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The influence of spin-polarized current and the thickness of magnetic layers on the coupled dynamics of vortices

in small-diameter spin-transfer nanooscillators is studied. The nanooscillator has two magnetic permalloy layers

(containing magnetic vortices), separated by a non-magnetic copper layer. Using analytical and numerical methods,

the nonlinear dynamics of two magnetostatically coupled magnetic vortices under the influence of a spin-polarized

electric current was studied. Numerical calculations of the dynamics of magnetostatically coupled vortices were

carried out using the SpinPM micromagnetic modeling software package. Conditions have been found for obtaining

a maximum frequency in such systems and increasing the range of currents in which a stationary mode of coupled

vortex oscillations is observed. For the case of two identical magnetic layers, the possibility of the emergence of

new scenarios of coupled vortex dynamics is shown.
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1. Introduction

Spin-transfer nanooscillators (STNOs) are often designed

as three-layer magnetic nanocylinders [1–3]. Vortex STNOs

are characterized by the presence of a magnetic vortex in

their magnetic layer (or in both magnetic layers). The

dynamics of this vortex enables microwave emission. Note

that the practical interest in such structures is not limited

to STNO microwave generators. Vortex multibit random-

access memory, where data is stored in the form of

topological states of a vortex, has also been designed [4,5].

In addition, vortex spintronic structures and their ensembles

are being examined in the context of neuromorphic devices

implementing reservoir computing [6].

A magnetic vortex may be a ground state in permalloy

nanodisks of a certain size [7,8]. In qualitative terms, the

magnetic structure of a vortex at the center of a disk in

equilibrium conditions is as follows: the magnetization field

is in-plane and winds about the vortex center. In a small

neighborhood of the disk center, the magnetization goes out

of plane and is oriented perpendicularly to it. This central

part is called the vortex core and has a diameter on the

order of 10 nm. The micromagnetic structure of a vortex

and its core has been observed experimentally numerous

times [9–10]. The dynamics of magnetic vortices confined

in micrometer-sized permalloy disks 30 nm in thickness

has also been visualized directly via X-ray photoemission

spectroscopy [11].
The dynamics of a vortex in a single-vortex STNO has

been studied in detail. It has been demonstrated that spin-

polarized current allows one to control the dynamics and

the structure of vortices [12–13]). Spin-polarized current

may induce magnetization oscillations. The gyrotropic mode

corresponds to circular translational motion of a vortex in

a disc around its center. It has been demonstrated that

Thiele’s equations may be used to characterize gyrotropic

vortex motion. A method for derivation of equations based

on the collective variables technique for gyroscopic vortex

dynamics in a nanodisk was presented, e. g., in [14–16].
An analytical ansatz proposed in [17], which characterizes

the structure of a static magnetic vortex minimizing the

magnetostatic energy, was used to derive these equations.

It was found that the frequency of oscillations of the

vortex core about the geometric center of a nanodisk

depends linearly on the ratio of geometric dimensions of this

disk. A theoretical description of the dynamics of vortices

under the influence of spin current was obtained, and the

dependence of frequency of a single-vortex STNO on the

spin-polarized current density was characterized.

The dynamics of magnetostatically coupled magnetic

vortices in two-vortex STNOs is less well understood (see,
e. g., [1,18–25]). The properties of this system depend

largely on the mutual orientation of magnetization in vortex
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cores. The number of possible states, which are charac-

terized by the polarity and chirality parameters of vortices,

suitable for practical applications (e. g., magnetic memory)
increases in such a system of coupled vortices. The

authors of experimental studies [19–23] have successfully

used spin-polarized current and a magnetic field to perform

independent selection and control of the needed vortex

chiralities and polarities in a trilayer STNO containing

vortices in each of its two magnetic layers. Coupled vortex

dynamics provides an opportunity to reduce the spectrum

width considerably even in zero field and, consequently, has

strong potential for application as a means to enhance the

quality of spintronic microwave signal generators. Effective

Thiele’s equations were used to characterize the dynamics

of coupled vortices in [18], and the gyrotropic frequency

of stationary coupled oscillations was found. Stationary

vortex dynamics has two solutions in this case. One of

them lies above the frequency determined for a single

vortex, and the other is below it. Note that the obtained

solutions agree qualitatively with the available experimental

data. The results of numerical modeling of the dynamics

of coupled vortices in [26–30] for a circular vortex STNO

with permalloy magnetic layers, which has earlier been

studied experimentally, provided insight into those features

of coupled vortex dynamics that could not be examined in

experiments. Different thicknesses of thick (15 nm) and thin

(4 nm) magnetic layers and different diameters of nanodisks

(120, 200, and 400 nm) with vortices having the same initial

chiralities and polarities were considered. In the present

study, the influence of thickness of magnetic layers on

the stationary dynamics of vortices is analyzed with the

aim of determining the structure of a trilayer STNO that

has the maximum possible frequency of stationary vortex

oscillations.

2. Main equations and results
of analytical calculations

Let us examine a trilayer nanocylinder containing two

magnetic permalloy layers with thickness L1 and L2 and a

non-magnetic interlayer with thickness d (Figure 1).

The permalloy (denoted as Py) composition is Ni80Fe20.

It is assumed that a magnetic vortex exists as a ground

state in each magnetic layer. Effective equations for vectors

r1(t) and r2(t), which specify the positions of centers of

vortices, may be used for a rough analytical examination of

the stationary dynamics of such vortices [18]:

Gi × ri −
∂W (r1, r2)

∂ri
= 0, (1)

where Gi = −Giez , Gi = 2πLi
M iS
γ
, M iS is the saturation

magnetization of the ith vortex, γ is the gyromagnetic ratio,

Li is the thickness of the ith magnetic layer, and W (r1, r2) is
the potential energy of a system of two coupled vortices that

Py

Cu

Py

2 R

Figure 1. Schematic diagram of a three-layer nanocolumnar

structure.

has the form

W (r1, r2) =
1

2
k1r

2
1 +

1

2
k2r

2
2 + µr1r2, (2)

where Ki is the coefficient of quasi-elasticity of the ith vor-

tex and µ is the coefficient characterizing the magnetostatic

coupling of vortices. Let us assume that the solutions of

Eqs. (1) in the steady-state mode have the form of harmonic

oscillations

r j(t) = r0 j · exp(iωt), j = 1, 2. (3)

With (2) and (3) taken into account, the following system

of equations is derived from (1):

Gωr1 − k1r1 − µr2 = 0,

γ pGωr2 − k2r2 − µr1 = 0, (4)

where G1 = G, G2 = γ pG.

Roots of the characteristic equation of system (4) take

the form

ω1,2 =
k1

G1

(

1−
1

2

(

1−
k2

k1γ p

)

∓
1

2

√

(

1−
k2

k1γ p

)2

+
4µ2

γ pk2
1

)

. (5)

The expressions for eigen frequencies of oscillations of a

system of two coupled vortices may be written as

ω1,2

ω01

= 1 + β1,2(χ), (6)

where

β1,2(χ) =
1

2

[

−

(

1−
k21

G21

)

∓

√

(

1−
k21

G21

)2

+
4χ2

G21

]

.

(7)
Index

”
1“ in formula (7) corresponds to the minus sign

before the root, while index
”
2“ corresponds to the plus

sign.

Let us analyze the obtained solutions with a view to

answering the question of which of the possible types of

a trilayer nanocylinder has the maximum vortex oscillation
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Figure 2. Dependences of normalized frequencies ω1,2/ω01 on dimensionless parameter χ. a — The case of identical vortex polarities;

b — the case of different polarities.
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Figure 3. Dependences of normalized frequencies ω1,2/ω01 on dimensionless parameter χ for two identical layers. a — The case of

identical vortex polarities; b — the case of different polarities.

frequency. In the case of vortices of parallel polarities,

p = +1, G21 > 0, and the radical expression in (7) is

positive. This implies that in the linear approximation,

eigen frequencies of oscillations of a system of coupled

vortices with the same polarity exist at an arbitrary value

of parameter µ/k1. In the case of vortices of antiparallel

polarities, p = −|p| = −1. Let us determine the values

of µ/k1 = χ at which the radical expression becomes zero.

With the p = −|p| sign choice taken into account, we write

the equation

−
4χ2

γ|p|
+

(

1 +
k21

γ|p|

)2

= 0. (8)

Since it is implied that µ/k1 = χ > 0, a positive root is

obtained:

χk =
1

2

√

γ|p|

(

1 +
k21

γ|p|

)

.

Thus, eigen frequencies of oscillations of vortices with

different polarities exist if

0 ≤ χ ≤
1

2

√

γ|p|

(

1 +
k21

γ|p|

)

. (9)

The limit value of frequency in this case is

ω1 = ω2 = ω01

1

2

(

1−
k21

γ|p|

)

. (10)

The values of mentioned parameters for a trilayer struc-

ture with a 10-nm-thick non-magnetic layer and permalloy

magnetic nanodisks 120 nm in diameter and 15 and 4 nm in

thickness, which has been examined experimentally in [21],
are γ = 0.25 and k2/k1 = k21 = 1/19. Figure 2 presents the

dependences of normalized frequencies ω1,2/ω01 on χ for

parallel and antiparallel vortex polarities in magnetic layers

of various thickness. Figure 3 shows the result of the same
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calculation for two identical layers with k2/k1 = k21 = 1,

G2/G1 = G21 = 1. It can be seen that a significant en-

hancement of the frequency of stationary vortex oscillations

may be achieved in the case of vortices of parallel polarities.

Notably, the oscillation frequency corresponding to identical

magnetic layers of a greater thickness is higher. The eigen

frequency of stationary oscillations of a single vortex in a

nanodisk is proportional to its thickness [7]. This is the

reason why identical magnetic layers of a greater thickness

provide a higher oscillation frequency.

Formulae for calculation of phenomenological parame-

ters k, µ in the case of identical magnetic layers were

proposed in [17]. Let us calculate these parameters for a

magnetic disk 120 nm in diameter and 15 nm in thickness.

The following dimensionless parameters are introduced for

this purpose: β = L/R and ds = d/R, where R is the

disk radius and d is the non-magnetic interlayer thickness.

Magnetostatic interaction parameter µ is calculated as [17]

µ = 8π2M2
s RF(β, ds)C1C2, (11)

where C1,C2 are the parameters of chirality of the corre-

sponding vortices.

It is assumed below that chirality C1 = C2 = 1. Note

that the eigen frequencies of vortices in the above-discussed

linear model are independent of chirality, since coefficient µ

in the formula for frequency (see (5)) is raised to the second

power. Function F(β, ds) in (10) is given by [17]

F(β, ds) =

∞
∫

0

t−2e−ds t(1− e−βt)2I2(t)dt. (12)

Function I(t) is calculated via the first-order Bessel func-

tion as

I(t) =

1
∫

0

x J1(tx)dx , (13)

The formula for quasi-elasticity coefficient k is [17]

k = 4πM2
s L

(

4πF0(β) − 0.5

(

R0

R

)2
)

, (14)

where

F0(β) =

∞
∫

0

t−1

(

1−
1− e−βt

βt

)

I2(t)dt,

I(t) is calculated in accordance with Eq. (13), R0 =
√

2A
M2

s
is

the
”
exchange“ length, and A is the exchange interaction

constant. The sought-for µ/k ratio is derived from formu-

lae (11) and (14):

µ

k
=

2π

β

F(β, ds)

4πF0(β) − 0.5(R0/R)2
. (15)

To obtain a numerical estimate of this ratio, we

set magnetic layer thickness L = 15 nm, non-magnetic

interlayer thickness d = 10 nm, and cylinder radius

R = 60 nm. The saturation magnetization for permalloy

is Ms = 700 erg/(G · cm3), and the exchange constant is

A = 1.2 · 10−6 erg/cm. Having calculated the corresponding

integrals In (15), we find µ/k ≈ 0.656.

3. Results of numerical calculations

Numerical calculations of the nonlinear magnetization

dynamics were carried out based on the generalized

Landau−Lifshitz equation (GLLE). It contains additional

torque Ts .t., which governs the interaction of spin-polarized

current with magnetization, and has the form [12]

Ṁ = −[M×Heff] +
α

Ms
[M× Ṁ] + Ts .t., (16)

where M is the magnetization vector, Ms is the saturation

magnetization, γ is the gyromagnetic ratio, α is the

Gilbert damping parameter, and effective field Heff sums the

contributions from the external magnetic field and the mag-

netostatic and exchange interaction fields. Following [12],
we write the torque as

Ts .t. =
γa j

Ms
×M[M×mref] + γb jM×mref, (17)

a j =
~

2|e|
1

d
P

1

Ms
Je, b j = βa j, β ≈ 0.05− 0.2.

Here, ~ is the Planck constant, e is the electron charge,

d is the layer thickness, Je is the current density, P is the

current polarization, and mref is a unit vector directed along

the reference layer magnetization.

Coupled vortex dynamics in trilayer nanocylin-

ders 120 nm in diameter with permalloy magnetic layers

differing in thickness (15 and 4 nm) has already been

examined numerically and experimentally in [19,21,26,30].
However, the above analytical results demonstrate that

the frequency of stationary oscillations of an STNO with

magnetic nanodisks of the same thickness and diameter

should be higher. Therefore, we examine two identical

permalloy magnetic layers with a thickness of 15 nm.

The motion of coupled magnetic vortices in nanoco-

lumn is induced by spin-polarized current that is per-

pendicular to the disk surface plane. The magnetic

parameters for a nanodisk 15 nm in thickness are as

follows [21]: Ms = 700 erg/G · cm3 and exchange stiff-

ness A = 1.2 · 10−6 erg/cm. Gilbert damping parameter

α = 0.01, gyromagnetic ratio γ = 2.0023 · 107 (Oe · s)−1,

and current polarization P = 0.1. It was assumed that the

current flowing through the cross section of a column is

uniform. At the initial time, the chiralities of vortices were

identical and corresponded to the direction of the current-

induced Oersted field. The polarities of both vortices were

directed upward.

It should be noted that the dynamics of magnetization

of both magnetic layers was modeled; therefore, mref is

spatially nonuniform, depends on time, and is determined

2∗ Physics of the Solid State, 2024, Vol. 66, No. 3
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Figure 4. Trajectory of motion of the vortex center in the top (left
panel) and bottom (right panel) magnetic layers in the 15/15 case:

a — 0−10 ns, b — 25−50 ns, c — 42−45 ns, d — 80−100 ns.

by solving the GLLE numerically within the entire system.

Micromagnetic modeling was performed via numerical

integration of Eq. (1) with the use of the SpinPM code,

which is based on the fourth-order Runge−Kutta method

with time-step adaptation for integration over time. The

dynamics of two vortices was examined on an equal basis

(i. e., the bottom layer acts as a spin polarizer on the

top one, and vice versa; both vortices are moving; and

the full-scale magnetostatic interaction between layers is

considered). This code and method have already been

proven efficient in numerical modeling of the dynamics of

coupled magnetic vortices (see, e. g., [21,28,31,32]).
The trajectory of the vortex center coordinate is assumed

to be the vortex trajectory. The vortex center is a point

where the magnetization component perpendicular to the

nanocolumn plane reaches its maximum. Figure 4 presents

the trajectories of vortex motion in the top and bottom

magnetic layers at a current of 28.27mA. The following

time points are numbered: a) 1 — 0 ns, 2 — 10 ns;

b) 2 — 25 ns, 3 — 50 ns; c) 3 — 42 ns, 4 — 45 ns;

and d) 4 — 80 ns, 5 — 100 ns. It can be seen that these

points start moving with a certain acceleration when current

is switched on. At the onset of the stationary oscillation

mode of the system of coupled vortices, the trajectory

assumes the shape of a shifting smoothed triangle (see
Figure 4). Both vortices move along a shifting elliptical

orbit within the time interval from 42 to 45 ns. The lag

of the second vortex with respect to the first one is not

compensated and remains equal to 1/3 of a turn. The

trajectory at 80−100 ns indicates that the vortex motion

pattern remains virtually unchanged. Thus, the plotted

shifting elliptical trajectory has the shape of a ring. In

view of this, the problem of determination of the vortex

oscillation frequency arises. Therefore, two methods for

determining the effective oscillation frequency were used:

the common technique of frequency calculation from the

oscillation period derived from the plotted time dependence

of mean x -component of magnetization 〈Mx (t)〉 and Fourier

analysis. The comparison of obtained frequencies revealed

that these two methods yield roughly the same results.

The difference between them is within 0.01−0.03GHz,

which is on the order of 1−3% of the frequency value.

The settling time of vortex dynamics is on the order

of 40 ns and is almost independent of the current magnitude

(see Figure 5). The dependence of the frequency of

stationary coupled vortex oscillations on the magnitude of

spin-polarized current is shown in Figure 6. The frequency

depends almost linearly on current. Note that, in accordance

with theoretical predictions, vortices move with a frequency

significantly higher (almost 2GHz) than the one obtained

in the 15/4 case of magnetic disks of different thickness

(the frequency here is just above 1.1 GHz). However, the

critical current of transition to the stationary mode increases

manyfold. The first critical current for an STNO with 15/4

magnetic layers was 4.64mA [26]. The same current in the

present study is 21.2mA. The range of currents supporting

stationary oscillations was also expanded.

Let us determine the frequency of coupled vortex os-

cillations at zero current, which is needed for comparison

with the results of analytical calculations from the previous

section. Extrapolating the curve in Figure 6 to its intersec-

tion with the vertical axis, we find a value of 1.805GHz.

The eigen frequency of an individual magnetic disk may be

determined using the following formula [16]:

ω0 = γ2.218
L
R

Ms . (18)
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In the present case, ω0 ≈ 1.23GHz. It then follows from (6)
and (7) that χm = ω

ω0
−1. Inserting numerical values, one

may determine dimensionless parameter χm ≈ 0.476 and

compare it to the calculated χp ≈ 0.656 value obtained

using formula (15). It follows from this comparison that the

difference between the more accurate numerical value and

the analytical value of parameter χm = µ/k is on the order

of 30%, which indicates that the above analytical model is

applicable in qualitative analysis of the dynamics of coupled

vortices.

To complete the picture, let us examine the case of

identical magnetic layers with a thickness of 4 nm. The

magnetic parameters for a 4-nm-thick nanodisk are as

follows [21]: Ms = 600 erg/G · cm3, A = 1.12 · 10−6 erg/cm,

Gilbert damping parameter α = 0.01, gyromagnetic ra-

tio γ = 2.0023 · 107 (Oe · s)−1, and current polarization

P = 0.1. Figure 7 presents the trajectories of vortex

motion at a current of 6.67mA. It can be seen that this

trajectory of motion of the vortex center has certain features

distinguishing it from the stationary-mode trajectory in the

15/4 case examined in [26]. As in the 15/15 case, the

second vortex lags behind the first one. At the initial stage
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Figure 7. Trajectory of motion of the vortex center in the top

(left panel) and bottom (right panel) layers in the 4/4 case at a

current of 6.67mA: a — 0−25 ns, b — 25−50 ns, c — 50−75 ns,

d — 75−100 ns.
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of motion (0−25 ns, point 1−0 ns), vortices first spin in

an expanding orbit, but their motion trend then shifts to

spinning in a decaying orbit at a certain point in time. At

the next stage (25−50 ns, point 2−25 ns), vortices again

start spinning in an expanding orbit, but the magnitude of its

expansion is smaller than the one observed before. A loop

standing out from the common circle is seen within the

50−75 ns time range (point 3−50 ns). The decaying orbit

trend emerges again within the 75−100 ns time range (point
4−75 ns). Thus, a new coupled vortex dynamics mode is

seen: periodic transitions from stationary oscillations along

a small radius to stationary oscillations along a large radius,

and vice versa. The time period of this transition exceeds

significantly the period of stationary oscillations of vortices

about the center. Figure 8 presents the current dependence

of the fundamental frequency of the stationary mode of

vortex center oscillations. The eigen frequency for an

individual magnetic disk is ω0 ≈ 0.32GHz. The first critical

current starts from 2.26mA, and the frequency is 0.4GHz.

These values are lower than the ones for an STNO with 15/4

magnetic layers. The frequency increases almost linearly

with current.

4. Conclusion

The influence of spin-polarized current and the thickness

of magnetic layers on coupled vortex dynamics in small-

diameter spin-transfer nanooscillators was examined ana-

lytically and numerically. The parameters of a two-vortex

trilayer STNO with the maximum oscillation frequency in

the stationary mode were determined with the use of effec-

tive coupled dynamics equations for vortex centers. STNOs

120 nm in diameter with the sizes of Py(4)/Cu(10)/Py(4)
and Py(15)/Cu(10)/Py(15) were studied numerically with

the SPIN PM code. Vortex motion trajectories were

characterized. In the 15/15 case, the stationary-mode

trajectory changed significantly relative to a circular orbit

that is typical of the 4/15 case examined earlier; a shift

of the circular orbit became apparent. In the 4/4 case, a

new type of trajectory with slow periodic transitions of

a vortex from a lower circular motion orbit to a higher

one was observed. Current dependences of the stationary

vortex orbit frequency were plotted. The frequency depends

linearly on current in both cases. As was predicted

analytically, the maximum frequency rise is achieved in the

15/15 case. However, the magnitudes of critical currents

also increase under these conditions.
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