is one of key parameters that govern its

strength and adhesion properties. Therefore, considerable

attention is being paid to the determination of σ values.

However, experimental measurements of σ in the solid

phase are remarkably laborious and are feasible only at high

temperatures [1,2]. Notably, even at high temperatures, the

accuracy of σ measurement is very low. This is the reason

why much attention is being paid to theoretical predictive

modeling of σ for macrocrystals.

Various properties of nanocrystals have been examined

over the last few years, and a considerable number of

theoretical studies focused on the dependence of σ on

the nanocrystal size have been published within this

context. This issue is made topical by the fact that

the dependence of σ on the size or the number of

atoms (N) of a nanocrystal governs the size dependences

of all nanocrystal lattice properties. Unfortunately, an

experimental σ (N) dependence has not been reported yet,

since the surface properties of a nanocrystal are hard

to measure. In view of this, numerous studies focused

on the methods for calculation of function σ (N) have

still not provided a conclusive answer to the question of

whether function σ (N) decreases or increases with an

isomorphic (i. e., with the nanocrystal shape being fixed)
reduction in the number of atoms (N) in a nanocrystal

under constant pressure P and temperature T levels.

Theoretical papers arguing both for a decrease (this is

reported primarily in analytical studies) and an increase

(this was determined via computer modeling) of σ with

an isomorphic reduction in size of a nanoparticle (either
solid or liquid) have been published in recent times (see
reviews in [3–7]).
For example, a combination of atomistic modelling and

continuum mechanics was used to study a spherical core–
shell model with radius r in recent paper [5]. The results

of calculations performed in [5] for a gold nanocrystal

at T = 0K revealed that function σ (r) increases with an

isomorphic reduction in radius of a nanocrystal. The authors

of [6] have examined the variation of function σ with

isomorphic changes in the size and temperature of metallic

nanoparticles in both solid and liquid states. Interatomic

potentials of N bodies and the Monte Carlo method

were used in [6]; in addition, analytical calculations were

performed. A solid nanocrystal and a liquid nanodroplet

were examined at temperatures T = 5K and T = 1500K,

respectively. It was found in [6] that σ for a nanoparticle

with a free surface increases with an isomorphic-isothermal

reduction in the size of a nanoparticle in both solid (σs) and
liquid (σl) phases.

The authors of studies reporting an increase of σ with

an isomorphic-isothermal reduction in the nanoparticle size

take advantage of the fact that no experimental dependence

of σ on the nanoparticle size has been published in
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literature. This allows them to claim that the obtained

results are accurate. However, although an experimen-

tal σ (N) dependence has not been reported, function σ (N)
has a certain physical meaning and is related to other

characteristics of a nanoparticle that could be measured

(e. g., melting point). Therefore, the results of studies

supporting an increase of σ with an isomorphic-isothermal

reduction in the nanoparticle size are incompatible with the

physical characteristics of actual metallic nanoparticles for

the following reasons.

1. It has been accepted since the times of Tolman that σl
decreases with a reduction in the size of a nanodroplet [8].
According to Tolman, the dependence of σl on radius r of a

spherical nanodroplet of a single-component liquid may be

presented in the following form [8,9]:

σl(r) =
σl(∞)

1 + 2 δ
r

∼= σl(∞)

(

1− 2
δ

r

)

.

Here, σl(∞) is the surface energy of a macrodroplet and

δ = re − r is the difference between the equimolar radius

and the nanodroplet radius; δ is also called the Tolman

length.

Different expressions have been proposed for the calcula-

tion of δ . For example, the following relations were obtained

for relatively large droplets:

δ = da [10], 0.725da [11], ro/3 [12], 0.376ro [13],

where da is the atom diameter and ro is the coordinate of

the minimum of the 6−12 Mie–Lennard-Jones interatomic

potential. In addition, it was found in [9] that δ = αm/4,

where αm is a parameter characterizing the size dependence

of melting point Tm for a spherical nanocrystal under

atmospheric pressure (P = 1 atm):

Tm(r) = Tm(∞)

(

1−
αm

2r

)

= Tm(∞)

(

1−
2δ

r

)

.

The values of δ for 49 solid metals were calculated in [9],
and δ values for liquid inert gases were calculated in [13].
All these data demonstrate that δ > 0. This contradicts

the dependences obtained in studies where σ increases

with an isomorphic-isothermal reduction in the nanoparticle

size.

2. It was demonstrated in [6, Figure 2] that the value

of σs increases by a factor of almost 2 (from 1.1−1.2

to 1.9−2 J/m2) as the radius of a copper (Cu) crystal

decreases from a macroscopic level (r = ∞) to r = 5 Å.

The experimental specific surface energy value for a Cu

macrocrystal is σs(∞) = 2± 0.1 J/m2 [14]. However, if

we assume that the mentioned result from [6, Figure 2]
is correct (i. e., σs(r = 5 Å)/σs(r = ∞) = 2/1.2 = 1.67),
a copper nanoparticle with a radius of 5 Å should have

specific surface energy

σs(r = ∞) = 1.67 · (2± 0.1) J/m2 = 3.34± 0.167 J/m2.

According to [14], the experimental values of σs(∞) for

molybdenum (Mo) and tungsten (W) macrocrystals are

2.91−3.00 J/m2 and 3.265−3.68 J/m2, respectively. Thus,

according to [6], the value of σ for a Cu nanocrystal with

radius r = 5 Å should reach a level corresponding to the

specific surface energies of Mo or W macrocrystals [14].

3. It was found in the study of a Cu nano-

droplet (see [6, Figure 7]) that σl increases from

σl(r = ∞) = 1.2 J/m2 to σl(r = 5 Å) = 2.3 J/m2. This

is also a surprising result, since the following rela-

tion between the surface energies of solid and liquid

phases was determined experimentally for macrosystems:

σs/σl = 1.09−1.33 [1,15]. At the same time, it was

demonstrated in [16] that ratio σs/σl drops to unity as the

number of atoms in a nanosystem decreases. Therefore, if σl
reaches the values typical of a macrocrystal as a nanodroplet

grows smaller, this nanodroplet should crystallize. Notably,

the value of σl(T = 1500K) in [6, Figures 2 and 7] exceeds
the value of σs(T = 5K) in both macro- and nanosystems.

This result clearly contradicts the laws of nanoparticle

physics.

4. As for experimental studies into the size dependence of

the specific surface energy, such experiments for the liquid

phase were performed in [17,18]. It was found that function

σl(r) decreases with nanodroplet size. One may also cite the

results from [19], where a system of submillimeter grains

acoustically levitated in air was studied. These levitating

grains self-assemble into a monolayer of particles, forming

mesoscopic granular rafts that behave as liquid droplets. It

was found in [19] that the effective surface tension and the

elastic modulus of a raft decrease with raft size.

All these inconsistencies cast doubt upon the correctness

of techniques for calculation of the surface energy that were

used in theoretical studies revealing an increase of σ with

an isomorphic-isothermal reduction in the nanoparticle size.

The following relevant questions then arise:

1. Why did the authors of [5,6] and other studies focused

on computer modeling find that the value of σ increases

with an isomorphic-isothermal reduction in the nanoparticle

size?

2. How a correct dimensional dependence of func-

tion σ (N) may be obtained?

3. How does this size σ (N) dependence varies under

different P−T conditions?

In the present study, these questions are answered within

equilibrium and reversible thermodynamics. A proprietary

analytical method for calculation of function σ (T, P, N),
which is called the RP model, is used for this purpose. For

the first time, dependences of the specific surface energy

and the surface pressure on the size of a nanocrystal and

the shape of its surface were calculated within the RP model

for gold and examined under different P−T conditions. The

obtained results are used to pinpoint the errors of authors

of those studies where an increase of function σ (N) with

an isomorphic-isothermal reduction in the nanocrystal size

was reported.
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2. Method for calculation of the surface
properties of a nanocrystal

The basics of the RP model have been outlined in our

study [20], and the results of its further development have

been reported in [21–23]. It is assumed in this model that

a nanocrystal has the shape of a rectangular parallelepiped

with a square base. Its shape may be adjusted by varying

shape parameter f .
Let us consider a condensed nanosystem of N identical

atoms bounded by the Gibbs surface. The pair interatomic

interaction is represented by the Mie−Lennard-Jones poten-

tial in the form

φ(r) =
D

(b − a)

[

a
(ro

r

)b
− b

(ro
r

)a
]

, (1)

where D and ro are the depth and the coordinate of the

potential minimum, b > a > 1 are numerical parameters,

and r is the distance between atom centers.

With the
”
only nearest neighbors interaction“ approxima-

tion applied, the following expressions were obtained in [21–
23] within the RP model for the specific surface energy of

face (100) of a nanocrystal and surface pressure Psf:

σ (N, f ) = −
kn(∞)DR2

12α2/3r2o
LE(N, f ), (2)

Psf = PLp(1− 1p) =
4α1/3Zs( f )

N1/3c
σ (1 − 1p). (3)

Here, R = ro/c is the relative linear density of a crystal,

c = (6kpv/π)1/3 is the average (over the nanosystem

volume) distance between the centers of neighboring atoms,

kp is the packing coefficient of a structure consisting of N
atoms, kn(∞) = kn(N = ∞) is the coordination number

for a macrocrystal, α = π/(6kp) is the structure parameter,

and f = Nps/Npo is the shape parameter of a rectangular

parallelepiped that is specified by the ratio of number Nps

of atoms at its side edge to number Npo of atoms at the edge

of the square base. Laplace pressure PLp and the functions

introduced in (2) and (3) are written as

PLp =
4α1/3Zs( f )

N1/3c
σ = 4

(1− k∗

n)

α1/3c
σ, (4)

Zs( f ) =
1 + 2 f
3 f 2/3

, LE(N, f ) = U(R) + 3Hw(N, T ),

1p = −
1

2

[

∂ ln(σ )

∂ ln(c)

]

T,N,kp , f

= 1 +
1

2LE(N, f )

×

{

U ′(R) − 9

[

q − γty

(2E

T

)

]

Hw(N, T )

}

, (5)

Hw(N, T ) =
6γ(N, f )kn(∞)

(b + 2)

[

kB2E(N, f )

Dk∗

n

]

Ew

(2E

T

)

,

(6)

k∗

n =
kn(N, f )

kn(∞)
= 1− Zs( f )

(α2

N

)1/3

, (7)

U(R) =
aRb − bRa

b − a
,

U ′(R) = R

[

∂U(R)

∂R

]

=
ab(Rb − Ra)

b − a
,

Ew(y) = 0.5 +
1

[exp(y) − 1]
, ty (y) = 1−

2y exp(y)

[exp(2y) − 1]
.

Here, kn(N, f ) is the average (over the entire nanosys-

tem) value of the first coordination number, kB is the

Boltzmann constant, 2E is the Einstein temperature, and

γ = −(∂ ln2E/∂ ln v)T , q = (∂ ln γ/∂ ln v)T are the first

and the second Grüneisen parameters. The formulae for

calculation of these functions were given in [21–23].
In the

”
thermodynamic limit“ (i. e., when N → ∞ and

system volume V → ∞ at v = V/N = const), expres-

sion (7) yields the following: k∗

n(N → ∞) → 1. Functions

PLp in (4) and Psf in (3) then vanish, and the expressions

from (2), (5), and (6) transform into formulae for a

macrocrystal.

The presented RP model provided an opportunity to

examine the dependences of the specific surface energy

both on the size (number of atoms N) and on the surface

shape ( f ) of a nanocrystal at different temperatures and

pressures (see [22–28]). The application of this method and

the obtained results were discussed in detail in the indicated

studies.

3. Calculation results for gold

Gold (Au, m(Au) = 196.967 a.m.u.) was chosen for

calculations of the dependence of the surface energy on

the nanocrystal size. Gold has a face-centered cubic (FCC)
structure (kn = 12, kp = 0.7405, α = π/(6kp) = 0.70709)
and does not undergo any polymorphic phase transitions up

to 220GPa [29].
The parameters of pair interatomic potential (1) for

FCC Au were determined with the use of a self-consistent

method in our study [23]. They have the following values:

ro = 2.87 · 10−10 m, D/kB = 7446.04K,

b = 15.75, a = 2.79. (8)

As was demonstrated in our studies [24,30,31], poten-

tial (1) with parameters from (8) provides a fine agreement

with experimental data for all thermodynamic properties

and the baric dependence of the melting point of a

macrocrystal of FCC Au. Therefore, in the present study,

variations of the equation of state and the surface energy

in transition from a macrocrystal to a nanocrystal were

examined with the use of potential (1) with parameters

from (8).
Calculations were performed for a nanocrystal of

N = 306 atoms with a free geometric Gibbs surface. This

specific number of atoms was chosen for the following

reasons. On the one hand, we tried to illustrate most

vividly the difference in baric dependences for macro- and
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Figure 1. A — Isomorphic-isomeric dependences of pressure on normalized volume for FCC Au. Thick solid curves and dashed

curves correspond to a macrocrystal and a cubic nanocrystal, respectively. The thin solid curve for 1337K represents the result for a

rod-shaped nanocrystal. From bottom to top, the following isotherms are shown: T = 100, 300, and 1337K. B — Isomorphic-isomeric

baric dependences of Laplace pressure PLp and surface pressure Psf for a cubic nanocrystal consisting of 306 atoms. From top to bottom,

the following isotherms are shown: T = 100, 300, and 1337K.

nanosized systems. On the other hand, as was noted

in [16,32–35], the difference between liquid and solid phases

vanishes at a certain number of atoms (N0). Thus, the

thermodynamic concept of a liquid or solid phase is no

longer applicable to a cluster at N ≤ N0. It was determined

theoretically for metals at P = 0 that

N0 = 50−300 [16,32,34].

The value of N = 306 was also chosen for the purpose

of examining the effect of nanocrystal shape on the size

dependence of surface properties. The bulk of calculations

were carried out for a nanocrystal of N = f N3
po/α = 306

atoms having the energetically optimum shape of a

rectangular parallelepiped (i. e., the shape of a cube):
f = 1, Npo = 6, k∗

n = 0.882152, kn = 10.5858. However,

calculations were also performed for a nanocrystal of

N = f N3
po/α = 306 atoms shaped like a rod (i. e., at f = 8,

Npo = 3, Nps = Npo f = 24, k∗

n = 0.833048, kn = 9.99658).
This provided an opportunity to examine the variation

of properties with an isothermal-isobaric change in the

nanocrystal shape.

Figure 1,A presents isomorphic-isomeric dependences

(i. e., dependences at constant f and N values) of pressure

(P , GPa) on normalized volume (v/vo = (c/ro)3 = R−3)
for macro- and nanocrystals of FCC Au. Calculations were

performed along three isotherms: 100, 300, and 1337K.

Solid and dotted curves correspond to a macrocrystal

(i. e., N = ∞) and a cubic nanocrystal of N = 306 atoms,

respectively. The thin solid curve for 1337K represents

the result for a rod-shaped nanocrystal. The magnitude

of pressure rise in a nanocrystal is lower than the one

in a macrocrystal, indicating a reduction in the elastic

modulus (BT = −v(∂P/∂v)T) occurring as a nanocrystal

grows smaller. A decrease of BT with a reduction in

the nanocrystal size has also been noted in theoretical

and experimental studies performed by other research

groups [36–40].
It can be seen from Fig 1,A that dependences P(v/vo)

for nano- and macrocrystals intersect at a certain value

of relative volume (v/vo)0. Thus, surface pressure

(Psf(v) = P(v)Macro − P(v)Nano) becomes zero at (v/vo)0:
Psf(v/vo)0 = 0. At v/vo < (v/vo)0, the surface pressure

compresses a nanocrystal (Psf > 0); at v/vo > (v/vo)0, a
nanocrystal is stretched: Psf < 0. The value of (v/vo)0
decreases under both an isomorphic-isomeric temperature

rise T and an isomorphic-isothermal N reduction. It also

follows from Figure 1,A that the pressure in a nanocrystal

goes through zero at a v/vo value that is higher than the

one for a macrocrystal. It can be seen from Figure 1,B that

the surface pressure rise with pressure is more pronounced

than the corresponding Laplace pressure increase. While

PLp > Psf is satisfied under low pressures, this inequality is

reversed under high pressures.

Figure 2 shows the calculated baric (A) and tempera-

ture (B) isomorphic-isomeric dependences of the specific

surface energy (σ , J/m2 = N/m) for face (100) in FCC Au.

Solid and dotted curves correspond to a macrocrystal

and a cubic nanocrystal consisting of N = 306 atoms,

respectively. Thin solid curves in Figures 2,A and C

represent the 1337K isotherm for a rod-shaped nanocrystal.

As was demonstrated in [30], our calculations of the σ (100)
value for a macrocrystal of FCC Au agree well with the

experimental and theoretical (in brackets) estimates made

in other studies:

σ (100)/[J/m2] = 1.54 (T =0K) − 1.333 (Tm=1337K) [1],

(1.363 (T = 0K)) [4], (1.359 (T = 0K)) [14].

It can be seen from Figure 2,A that at lower temperatures,

a pressure region emerges where the specific surface
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Figure 2. Baric (A) and temperature (B) isomorphic-isomeric dependences of specific surface energy σ (100) are shown in the upper

plots. The lower plots show baric (C) and temperature (D) isomorphic-isomeric dependences of the isothermal derivative of σ (100) with

respect to pressure: σ ′(P) = (∂σ/∂P)T . From top to bottom, the following isotherms are shown in the plots on the left: T = 100, 300,

and 1337K. The following isobars are shown in the plots on the right: P = 0, 24, and 60GPa. Solid and dotted curves correspond to

a macrocrystal and a cubic nanocrystal, respectively. Thin solid curves in Figures 2,A and C correspond to the 1337K isotherm for a

rod-shaped nanocrystal.

Surface properties of FCC Au

T , K v/vo σ (100), 10−3 J/m2 1P
PNano, GPa

σmax, 10
−3 J/m2 Pmax, GPaPMacro , GPa

100 1.00487 1561.19 1.0299 0.090 1623 27.0

1.00547 1559.84 1.0342 −0.101 1622 23.9

300 1.01302 1542.47 1.0903 0.255 1613 28.6

1.01483 1538.36 1.1027 −0.293 1611 25.3

1337 1.06874 1422.80 1.4207 1.082 1555 35.8

1.08112 1398.07 1.4818 −1.210 1545 32.7

energy of a nanocrystal exceeds the one of a macrocrystal

(i. e., σ (N) > σ (∞)). As was demonstrated in [24,26–28],
this effect is attributable to the compression of a nanocrystal

by surface pressure at low temperatures. It is evident from

Figures 2,A and B that the decrease of function σ (N) at

P = 0 with a reduction in N becomes more pronounced

as the temperature increases and as the nanocrystal shape

deviates further from the energetically optimum one (cubic
for the RP model). At P < 20GPa, σ increases under

isothermal compression both for a macrocrystal and a

nanocrystal consisting of 306 atoms.

The lower plots in Figure 2 show baric (C) and

temperature (D) dependences of the derivative of specific

surface energy with respect to pressure: σ ′(P) = (∂σ/∂P)T ,

Physics of the Solid State, 2024, Vol. 66, No. 3
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10−3 J/(m2GPa). Solid and dashed curves correspond to

the results of calculation for a macrocrystal and a cubic

nanocrystal. The thin solid curve in Figure 2,C represents

the 1337K isotherm for a rod-shaped nanocrystal. It can be

seen from Figures 2,C and D that the isothermal σ ′(P)T

dependences for macro- and nanocrystals intersect at a

certain pressure (Pσ ): σ ′(Pσ )T,∞ − σ ′(Pσ )T,N = 0. The

size dependence of function σ ′(P)T changes at these points.

At P < Pσ , function σ ′(P)T increases with a reduction

in N; at P > Pσ , σ ′(P)T decreases with an isothermal-

isobaric reduction in N.

It can be seen from Figures 2,C and D that σ ′(P)T

increases with an isomeric-isobaric rise of temperature.

Notably, the temperature growth of function σ ′(P)T slows

down as the pressure increases.

The properties of FCC Au calculated at three different

temperatures are presented in the table. The results

for a macrocrystal and a cubic nanocrystal consisting of

306 atoms are listed in the first and the second rows,

respectively, in each cell. The second, the third, and the

fourth columns contain the values of normalized volume

v/vo = (c/ro)3, the specific surface energy of face (100),
and function 1p(N) = 1− (Psf/PLp) both for a macrocrys-

tal at PMacro = 0 and for a cubic nanocrystal consisting of

306 atoms at PNano = 0. The values of pressure PNano for a

nanocrystal at PMacro = 0 (upper row) and pressure PMacro

for a macrocrystal at PNano = 0 (lower row) are given in the

fifth column (see Figure 1,A). The rightmost two columns

present the coordinates of the maximum of function σ (P)
in Figure 2,A; the results for a macrocrystal and a cubic

nanocrystal consisting of 306 atoms are listed in the first

and the second rows, respectively, in each cell.

The expressions for isochoric and isobaric derivatives

of function σ (N, f ) with respect to temperature may be

derived from (2). These expressions are as follows [22–24]:

σ ′(T )v =
(∂σ

∂T

)

c,N, f
= −

3kBR2γ(N, f )

2α2/3(b + 2)r2ok∗

n

FE

(2E

T

)

,

(9)

σ ′(T )P =
(∂σ

∂T

)

P,N, f
= σ ′(T )v+ v · αP

(∂σ

∂v

)

T,N, f

= σ ′(T )v −
2

3
σ · αP · 1p. (10)

Here, αP = (∂ ln ν/∂T )P is the isobaric thermal volume

expansion coefficient that depends on the size and the shape

of a nanocrystal

αP =
γ ·Cv

V · BT
=

3γ · kB · FE(
2E

T )

BT [πr3o/(6kp)]
R3,

where Cv is the isobaric heat capacity, BT is the isothermal

elastic modulus, and

FE(y) =
∂Ew(y)

∂(1/y)
=

y2 exp(y)

[exp(y) − 1]2
.

Figure 3 illustrates the behavior of isochoric and isobaric

derivatives of function σ (100) with respect to temper-

ature (in 10−6 J/(m2 ·K)). The upper (A and B) and

lower (C and D) plots correspond to functions

σ ′(T )v = (∂σ/∂T )v and σ ′(T )P = (∂σ/∂T )P , respectively.

Calculations were performed in accordance with formu-

lae (9) and (10) along three isotherms (from top to bottom,

for A and C: 100, 300, and 1337K) and along three isobars

(from bottom to top, for D: 0, 24, and 60GPa). Solid

and dashed curves correspond to the results of calculation

for a macrocrystal and a cubic nanocrystal consisting of

306 atoms. Thin solid curves in Figures 3,A and C represent

the 1337K isotherm for a rod-shaped nanocrystal with

306 atoms. The results of our calculations of σ ′(T )P for

a macrocrystal of FCC Au at P = 0 were compared with

the estimates obtained in other studies in [23,30].
It can be seen from Figure 3 that functions σ ′(T )v

and σ ′(T )P under any pressure reach their maximum

at T = 0K: σ ′(0)v = σ ′(0)P = 0. It is evident that the

values of |σ ′(T )v | and |σ ′(T )P | increase under arbitrary

P−T conditions with an isothermal-isobaric reduction in

the size of a nanocrystal. The size variation of these

functions becomes more pronounced as the temperature

rises and as the nanocrystal shape deviates further from

the energetically optimum one (cubic for the RP model).
Inequality |σ ′(T )v | < |σ ′(T )P | is satisfied under low pres-

sures. However, this inequality is reversed under high

pressures. Therefore, one should not equate functions

σ ′(T )v and σ ′(T )P (as is done in certain papers). At

T ≫ 2, function σ ′(T )v is almost independent of tempera-

ture and the |σ ′(T )P | value increases with temperature. In a

nanocrystal, the value of |σ ′(T )i | increases under arbitrary

P−T conditions (here, i = v or P).
As was noted in our study [41], function σ at T = 0K

should satisfy the following conditions to adhere to the third

law of thermodynamics:

lim
T→0 K

(∂σ

∂T

)

i,N
= −0, lim

T→0 K

[∂(∂σ/∂T )v,N
∂v

]

T,N
= −0,

lim
T→0 K

T
[ ∂

∂T

(∂σ

∂T

)

v,N

]

i,N

= −0. (11)

Conditions (11) are valid for any crystal structure, at any

given volume and pressure, and for any size and shape of a

nanocrystal.

Different methods for calculation of the derivative of σ

with respect to temperature in a macrocrystal have been

proposed in literature. However, since the equation of state

with the surface factored in was not given in these studies, it

remains unclear whether the proposed expression for σ ′(T )
is an isochoric derivative or an isobaric one. At the same

time, it can be seen from Figure 3 that the difference

between functions σ ′(T )v and σ ′(T )P significant and is

especially pronounced at P = 0.

A linear approximation of the following form was used

in certain studies for the isobaric or isochoric temperature

dependence of the specific surface energy [42]:

σ (T ) = σ (T = 0K) − const T. (12)

However, it follows from Figure 3 that approximation (12)
is valid only at high temperatures T ≫ 2 (for i = v)
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Figure 3. Behavior of isochoric (upper plots) and isobaric (lower plots) derivatives of the specific surface energy with respect to

temperature for FCC Au. Isotherms of the baric dependence are shown on the left, and isobars of the temperature dependence are

presented on the right. Solid and dashed curves correspond to the results of calculation for a macrocrystal and a cubic nanocrystal. Thin

solid curves in Figures 3,A and C represent the 1337K isotherm for a rod-shaped nanocrystal.

or high pressures (for i = v or i = P). The use of

approximation (12) at low temperatures can lead both

to numerical errors and to violation of the third law of

thermodynamics (11).
Under ultimate compression (v/vo → 0), the following

relations are derived from (2)−(6) and (9) [43–45]:

lim
v/vo→0

σ = −
[ kn(∞)Da
12α2/3r2o(b − a)

]

lim
R→∞

Rb+2 = −∞,

lim
v/vo→0

1p(N, f ) = 1 + lim
R→∞

ab(Rb − Ra)

2(aRb − bRa)
= 1 +

b
2
,

lim
v/vo→0

Psf =
[ kn(∞)Dab
6αr3o(b − a)

]

(1− k∗

n) lim
R→∞

Rb+3 = +∞,

lim
v/vo→0

σ ′(T )v = −
16Dkn(∞)

45α2/3r2o[k∗

n(N, f )]2
FE

(2E max

T

)

×
(b − a)

KRab(b + 1)
lim

R→∞

R−b = max
(∂σ

∂T

)

v
= −0,













































(13)

where KR = ~
2/(kBr2om), m is the mass of an atom, and ~ is

the Planck constant.

Under ultimate tension (v/vo → ∞), (2)−(6) and (9)
yield

lim
v/vo→∞

σ = −
[ kBT
4α2/3r2ok∗

n(N, f )

]

lim
R→0

R2 = −0,

lim
v/vo→∞

1p(N, f ) = 1−
abDkn(N, f )

6(b − a)kBT
lim
R→0

Ra = 1,

lim
v/vo→∞

Psf = −
[ kn(∞)Dab
6αr3o(b − a)

]

× [1−k∗

n(N, f )] lim
R→0

Ra+3= − 0,

lim
v/vo→∞

(∂σ

∂T

)

v
= −

[ kB

4α2/3r2ok∗

n(N, f )

]

lim
R→0

R2

= max
(∂σ

∂T

)

v
= −0.



















































(14)
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Thus, it follows from (13) and (14) that the surface en-

ergy of a crystal becomes negative if it is compressed below

a certain level (at v/vo ≤ (v/vo)frS < 1) or undergoes uni-

form volumetric stretching to v/vo ≥ (v/vo)frL > 1. This is

illustrated in Figure 2,A and has already been demonstrated

in our studies [20,21,43,44]. Note that function 1p has a

discontinuity of the second kind at fragmentation points

(i. e., at (v/vo)frS and (v/vo)frL). However, it follows

from (3) that Psf varies continuously.

Calculations revealed that the extent of uniform stretching

under which the specific surface energy becomes negative

((v/vo)frL) lies in the liquid-phase region for all the

examined materials (crystals of inert gases, iron, diamond,

silicon, and germanium) [45]. Therefore, a crystal under

uniform stretching enters a liquid phase before reaching a

negative surface energy value. However, the fragmentation

condition may be attained under uniaxial tension beyond

the yield point.

The energy associated with surface formation is released

in transition from the single-crystal state, which is unstable

at v/vo ≤ (v/vo)frS, to the energetically advantageous (by
virtue of inequality σ < 0) nanostructured state. Notably,

this energy increases with a reduction in the domain size

achieved as a result of fragmentation of a single crystal

(see [43–45]). It is also worth noting that intercrystalline

surface energy of a domain σd in a nanostructured solid is

related to the surface energy of a nanocrystal with a free

surface in the following way [46]: σd = χσ (100), where

coefficient χ depends on the indices of contacting domain

planes: 1 > χ > 0.

4. Discussion

Why was then an increase of σ with an isomorphic-

isothermal reduction in the nanoparticle size reported in

a number of studies? Let us clarify this with reference to

the obtained results and using studies [5,6] as examples.

A
”
combination of atomistic modelling and continuum

mechanics“ was used in [5] to examine a spherical core–
shell model for a gold nanocrystal at T = 0K. The sur-

face pressure was characterized according to the Laplace

formula, which is valid for the liquid phase, only in the

surface shell layer. Compared to the bulk of the crystal,

this layer was thus compressed strongly. It was then

found in [5] that both the surface energy and the Young’s

modulus increase as the nanocrystal size decreases. This

conclusion contradicts dependence P(v/vo) for macro- and

nanocrystals in Figure 1 and the results reported in [36–40],
where elastic modulus BT was found to decrease with a

reduction in the size of a nanocrystal. The authors of [5]
have also made an error in separating an equilibrium system

into two different phases (core and shell) and applying

different laws to them. This violates the thermodynamic

equilibrium conditions and results in strong gradients of

properties over the nanocrystal volume. Equilibrium and

reversible thermodynamics formulae are inapplicable to

such a system.

The following formula [6, Eq. (4)] was used to calculate

the specific surface energy in the computer modeling

method utilized in [6] (and other theoretical studies where

an increase of σ with an isomorphic-isothermal reduction in

the nanoparticle size was reported):

σ (N) =
ENP(N) − Eref(∞)

6
,

where ENP(N) is the internal energy of a nanoparticle

consisting of N atoms and Eref(∞) is the internal energy

of a macrocrystal.

However, a contradiction arises when functions ENP(N)
and Eref(∞) are calculated using this method: Eref(∞) is

calculated for a macrocrystal at PMacro = 0, while function

ENP(N) is calculated for a nanocrystal at PNano > 0. This

is illustrated by Figure 1 and the table. To obtain

PNano = 0, one needs to stretch a nanocrystal (i. e., make

the specific volume or the average distance between centers

of nearest-neighbor atoms in a nanocrystal greater than in a

macrocrystal). This has been demonstrated experimentally

in [36] for nanodiamond and in [47] for a nanocrystal of

FCC ruthenium (FCC Ru). This also follows from the fact

that the elastic modulus for a nanocrystal is smaller than the

one for a macrocrystal at the same temperature.

Thus, a nanocrystal was compressed by surface pressure,

which increased with an isomorphic-isothermal reduction

in N, in those calculations where an increase of func-

tion σ (N) with a decrease of N was reported. This

compression induced an increase of function σ (N) upon

an isomorphic-isothermal reduction in the nanocrystal size.

The surface pressure for the liquid phase is much higher

than the one for the solid phase at low temperatures. This

is the reason why a clearly erroneous result was obtained

in [6]: σl(T = 1500K) > σs(T = 5K) for both macro- and

nanosystems. In the liquid phase, this result contradicts the

data from [48,49], where more adequate methods were used

to calculate the dimensional dependence of σl.

Unfortunately, the equation of state of a nanosystem has

not been examined in theoretical studies where σ was found

to increase with a reduction in size. This is the reason

why the authors of these studies failed to notice that an

isomorphic-isothermal size reduction led to a reduction in

the specific volume of a nanoparticle and, as a consequence

of this compression, to an increase in the specific surface

energy.

5. Conclusion

Dependences of specific surface energy σ and surface

pressure Psf on the size and shape of a nanocrystal with

a free Gibbs surface were examined under different P−T
conditions within equilibrium and reversible thermodyna-

mics based on the RP model and the Mie−Lennard-Jones

pair interatomic interaction potential.

The results of calculations for a macrocrystal and an

FCC Au nanocrystal consisting of 306 atoms revealed
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that function Psf(N) lies in the negative region at P = 0

and that |Psf(N, P = 0)| increases as the temperature rises

and as the nanocrystal shape deviates further from the

energetically optimum one (cubic for the RP model).
When N decreases at P = 0, the decrease of function σ (N)
becomes more pronounced as the temperature increases

and as the nanocrystal shape deviates further from the

energetically optimum one.

These results were used to demonstrate that the con-

clusions made in certain studies, where an increase of

function σ (N) with an isomorphic-isothermal nanocrystal

size reduction at P = 0 was reported, contradict the physical

properties of actual metallic nanoparticles. A nanoparticle in

such calculations was compressed by the surface pressure,

which increased with a reduction in N. This compression led

to a corresponding increase of function σ (N) with both an

isomorphic-isothermal size reduction and an isomeric (i. e.,
at N = const) nanoparticle temperature rise.
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