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Acoustoplastic effect and activation mechanism of defect generation

under conditions of quasi-static deformation of metals
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The processes of elastic and plastic deformation of materials are considered within the framework of the

acoustoplastic effect. A model proposed is based on the processes of defect formation during the deformation

of materials according to the activation mechanism. The dynamic equations for the formation of defects are

considered in view of the change in their activation energy caused by the defect interaction. It is shown that by

comparing experimental data with the obtained theoretical results, it is possible to obtain information about such

characteristics of materials as the concentration of defects, their relaxation time, the nature of interaction, and

internal friction stress. These parameters were obtained for aluminum and copper alloy M1.
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Analysis of reconstruction of the material structure under

impact of external loads is of significant interest, as it can

determine mechanisms of transition from a mode of elastic

deformation to a mode of plastic deformation. Experimen-

tally, these dependences are obtained using loading devices,

which are designed to specify a certain strain rate and record

a value of applied stress corresponding thereto [1,2]. The

results obtained in this way are usually analyzed within

the framework of respective empirical dependences or by

means of certain thermodynamic models. The first case

includes, for example a John-Cook model, which relates

the sample stress to deformation, its rate and the sample

temperature, as well [3,4]. At a specified loading rate

and an unchanged temperature, this model characterizes

the material with five parameters, and in order to describe

change-temperature experiments, it additionally uses the

sixth parameter. The thermodynamic approach is aimed at

establishing relation of bond energy of plastic deformation

(or a rate of accumulation thereof) to work to be done

by the loading device. Several mechanisms of plastic

deformation of the material can be considered within its

framework [5].

If it is necessary to take into account the change of the

sample temperature during deformation, a Taylor-Quinney

factor is additionally determined, which takes into account

a portion of energy of plastic deformation of the sample

as spent for its heating [6,7]. In all the said cases, the

obtained parameters characterize macroscopic properties

of the material. However, specification of the physical

processes accounted for the change of mechanical properties

of materials at various stages of deformation requires more

detailed description of micromechanisms of development of

the material’s defect structure in a plastic flow. For analysis

of evolution of the microstructure of the sample under

loading, it is desirable to have a theoretical model designed

to trace changes of the physical processes therein when the

material passes from the area of elastic deformation to the

plastic flow.

In this regard, the present study is mainly aimed at

developing a simple physical model of transformation of

the mechanical properties of the material when it passes

from the area of elastic deformation to the area of plastic

deformation. Presently, the elastic and plastic deformations

of the materials in quasi-static deformation are usually stu-

died within the framework of an acoustoplastic effect [8–11].
In this approach, the dynamics of behavior of the sample

stress at its nonstationary deformation with the constant rate

described based on Eq. [12]:

1

E
∂σ

∂t
= ε̇ − ε̇p, (1)

where E is the Young’s modulus of a material, ε̇ is the total

strain rate, which is specified by an external source, ε̇p is

the plastic strain rate of the material.

In order to determine the plastic strain rate ε̇p, it is usually

believed that defects in the material are generated as per an

activation law of Arrhenius, and it can be found from the

relationship

ε̇p = ε̇(0)
p exp

(

−
U −�(σ − σ f − σp(ε))

kbT

)

, (2)

where U is the activation energy of the metastable defects,

σ f is the stress due to internal friction for the defects,

σP(ε) is the sample stress related to generation of the

defects therein, the pre-exponential factor ε̇
(0)
p describes the

defect generation rate and it is usually assumed to be a
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constant one, � is the activation volume of the defect, kb is

the Boltzmann constant, T is the sample temperature.

The solution of Eq. (1) in relation to the stress at the

plastic strain rate, which is determined by Eq. (2) and a

start of operation of the deforming device at the point of

time t = 0, can be presented as follows

σ (t) = E ε̇0t −
kbT
�

× ln

[

1 +
�E
kbT

ε̇U

t
∫

0

dt′ exp

(

�(E ε̇0t′ − σ f − σp(ε))

kbT

)]

,

(3)

where ε̇0 = ε̇
(0)
p exp(−U0/kbT ).

In accordance with Eq. (3), in order to determine

dependence of σ on time (or strain), it is necessary to

know the dependence σp(ε). When using the acoustoplastic

effect, it is often specified empirically. In particular, it has

been assumed in the study [12] that σp(ε) ∝
√
ε.

The present study suggests to determine the dependence

σp(ε) within the framework of the activation model instead

of using the empirical relationships. For this, we shall use a

relationship that relates the sample stress to concentration of

the defects therein. In the simplest case of one-dimensional

deformation this relationship takes the form [13,14]:

σ = Eεe + �En, (4)

where εe is elastic deformation of the sample, n is

concentration of the defects in its material.

With small concentration of the defects and absence of

the diffusion processes, we have shown that its change was

quite well described by the equation [15–19]:

dN
dt

=
1− N
τ

, (5)

where N = n/nr , nr is a certain equilibrium value of concen-

tration of the defects in the material, τ = τ0 exp(U0/kbT ),
τ0 is the time reciprocal to the Debye frequency

(τ0 ∼ 0.1 ps).
For using the equation (5), it is assumed that the

activation energy of the defects is unchanged. We have

shown usefulness of its use for explaining peculiarities

of oscillations of thin aluminum membranes [15], when

analyzing a nature of behavior of the laser ultrasound signals

in stressed ceramics and metals [16,17], effects of
”
fast“ and

”
slow“ dynamics when considering relaxation processes in

the plastically deformed aluminum rods [18,19].
Generally, the activation energy depends on concentration

of defects. In the first approximation for the concentration

of defects this dependence can be presented by the

equation [20,21]:

U = U0 + U1

n
nr

. (6)

The studies [20,21] have shown that at the high concen-

trations of defects when their interaction with each other is

substantial, an equation of the following kind shall be used

instead of (5)

dN
dt

=
1− N
τ

exp(−αN), (7)

where α = U1/kbT .
Equation (7) can not be solved analytically. But in

accordance with [20,21] it is quite well approximated by

a function

N = 1− exp
⌊

−(t/τ )β
⌋

. (8)

Equation (8) describes a non-exponential law of defects.

The exponent β ≥ 0. The case β = 1 corresponds to low

concentration of defects. Usually, the value β is within

the range from 0 to 1, but in some conditions the values

β ≥ 1 are also possible [21]. Within the framework of our

proposed model, it is considered to be a constant value,

which is determined from comparison of the theoretical

results and the experimental data.

In Eq. (4), the second summand is related to generation

of plastic strain in the material. Taking into account Eqs. (4)
and (8), we obtain the dependence of stress of the plastic

flow on time as follows

σp(t) = �En = �Enr
⌊

1− exp
(

−(t/τ )β
)⌋

. (9)

After inserting the expression (9) into Eq. (3) and passing

from time integration to strain integration, we obtain the

dependence of the stress σ (ε) as follows

σ (ε) = Eε −
kbT
�

ln

[

1 +
�E
kbT

ε̇T

ε̇0

×
ε

∫

0

dε′ exp

(

�(Eε′ − σ f −�Enr8(ε′))

kbT

)]

, (10)

where the function 8(ε) is

8(ε) = 1− exp
(

−(ε/ε̇0τ )β
)

. (11)

Equation (10) can trace the dependence σ (ε) both in the

elastic and the plastic area. The similar expression, which is

obtained in the study [12] and used for computer simulation

of the dependence σ (ε) corresponds to a particular case of

Eq. (10) at ε < ε̇0τ and β = 1/2.

The experiments show [22] that at low strain rate σ

weakly depends on ε̇0. In accordance with Eq. (10), this
situation is realized under the condition ε̇U ≈ ε̇0. The

expression (10) has five unknown (or hardly accessible)
parameters �, σ f , nr , β, τ . If ε̇U is unknown, it

is still five parameters as in this case the multiplier

ε̇U exp(−�σ f /kbT ) is unknown. At high strain rates,

the sample temperature can change during deformation.

In these conditions its determination is a separate task.

At the low rates of deformation, its change is usually

insignificant. The framework of the present study limits

review by this case and further on the sample temperature

is considered to be specified. It should be noted that

Physics of the Solid State, 2024, Vol. 66, No. 3



Acoustoplastic effect and activation mechanism of defect generation under conditions... 347

Parameters of approximation of the experimental stress-strain curves

Material � · 1028 (m3) nr · 10
−25 (m−3) β τ (s) σ f (MPa) δ (MPa)

Copper M1 0.55± 0.14 2± 1 1.0± 0.15 0.08± 0.005 167± 8 2.5

Aluminum 1.65± 0.25 2.1± 0.6 0.46± 0.02 4200± 2500 82± 1 3.7

within the framework of the thermodynamic approach the

description of the dependence of σ on εalso has five

unknown parameters [3,4]. But in case of an approach

within the framework of the acoustoplastic effect these

parameters have a more transparent physical meaning.

Using the computer simulation, the study [12] has shown

that the model of acoustoplastic effect studied therein could

qualitatively describe the dependence of σ on ε when

passing from the area of elastic deformation to the area of

plastic deformation. At the same time, it has not analyzed an

issue of its applicability for explaining experimental results

for particular materials. In this regard, using the computer

simulation, the present study has compared the theoretical

results obtained by means of a generalized model of

acoustoplastic effect and the available experimental data for

some materials. The said experimental data were selected

due to a relatively low rate of samples loading, at which the

change of their temperature did not play a substantial role.

To exemplify description of the experimental dependences

of true stress on true deformation using Eq. (10), we

consider the available experimental data of the standard

tensile tests for two metals: aluminum and copper, which

are published in the studies [23,24], respectively. The figure

shows the experimental data and the respective theoretical

curves obtained by means of Eq. (10). The values of the

parameters that ensure the best compliance are shown in

the table. It also has a mean-root-square deviation δ that is

obtained in approximation of the dependence of σ on ε. As

can be seen from the figure, Eq. (10) quite well describes

the elastic and the plastic sections of the curves at the

same time.

In accordance with the table, the activation volumes of

the defects for both the metals have the positive values.

The positivity of the activation volumes of defects means

that during tension the metals under study have mainly

exhibited generation of defects of a
”
vacancy“ type. The

values of the activation volume of the defects as obtained for

all the cases are about 10−28 m3, while the equilibrium value

of concentration of the defects is about 1025−1026 m−3.

Let us note that these concentrations and the volumes

approximately correspond to the values that we have

obtained in the studies [15–19]. As for the relaxation time

for aluminum, it is well correlated to the relaxation time of

the plastically deformed rods made of the aluminum alloy

D16, which was observed without external effects [25]. At
the same time, the value for aluminum β ∼ 0.46 shows that

interaction of the defects during deformation and change

of the activation energy becomes substantial. We note that

this value of β is close to that one used in the study [12].
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Stress-strain dependence for a — the copper alloy M1 (the
experimental data [24]) and b — pure aluminum (the experimental

data [23]). The strain rate is 10−3 s−1.

For copper M1 the relaxation times have substantially lower

significance and, unfortunately, the literature has no data for

it. For copper M1 the value β ∼ 1 and interaction of the

defects during deformation has not played the substantial

role and the value of activation energy was unchanged

during defect formation. The friction stress value σ f

obtained both for aluminum and copper is approximately

10−3E . These values of σ f approximately correspond to

evaluations used in the study [12], too.

Thus, the obtained results show that the modified model

of acoustoplastic effect can be used to interpret the results

of material deformation at the constant temperature. At

the same time, it is possible to obtain information about

such characteristics of the defects as their concentration and
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activation volume, the relaxation time, the internal friction

stress, the degree of interaction of the defects with each

other.
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