09

Электрическая площадь импульса в слое среды с электрической проводимостью

© Н.Н. Розанов¹, А.В. Пахомов², М.В. Архипов^{1,2}, Р.М. Архипов¹

ФТИ им. А.Ф. Иоффе РАН,
 194021 Санкт-Петербург, Россия
 ² Санкт-Петербургский государственный университет,
 199034 Санкт-Петербург, Россия

e-mail: nnrosanov@mail.ru, antpakhom@gmail.com, mikhail.v.arkhipov@gmail.com, arkhipovrostislav@gmail.com

Поступила в редакцию 12.12.2023 г. В окончательной редакции 12.12.2023 г. Принята к публикации 26.12.2023 г.

> Проведен анализ пропускания и отражения предельно короткого электромагнитного импульса в слое линейной среды с электрической проводимостью. Показано, что учет переходных пограничных слоев образца не меняет результатов рассмотрения задачи с резкими границами. Выводы радикально отличаются от получаемых в приближении однонаправленного распространения.

> Ключевые слова: предельно короткие импульсы, электрическая площадь импульса, электрическая проводимость.

DOI: 10.61011/OS.2024.02.57772.134-23

Введение

В связи с прогрессом в получении все более коротких лазерных импульсов и необходимостью отказа от ряда привычных в оптике многоциклового излучения приближений, таких как приближение медленно меняющейся огибающей [1], актуальным стал вопрос о разработке новых подходов к теоретическому описанию распространения предельно коротких импульсов. В настоящее время широко используется так называемое приближение однонаправленного распространения [2]. В работе [3] показано, что в рамках этого приближения важная для предельно коротких импульсов величина — электрическая площадь импульса не сохраняется в линейных средах с ненулевой электрической проводимостью, примером которых служит плазма. В [4] указано, что этот вывод вызван именно приближенным характером подхода однонаправленного распространения, тогда как в рамках строгих уравнений Максвелла или же следующего из них волнового уравнения электрическая площадь сохраняется и в этих средах.

Более широкий набор используемых в теории предельно коротких импульсов приближенных подходов анализируется в [5] применительно к правилу сохранения электрической площади. В настоящей работе проводится более подробное рассмотрение допускающей простое аналитическое решение задачи о структуре поля в слое линейной однородной среды.

Общие соотношения

Электрическая площадь импульса определяется следующим образом [6]:

$$\mathbf{S}_E = \int_{-\infty}^{\infty} \mathbf{E} \, dt. \tag{1}$$

Здесь Е — напряженность электрического поля и t время. Естественно, мы полагаем величину (1) конечной, так как нас интересуют импульсы, для которых в фиксированной точке пространства напряженность электрического поля отлична от нуля (заметно превышает шумовой уровень) только в течение конечного интервала времени. В монографии [7] и в ряде последующих работ эта величина фигурирует как "интеграл от поля по времени". Различные свойства электрической площади предельно коротких импульсов суммируются в обзорах [8-10]. Существенно, что величина электрической площади служит основным критерием эффективности взаимодействия таких импульсов с микрообъектами. В рамках плосковолнового (одномерного) приближения, которое используется в [4] и ниже в настоящей работе, из уравнений Максвелла следует, что электрическая площадь сохраняется при распространении в немагнитных средах [6]:

$$\frac{d\mathbf{S}_E}{dz} = 0, \tag{2}$$

где *z* — координата вдоль направления распространения излучения.

Прохождение и отражение излучения в слое среды с резкими границами (а) и при наличии пограничных слоев (b, заштрихованы).

(3)

Для сведения задачи к классической используем интерпретацию электрической площади импульса как нульчастотной спектральной компоненты поля:

 $\mathbf{S}_E = \lim_{\omega \to 0} \mathbf{S}_{\omega},$

где

$$\mathbf{S}_{\omega} = \int_{-\infty}^{\infty} \mathbf{E} \exp(-i\omega t) dt$$

 фурье-компонента напряженности электрического поля.

Рассмотрим отражение и прохождение плоской волны с частотой ω , падающей нормально из вакуума на слой среды с (комплексным) показателем преломления ε (рисунок, *a*). Опуская временной множитель $\exp(-i\omega t)$, знак вещественной части, и единичный вектор, указывающий направление линейной поляризации излучения, запишем решения волнового уравнения (уравнения Гельмгольца)

$$\frac{d^2E}{dz^2} + k^2(z)E = 0$$
 (4)

для распределения напряженности электрического поля в виде

$$z < 0: E = A \exp(ik_0 z) + B \exp(-ik_0 z),$$
$$0 < z < L: E = C \exp(ikz) + D \exp(-ikz),$$

$$z > L \colon E = F \exp[ik_0(z - L)].$$
⁽⁵⁾

Здесь $k(z) = k_0 = \omega/c$ при z < 0 и z > L и $k(z) = k = k_0 \sqrt{\varepsilon}$ при 0 < z < L (ветвь корня выбирается из требования убывания амплитуды "прямой" волны *C* при возрастании *z*). Условия непрерывности *E* и dE/dz на границах раздела приводят к соотношениям

$$\frac{C}{A} = \frac{2\frac{k_0}{k}(1+\frac{k_0}{k})}{(1+\frac{k_0}{k})^2 - (1-\frac{k_0}{k})^2 \exp(2ikL)},$$
$$\frac{D}{A} = \frac{2\frac{k_0}{k}(1-\frac{k_0}{k})}{(1+\frac{k_0}{k})^2 \exp(-2ikL) - (1-\frac{k_0}{k})^2},$$

$$\frac{F}{A} = C \exp(ikL) + D \exp(-ikL),$$
$$\frac{B}{A} = -1 + \frac{C}{A} + \frac{D}{A}.$$
(6)

Электрическая площадь

В пределе $\omega \to 0$ коэффициенты *A*, *B* и *F* переходят в электрическую площадь соответственно прямых и встречного импульсов; с некоторой долей условности можно также считать *C* и *D* электрическими площадями прямого и встречного импульсов внутри слоя. Ввиду линейности задачи без ограничения общности можно положить *A* = 1. Тогда *B* представляет амплитудный коэффициент отражения, а *F* — амплитудный коэффициент пропускания.

Для диэлектрика диэлектрическая проницаемость при нулевой частоте равна ее (конечному) статическому значению ε_0 . Из (6) при $\omega \to 0$ получаем

$$C = \frac{1}{2} \left(1 + \frac{1}{\sqrt{\varepsilon_0}} \right),$$

$$D = \frac{1}{2} \left(1 - \frac{1}{\sqrt{\varepsilon_0}} \right), \quad B = 0, \quad F = 1.$$
(7)

Тем самым электрическая площадь всюду совпадает с площадью падающего импульса. Для электрической площади слой полностью пропускающий, отражение отсутствует. Это согласуется с более общим выводом [11].

В случае среды с электрической проводимостью воспользуемся моделью Друде

$$\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)},$$
 (8)

где ω_p — плазменная частота и γ — показатель затухания. В пределе $\omega \to 0$ диэлектрическая проницаемость (8) обладает сингулярностью: $\varepsilon(\omega) \approx \frac{i\omega_p^2}{\gamma\omega}$. Но волновое число в такой среде $k = k_0\sqrt{\varepsilon} \approx \frac{q}{c}\sqrt{\omega}$, где $q = \sqrt{i\frac{\omega_p^2}{\gamma}}$. В этом случае из (6) находим

$$C=D=\frac{1}{2+\frac{\omega_p^2 L}{c\gamma}},$$

$$F = \frac{1}{1 + \frac{\omega_p^2 L}{2c\gamma}},$$
$$B = -\left(1 - \frac{1}{1 + \frac{\omega_p^2 L}{2c\gamma}}\right).$$
(9)

Таким образом, при наличии свободных зарядов электрическая площадь отличается от площади падающего импульса. В определении (1) она всюду постоянна в соответствии с общим правилом ее сохранения, не меняясь внутри слоя. Более того, внутри слоя площади прямой и встречных волн, определенные указанным выше образом, не зависят от продольной координаты zи равны друг другу.

Роль переходных слоев

Модель скачкообразного изменения диэлектрической проницаемости на границах слоя является идеализацией. В более точной модели такие границы заменяются дополнительными слоями с плавным изменением диэлектрической проницаемости между ее граничными значениями (рисунок, b). Влияние таких слоев может быть учтено в рамках теории возмущений [12]; известен и ряд зависимостей $\varepsilon(z)$, для которых имеются аналитические решения уравнения (4), включая слой Рэлея, $\varepsilon(z) = a(\omega)/z^2$ [13].

Анализ показывает, что переходные слои не меняют результаты модели скачкообразного изменения диэлектрической проницаемости, если их толщина l существенно меньше соответствующей длины волны излучения. Поскольку электрическая площадь импульса отвечает нулевой частоте и тем самым бесконечно большой длине волны $\lambda = \infty$, наличие переходных слоев никак не сказывается на коэффициентах отражения и пропускания, приведенных в предыдущем разделе. Это нетрудно подтвердить и для модели слоев Рэлея. Критерием здесь служит безразмерная величина [13]

$$p = \left(\frac{2\pi l}{\lambda}\right)^2 \left|\frac{\sqrt{\varepsilon}}{\sqrt{\varepsilon} - 1}\right|^2.$$
(10)

В интересующем нас случае p = 0, что и оправдывает модель скачкообразного изменения диэлектрической проницаемости.

Заключение

В настоящей работе в рамках плосковолнового (одномерного) приближения найдена электрическая площадь импульсов излучения, отраженного и прошедшего слой однородной среды с электрической проводимостью при наличии переходных приграничных слоев среды. Выводы существенно отличаются от предсказаний приближения однонаправленного распространения. При этом плосковолновое приближение может быть оправдано применительно к распространению импульсов в коаксиальных волноводах [14]. Другие варианты обоснования применимости результатов, такие как замена границы на наклонную или рассеивающую поверхность, требуют выхода за рамки одномерной геометрии и здесь не рассматриваются.

Важность аналитического характера выводов подчеркивается тем, что численные расчеты предельно коротких импульсов осложнены возможным наличием их трудно учитываемых фронтов. Ввиду этого численное моделирование, например в [15], может свидетельствовать о существовании выраженного униполярного импульса, сопровождаемого протяженным фронтом противоположной полярности с малой амплитудой. Такой вывод согласуется с результатом [11] и в то же время не уменьшает значимости расчетов [15], поскольку подобный фронт не оказывает влияния на эффективность воздействия импульса на микрообъекты [9].

Финансирование работы

Работа поддержана Российским научным фондом, грант 23-12-00012.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] М.Б. Виноградова, О.В. Руденко, А.П. Сухоруков. *Теория* волн (Наука, М., 1979).
- [2] M. Kolesik, J.V. Moloney. Phys. Rev. E, 70, 036604 (2004).
- [3] А.В. Богацкая, А.М. Попов. Письма в ЖЭТФ, 118, 291– 296 (2023).
- [4] Н.Н. Розанов, М.В. Архипов, Р.М. Архипов, А.В. Пахомов. Письма в ЖЭТФ, 118, 620–621 (2023). [N.N. Rosanov, M.V. Arkhipov, R.M. Arkhipov, A.V. Pakhomov. JETP Lett., 118, 608–609 (2023)].
- [5] А.В. Пахомов, Н.Н. Розанов, М.В. Архипов, Р.М. Архипов. Письма в ЖЭТФ, 119, 100–110 (2024). [А.V. Ракhomov, N.N. Rosanov, M.V. Arkhipov, R.M. Arkhipov, JETP Lett., 119, 94–103 (2024)].
- [6] Н.Н. Розанов, Опт. и спектр., 107, 761 (2009). [N.N. Rozanov. Opt. Spectrosc., 107, 721 (2009)].
- [7] J.D. Jackson. Classical Electrodynamics (J. Wiley, New York, 1962). [Дж. Джексон. Классическая электродинамика (Мир, М., 1965)].
- [8] Н.Н. Розанов, Р.М. Архипов, М.В. Архипов. УФН, 188, 1347 (2018). [N.N. Rosanov, R.M. Arkhipov, M.V. Arkhipov. Phys. Usp., 61, 1227 (2018)].
- [9] Р.М. Архипов, М.В. Архипов, Н.Н. Розанов. Квант. электрон., **50**, 801–809 (2020). [R.М. Arkhipov, M.V. Arkhipov, N.N. Rosanov. Quant. Electron., **50**, 801 (2020)].
- [10] Н.Н. Розанов. УФН, **193**, 1127–1133 (2023). [N.N. Rosanov. Physics Uspekhi, **66** (10), 1059–1064 (2023)].

- [11] M.V. Arkhipov, R.M. Arkhipov, A.V. Pakhomov, I.V. Babushkin, A. Demircan, U. Morgner, N.N. Rosanov. Opt. Lett., 42, 2189 (2017).
- [12] Н.Н. Розанов, В.М. Золотарев. Опт. и спектр., 49, 925–932 (1980).
 [N.N. Rozanov, V.M. Zolotarev. Opt. Spectrosc., 49, 506 (1980)].
- [13] С.Г. Раутиан. Введение в физическую оптику (Книжный дом "ЛИБРОКОМ", М., 2009).
- [14] Н.Н. Розанов. Опт. и спектр., **127**, 960 (2019). [N.N. Rosanov. Opt. Spectrosc., **127**, 1050 (2019)].
- [15] V.V. Kozlov, N.N. Rosanov, C. De Angelis, S. Wabnitz. Phys. Rev. A, 84, 023818 (2011).