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The peculiarities of dielectric permittivity modulation of photorefractive GaAs crystal at recording of phase

holographic grating as a result of coherent mixing of two light waves are analyzed. In the crystallographic coordinate

system, a surface showing the dependence of the maximum values of the normal component of the change of the

inverse tensor components of the dielectric permittivity of the crystal on the spatial orientation of the wave vector

of the hologram has been constructed. Theoretical calculations take into account linear electro-optical, photoelastic

and inverse piezoelectric effects. It was found that the largest values of the normal component of the change of the

inverse tensor components of the dielectric permittivity of the GaAs crystal are achieved if the wave vector of the

hologram lies in one of the {110} planes and is at an angular distance of about 4◦ from the 〈110〉 axis lying in the

plane. The refractive index modulation value, close to the largest value, can be achieved when the hologram wave

vector is oriented along the 〈110〉 direction.
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1. Introduction

Photorefractive semiconductor crystals of symmetry class

4̄3m(GaAs, InP, CdTe) are promising photosensitive media

for recording volumetric holographic gratings (hereinafter
referred to as gratings), since they have a relatively short

photorefractive response time and allow the possibility of

transition to infrared spectrum range [1]. The field of

practical use of photorefractive semiconductors includes

such technical applications as optical systems for processing

and transmitting information, devices for generating optical

radiation and wavefront reversal.

Photorefractive GaAs crystals are of great interest in the

creation of optical devices, which are subject to increased

requirements for speed and photosensitivity. In the pioneer

paper [2] it was shown that at a comparable gain of the

signal wave in GaAs and Bi12SiO20 crystals, the duration of

the photorefractive response for the semiconductor is 20µs.

For example, the typical photorefractive response time of

Bi12SiO20 crystal upon mixing of light waves with intensity

densities 100µWcm−2 and 12.5mWcm−2 at a wavelength

of 514 nm is 200ms [3]. In [4] the possibility of achieving

a relatively high gain of the signal wave (6−7 cm−1)
was demonstrated with two-wave mixing in transmission

geometry on moving gratings formed in a GaAs : Cr crystal

when external electric field is applied to it. The use of an

undoped GaAs crystal can lead to a decrease in the signal

wave gain to 4.5 cm−1 [5]. The results of studying cross-

polarization coupling during contra-directional mixing of

light beams in GaAs crystal are presented in [6]. This paper
examines the physical mechanism of cross-polarization cou-

pling in photorefractive crystals of the symmetry class 4̄3m.

The gratings formed during two-wave mixing in GaAs

crystal can have a phase-amplitude structure [7]. The

additional diffraction contribution of the amplitude grating

leads to change in the orientation dependence of the signal

wave gain.

In recent years, while studying the features of diffraction

and mixing of light waves on phase gratings in GaAs crystal,

a number of interesting results was obtained [8–12]. In [8,9]
the possibility of increasing the gain of the object wave

and the diffraction efficiency of the hologram due to the

simultaneous application of external constant electric and

magnetic fields to the GaAs : Cr crystal is considered. These

papers analyze cases when the magnetic field strength

vector is simultaneously perpendicular to the electric field

strength vector and the wave vector of the hologram. It

is shown [8] that under such conditions the gain can reach

18 cm−1, which by more than two times exceeds the value

of this gain obtained in [4]. During object wave retrieval as

a result of diffraction of reference wave on a transmission

grating formed in GaAs : Cr crystal, the achieved diffraction

efficiency was 90% [9]. The analysis of the features of

the light waves mixing on holographic gratings formed

under the influence of moving interference pattern in

GaAs/AlGaAs crystal with quantum wells is presented

in [10,11]. In these papers several models of nonlinear

electron transfer in GaAs crystal are considered and the

correctness of their use in determining the electric field

strength of spatially separated charges of a photorefractive

semiconductor is assessed. In [12] a double demodulation

interferometer was proposed and experimentally tested, in it
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a two-wave mixing scheme in GaAs crystal is used. It was

demonstrated that the proposed interferometer design, due

to the ability to select different demodulation modes, can

be successfully used to detect mechanical vibration when

monitoring the state of structure in production.

The values of the object wave gain and diffraction effi-

ciency are largely determined by the modulation amplitude

of the refraction index of the photorefractive crystal, which

depends on the orientation of the grating wave vector in

the crystallographic coordinate system [13]. In most of

the papers known to us (see, for example, [7,13–18]),
when studying diffraction and coherent mixing of waves

on refraction index gratings the cases are considered when

its wave vector either lies in the cut plane (100), (110),
(111), or perpendicular to them. To date, the following

question practically was not discussed: at what orientation

of the wave vector relative to the crystallographic coordinate

system the amplitude of modulation of the refractive index

of the phase grating in GaAs crystal will reach its greatest

value. Solving this problem will make it possible to under-

stand more clearly: under what conditions of holographic

experiment the maximum efficiency of diffraction of light

waves will be achieved. From a practical point of view,

this opens up the possibility of increasing the output energy

characteristics of phase holograms.

The purpose of this paper is to study the dependence of

the change in the maximum values of the normal component

of the elements of the inverse dielectric permittivity tensor

of photorefractive GaAs crystal on the direction of the gra-

ting wave vector in the crystallographic coordinate system.

The directions of the grating wave vector will be found

for which the amplitude of the refraction index modulation

of the GaAs crystal occurred under the influence of the

induced interference pattern during two-wave mixing, takes

on extremely large values. When calculating the normal

component, linear electro-optical, photoelastic and inverse

piezoelectric effects are taken into account.

2. Methodological part

Let us consider a photorefractive semiconductor GaAs in

which a sinusoidal phase grating is written with wave vec-

tor K arbitrarily oriented in the crystallographic coordinate

system. During the coherent mixing of the reference and

object light waves on the phase grating, their polarization

and energy characteristics change. Equations for finding

the amplitudes of mixing light waves were first obtained by

Kogelnik [19] and can be presented in the form [1]:

dR(z )

dz
= i

πn3
0

2λ cosϕR
(e∗R1b̂eS)S(z ), (1)

dS(z )

dz
= i

πn3
0

2λ cosϕS
(e∗S1b̂eR)R(z ), (2)

where R and S — modules of vector amplitudes R and S;

z — value of coordinate along the axis parallel to the

normal to the working facet of the crystal; eR and eS —
normalized polarization vectors of the reference and object

light waves; 1b̂ — change in the inverse tensor of the

dielectric permittivity of the crystal; n0 — refraction index of

unperturbed crystal; λ — wavelength of light; ϕR and ϕS —
angles between the wave vectors of light waves and the

normal to the working facet of the crystal; i — imaginary

unit. In equations (1) and (2) the factor πn3
0/(2λ cosϕR,S) is

the coupling constant, and tensor convolutions ( e∗R,S1b̂eS,R)
are used to set the amplitude of refraction index modulation

of the phase grating in the photorefractive crystal.

In order to simplify further theoretical analysis, we use

the following approximations.

1. Let us consider the simplest case when the reference

and object waves have linear polarizations. In connection

with this, we will assume that the following equalities will

be valid for the equations of coupled wave (1) and (2):
e∗R = eR and e∗S = eS .

2. We will assume that the vector amplitudes of light

waves as they propagate inside the crystal remain parallel

to each other. As a result of fulfilling such polarization con-

dition, the depth of modulation of the recording interference

pattern during two-wave mixing is optimal [20], and, as a

consequence, the intensity of the object wave at the output

of the crystal can reach maximum values [21]. Therefore, in
tensor convolutions we can assume that eR = eS = e, where

e — a unit vector that is used to specify the direction of the

vector amplitudes of light waves.

3. The change in the inverse dielectric permittivity ten-

sor 1b̂ of the crystal used in the coupled wave equa-

tions (1) and (2) is symmetrical. Then, taking into

account the first two approximations, we can assume that

(eR1b̂eS) = (eS1b̂eR) = (e1b̂e).
We write the expression for finding the normal compo-

nent of the change in the elements of the inverse tensor of

the dielectric permittivity of the crystal in the form

χ(e) = e1b̂e = 1bmnemen, (3)

where χ — the normal component of the change in the

elements of the inverse dielectric permittivity tensor in the

direction of the vector e.

To find the components 1bmn of the inverse dielectric

permittivity tensor of the crystal, we will use the well-known

expressions presented in [22]:

b11 = p1n1R1 + p2n2R2 + p3n3R3,

b22 = p1n2R2 + p2n3R3 + p3n1R1,

b33 = p1n3R3 + p2n1R1 + p3n2R2,

b12 = b21 = p4(n1R2 + n2R1) + r41n3,

b13 = b31 = p4(n1R3 + n3R1) + r41n2,

b23 = b32 = p4(n2R3 + n3R2) + r41n1,

R1 = γ11Q1+γ12Q2 + γ13Q3, R2 = γ21Q1+γ22Q2 + γ23Q3,

R3 = γ31Q1 + γ32Q2 + γ33Q3, γ11 = (Ŵ22Ŵ33 − Ŵ2
23)/D,
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γ22 = (Ŵ11Ŵ33 − Ŵ2
13)/D, γ33 = (Ŵ11Ŵ22 − Ŵ2

12)/D,

γ12 = γ21 = (Ŵ13Ŵ23 − Ŵ12Ŵ33)/D,

γ13 = γ31 = (Ŵ12Ŵ23 − Ŵ13Ŵ22)/D,

γ23 = γ32 = (Ŵ12Ŵ13 − Ŵ11Ŵ23)/D,

D = Ŵ11(Ŵ22Ŵ33 − Ŵ2
23) − Ŵ22Ŵ

2
13 − Ŵ33Ŵ

2
12 + 2Ŵ12Ŵ13Ŵ23,

Ŵ11 = c1n2
1 + c3(n

2
2 + n2

3), Ŵ22 = c1n2
2 + c3(n

2
1 + n2

3),

Ŵ33 = c1n2
3 + c3(n

2
1 + n2

2), Ŵ12 = Ŵ21 = n1n2(c2 + c3),

Ŵ13 = Ŵ31 = n1n3(c2 + c3), Ŵ23 = Ŵ32 = n2n3(c2 + c3),

Q1 = 2e14n2n3, Q2 = 2e14n1n3, Q3 = 2e14n1n2.

Here the following notations are adopted for the non-

zero components of the tensors of the linear electro-

optical (r̂S) and inverse piezoelectric (ê) effects, as well

as the components of the tensors of elasticity (ĉE) and

photoelasticity (p̂E):

rS
123 = rS

132 = rS
213 = rS

231 = rS
312 = rS

321 ≡ r41,

e123 = e132 = e213 = e231 = e312 = e321 ≡ e14,

cE
11 = cE

22 = cE
33 ≡ c1,

cE
12 = cE

13 = cE
23 = cE

21 = cE
31 = cE

32 ≡ c2,

cE
44 = cE

55 = cE
66 ≡ c3, pE

11 = pE
22 = pE

33 ≡ p1,

pE
12 = pE

23 = pE
31 ≡ p2, pE

13 = pE
21 = pE

32 ≡ p3,

pE
44 = pE

55 = pE
66 ≡ p4.

The index S for the component of tensor of linear electroop-

tic effect means that they were measured for the clamped

crystal; for components of tensors of the elasticity and

photoelasticity the index E means that they were measured

at a constant electric field. The elastic and photoelastic

properties of crystals are described by tensors of the

fourth rank (cE
i jkl and pE

i jkl), but in the given expressions

the components of these tensors have two indices, since

they are written using abbreviated matrix notation [23].
Parameters n1, n2, n3 are the guides of the unit vector n

in the crystallographic coordinate system, which is parallel

to the vector K. In the given expressions, the tensor γ̂ is

inverse of the tensor Ŵ̂ with components: Ŵik = cE
i jkln j nl,

where cE
i jkl — components of the elasticity tensor.

When solving the equations of coupled waves (1)
and (2), we used GaAs crystal parameters taken from [7,24]
for λ = 1.064µm, which corresponds to wavelength of

the radiation of solid-state Nd : YAG laser: refraction

index of unperturbed crystal n0 = 3.48 [7]; electro-

optical coefficient r41 = −1.43 · 10−12 m/V [7]; elasticity

coefficients c1 = 11.88 · 1010 N/m2, c2 = 5.38 · 1010 N/m2,

c3 = 5.94 · 1010 N/m2 [7]; photoelasticity coefficients

p1 = −0.165, p2 = p3 = −0.14, p4 = −0.072 [24]; piezo-
electric coefficient e14 = 0.154C/m2 [7].
The following methodology is used for calculations. In

the crystallographic coordinate system the direction of the

vector K is fixed, and taking into account the given ana-

lytical expressions the components of the inverse dielectric

permittivity tensor of GaAs crystal are calculated. Based

on expression (3), the normal components χ for various

directions of the vector e are found, and the maximum

value χmax is determined, which is assigned to the vector K.

Next, the procedure is repeated for other directions of the

vector K, resulting in the formation of an array of numerical

values χmax, each of which corresponds to specifically

oriented vector K. Based on the data obtained, a surface

is then constructed, it displays the dependence χmax(K).

Depending on the direction of the vector K the normal

component χ can take both positive and negative values.

A positive value χ means that under the influence of linear

electrooptical, photoelastic and inverse piezoelectric effects

the amplitude value n of the refraction index of the phase

grating will exceed the refraction index of the unperturbed

crystal n0: n = n0 + 1n, where 1n — amplitude of the

phase grating. In the opposite case, with negative value

of the normal component χ the equality n = n0 − 1n is

satisfied, i. e., the amplitude value n of the phase array is less

than n0. The difference in the signs before 1n is significant,

since it determines the direction of energy exchange during

two-wave mixing on the phase grating. The equality to

zero of the normal component χ means that for the given

direction of the vector K in GaAs crystal, as a result of the

interference of light waves, the phase grating is not formed.

Since the normal component χ can take both positive

and negative values, its maximum values χmax, accordingly,

can also have different signs. In this case, to construct the

surface χmax(K) you should use two independent spatial

shapes corresponding to the values χmax with different signs.

The method for constructing such surfaces is as follows. In

all possible directions of the vector K exiting from the origin

of the crystallographic coordinate system the segments equal

in length to the corresponding numerical value χmax are

plotted. The following rule is used: if the parameter χmax

has a positive sign, then the corresponding surface point

is painted in light gray color, and if χmax has a negative

value — in dark gray color (Figure 1). When the ends

of these segments are connected together, two surfaces

are formed, painted in different colors. As a result of

the superposition of these figures in the crystallographic

coordinate system a surface is formed that can be used to

display the dependence χmax(K). Some parts of the surfaces

of light and dark gray shapes will be in the geometric

shadow of each other, therefore, to study them the shapes

should be considered separately, as well as sections of the

surface χmax(K) with planes oriented in a certain way shall

be analyzed.

3. Results and discussion

Figure 1 shows a surface in the crystallographic coordi-

nate system, the surface illustrates the dependence χmax(K)
and is calculated for GaAs crystal based on formula (3).
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Figure 1. Dependence χmax on direction of grating vector K in

the crystallographic coordinate system.

Vectors (x1, x2, x3) form orthogonal basis and coincide in

direction with [100], [010] and [001] axes, respectively. The
cube visible in Figure 1 is an additional construction, the

edges of which are parallel to the vectors (x1, x2, x3) and

are used to set the parameter change interval χmax. When

considering the light gray part of the surface χmax(K), it

should be taken into account that the numbers plotted along

the coordinate axes correspond to positive values of the

parameter χmax, since the refraction index of the crystal

increases in these directions. For the dark gray part of the

surface χmax(K) the numbers plotted along the edges will

correspond to negative values of the parameter χmax, since

in this case the amplitude value of the grating of refraction

index will be smaller n0.

As can be seen from Figure 1, the surface χmax(K) is

a complex figure, which consists of eight symmetrically

located areas, equal to each other and painted in light and

dark gray colors. If we do not take into account the color

of the shape, then the elements of external symmetry of

the surface in accordance with the Neumann principle [23]
include elements of the point group of the crystal of

symmetry class 4̄3m: directions 〈100〉 correspond to three

rotation axes of the fourth order, and the directions 〈111〉,
which in Figure 1 coincide with the diagonals of the cube,

correspond to four rotation axes of the third order. If the

shape in Figure 1 is considered taking into account the color,

then we can say that the symmetry class of the surface

χmax(K) is reduced and corresponds to the point group 23,

since in this case the directions 〈100〉 correspond to the

rotation axes of second order. The change in the symmetry

of the shape can be explained by the Curie superposition

principle [23], according to which the properties of the

crystal subjected to external influence are determined.

When considering the surface χmax(K), one can first

see that the highest values of the normal component will

be achieved for such orientations of the vector K when

they will be deviated by a small angular distance from the

directions 〈110〉. The minimum values χmax will correspond

to directions in the vicinity of the axes 〈100〉.
The light and dark gray shapes, which combination form

the surface χmax(K), individually represent surfaces similar

to each other, which consist of four symmetrically located

tetrahedron-like convexities. Each of the shapes includes

elements of point group 23: the directions 〈100〉 correspond
to three rotation axes of the second order, and the directions

〈111〉 — to four rotation axes of the third order. Shapes

can coincide to each other by their rotation about the axes

〈100〉 on 90◦. It is important to note that the values of the

parameter χmax along the directions 〈111〉 for light and dark

gray shapes are significantly different. For example, if along

the [111] direction the parameter χmax for light gray shape

takes a value that is comparable to the largest, then for dark

gray shape the parameter χmax will be approximately equal

to zero.

The largest (extreme) value of the normal component

χextr for crystal with GaAs parameters cannot be achieved

when the vector K is oriented along the known directions

〈100〉, 〈110〉 and 〈111〉 — there are vector directions

different from those indicated K (hereinafter — extreme

directions Kextr), along which χmax reaches its extreme

value (χmax = χextr). Due to the high symmetry of the

surface χmax(K), the extreme directions Kextr will also be

symmetrically equivalent.

Let us consider a section of the surface χmax(K) by plane

parallel to (100) and passing through the origin of the

coordinate system. Figure 2, a shows the relative position

of the surface and the cutting plane. In Figure 2, b the dark

solid line represents the section trace, and also shows the

vectors x2, x3 and the direction [011]. The dashed circle is

an additional construction and its radius corresponds to the

largest value for the given section χmax = 6.75.

The dashed circle touches the surface χmax(K) in the

cutting plane along the directions 〈110〉. Thus, if the

vector K lies in one of the planes of type {100}, then the

greatest value χmax can be achieved when it is directed along

direction 〈110〉 lying in this plane. From a practical point

of view, this suggests that when writing the transmission

grating in GaAs crystal with (100) cut, the maximum

diffraction efficiency can be achieved at an orientation angle

for which the condition is satisfied: K ‖ 〈110〉. The smallest

value χmax in the cut plane, equal to 0.43, is achieved when

the vector K is oriented along the directions 〈100〉. For

other orientations of the vector K in the section plane, the

value χmaxvaries from 0.43 to 6.75.

Note that in Figure 2, b the traces of contact of the cut

plane with the light and dark gray shapes coincide with

each other, and therefore they are not highlighted in color,

but are designated uniformly with dark solid line. In the

general case, the traces of contact of the cut plane with

these shapes do not coincide, and in the future we will
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Figure 2. Section of the surface χmax(K) by a plane parallel to (100) and passing through the origin of coordinates.
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Figure 3. Section of the surface χmax(K) by the plane parallel to (110) and passing through the origin of coordinates.

mark the sections of light and dark gray surfaces with gray

and black lines, respectively.

Let us analyze the section of the surface χmax(K) by the

plane parallel to (110) and passing through the origin of

coordinates (see Figure 3). The radius of the dashed circle is

χmax = 6.95. The sections of the light and dark gray shapes

are symmetrical curves and can be aligned with themselves

by rotating by 180◦ about x3 axis, and by similar rotation

relative to direction [1̄10].
The points of tangent of the dashed circle with the surface

section χmax(K) in Figure 3 correspond to such orientations

of the vector K at which in the section plane it forms

angle 4◦ with the directions [1̄10] and [11̄0]. Since in

this case the radius of the circle is equal to the extreme

value χextr, we can say that such directions are extreme,

for which the equality χmax = χextr = 6.95 is satisfied. For

clarity, in Figure 3, b one of the extreme directions is marked

with the vector Kextr. Taking into account the symmetry of

the surface χmax(K), we can state that when the vector is

oriented K along any direction lying in the planes {110},
which makes an angle 4◦ with directions like 〈110〉 the

parameter χmax will reach its extreme value χextr.

Among the directions 〈100〉, 〈110〉, 〈111〉, 〈112〉 the

value χmax, closest to χextr, can be achieved at K ‖ 〈110〉.
In this case, the value χmax = 6.74 and is 97% of χextr.

Along the directions 〈112〉 the value χmax in the section
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Figure 4. Section of the surface χmax(K) by the plane parallel to (112) and passing through the origin of coordinates.

plane is approximately 6.07, which is 88% of χextr. Note

that for the light and dark gray shapes the values χmax along

the directions 〈112〉 are noticeably different. For example,

along the direction [1̄12] χmax reaches 6.07 for dark gray

shape and 2.1 — for light gray one, and in the direction

[11̄2̄] the situation is reversed. For the direction [1̄11] the
achieved value χmax is 5.36, which is by 25% lower than

χextr. In the section plane along directions of the type 〈100〉
and 〈110〉 values of χmax due to the symmetry of the surface

χmax(K) reach the same values as in Figure 2.

Figure 4 shows section of the surface χmax(K) by the

plane parallel to (112) and passing through the origin of

coordinates. Interest in studying such section is due to

the fact that in the literature analyzes cases when either

the wave vector K is directed along [112] direction, or

the working facet of the crystal is cut parallel to (112)
plane. For example, in the paper [25] the dependence of the

two-wave gain for non-unidirectional energy exchange by

reflection hologram on the angle of rotation of polarization

of the signal wave is analyzed for the case when the

wave vector K is directed along the direction [112̄]. In

the paper [17], when studying the orientation dependence

of the signal wave gain and the diffraction efficiency of

the transmission hologram during a codirectional two-wave

mixing in cubic crystal of cut (111), the case is analyzed

when, upon rotation in the cut plane, the wave vector K is

oriented along the direction [1̄1̄2].

Planes of the type {112} do not contain extreme direc-

tions since the largest value χmax in the section plane is 6.82,

which is less than the extreme value χextr = 6.95. The

dashed circle touches the section of the surface χmax(K) for
such vector orientations K at which they form small angles

(∼ 2◦) with the directions [1̄10] and [11̄0]. Since along

the directions 〈110〉 the parameter χmax takes value of 6.74,

it can be stated that when using GaAs crystal to record

phase hologram, the value close to the maximum value

of modulation refraction index in (112) plane is achieved

when the vector K coincides or makes a small angle with

the directions 〈110〉. Along the direction [1̄1̄1] the achieved

value χmax is 5.36, which corresponds to the data in Figure 3.

4. Conclusion

Increasing the signal wave gain and the diffraction

efficiency of hologram during two-wave coherent mixing in

the photorefractive crystal is a complex task that requires

joint consideration of a number of factors. The amplitude

control of phase holographic grating by choosing the optimal

orientation of the wave vector of the hologram in the

crystallographic coordinate system is one of the main ways

by which it is possible to increase the diffraction efficiency

of light waves.

The paper shows that extremely large values of the

modulation amplitude of the refraction index of photorefrac-

tive GaAs crystal when recording phase hologram can be

achieved if the wave vector of the grating lies in one of the

planes of type {110} and makes an angle 4◦ with direction

of type 〈110〉 lying in this plane. The modulation refraction

index value close in magnitude to the extreme value can

be achieved when the grating wave vector is oriented

along the directions 〈110〉. In this case, the amplitude of

the phase hologram can reach 97% of the extreme value.

When the grating vector is oriented along the directions

〈112〉 and 〈111〉, the maximum achievable amplitude of

the phase hologram will be less by approximately 12

and 25%, respectively. The minimum modulation of the

refraction index amplitude among the cases considered will

be achieved when the grating vector is oriented along the
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directions 〈100〉. When calculating the inverse dielectric

permittivity tensor of GaAs crystal the linear electrooptical,

photoelastic and inverse piezoelectric effects were taken into

account.

The results obtained can be used to select the optimal

orientation of the crystalline sample when conducting

experiments on holographic recording in the photorefractive

GaAs crystal. Also, the data obtained can be useful for

improving the efficiency of use of holographic interferome-

try devices, optical filtering and other applications that use

gallium arsenide crystals.
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