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Using the Thomas–Fermi–Patil method, a model potential of a Rydberg electron moving in the field of an atomic

core with closed shells is obtained. Quantum defects of Rydberg states are calculated in the WKB approximation.

The necessity of jointly taking into account the screened and polarization components of the model potential is

demonstrated. The values of the
”
cutoff“ radius in the formula for the polarization potential for a Rydberg electron

are found. The limits of applicability of the Thomas–Fermi–Patil method for calculating quantum defects have been

clarified: the cores of alkali atoms K, Rb, Cs from group 1 and similar singly charged alkaline earth ions Ca+, Sr+,

Ba+ from group 2 of the Periodic table. Here, significantly penetrating s , p and d states of a Rydberg electron have

the quantum defect exceeding unity. The proposed approach can be used in testing the accuracy of various density

functionals and model potentials.
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Introduction

The Rydberg atoms (ions) are excited atoms (ions),
wherein one or several electrons have a big principal

quantum number (up to n ∼ 1000) [1]. Despite the

discovery of the Rydberg series in the atomic spectra by

I. J. Balmer in 1885, the interest to the Rydberg states has

only grown for the last two decades [2]. These atoms have

specific properties, in particular, abnormally high response

to impact of external electromagnetic fields and a long

lifetime.

The Rydberg atoms (RAs) are important for the fun-

damental physics. For example, the radiation lifetimes

of the atoms in the meta-stable Rydberg states in the

optical traps [3] are required both to understand the

data obtained from the astrophysical observations of the

interstellar space and to test the Standard Model [4]. The

diamagnetic susceptibilities in RAs reach abnormally high

values ∼ n4 [5]. The large sizes (∼ 1 µm) and the

high susceptibilities of RAs determine the most important

properties of plasma [6]. It results in manifestation of new

non-linear properties of the Rydberg matter, for example,

dipole blockade [7], electro-induced transparency [8] and

substantially non-linear behavior of the interacting RAs

at the level of individual optical photons [9–13]. The

various RA application areas include high-precision mea-

surements [14,15].

The RA spectrum is similar to the hydrogen one with

replacement n → n − µ, where µis the quantum defect

(QD) being the main characteristic of the Rydberg states.

Therefore, the RAs are suitable for theoretical study.

However, it is difficult to obtain a radial wave function

of the Rydberg electron (RE) due to a large number

of its oscillations (∼ n). Thus, there is a problem of

obtaining the QD values and understanding the mecha-

nisms of its occurrence. The first accurate calculations

of the Rydberg spectrum of magnesium were performed

in the paper [16] with the close-coupling method taking

into account Coulomb, multipole and polarization inter-

actions. The similar results for neon were obtained in

the paper [17] using the Kohn–Sham functional. The

Rydberg spectrum of calcium was calculated in the

paper [18] with the self-consistent field method. The

paper [19] has studied the atoms of the carbon group

using the R-matrix approach. At last, the recent calcu-

lations of the Rydberg spectra have widely used various

model potentials [20]. The substantial drawback of the

listed methods is their application to a specific atom

only.

It would have been convenient to obtain the model

potential of the RE numerically with the Thomas–Fermi

(TF) method. This statistical method can be considered

as a semi-classical limit of the Hartree–Fock equations. In

the recent decades, the TF method has been successfully

used in investigating the properties of heated plasma under

the external electromagnetic fields [21,22]. However, the

TF method poorly reproduces the electron density near the

nucleus and at the periphery of the core of the residual

ion. These are the domains which are important for the

calculations of the RE spectra. There were numerous

attempts to improve the TF method [23–26]. It seems

that the most suitable implementation of the TF model

for practical application is its modification proposed by

S. Patil [27,28]. Hereinafter, this implementation of the
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TF method will be referred to as the Thomas–Fermi–Patil
(TFP) model.

The polarization potential of the core noticeably affects

the RE motion [29]. Usually, its analytical formula contains

free parameters. The correlation polarization potential

without the free parameters has been obtained for scattering

of electrons on the atoms in [30]. But, the authors of [30]
were limited themselves to the helium atom.

The first successful QD calculations within the framework

of the TFP model have been performed by the author

for some atoms and ions in the paper [31]. However,

the recently-obtained new data on the Rydberg levels

in [32] make it possible to study in more detail QDs

and polarization interaction of RE with the core, thereby

substantially enlarging the set of the studied atoms and ions.

This study is aimed at developing a simple single-particle

method of the model potential for calculating QDs of the

Rydberg states of a single electron moving above the core

consisting of closed shells. Such systems are exemplified

by the atoms of groups 1, 11 and ions of the elements of

groups 2, 12 of the Periodic table. These atoms ans ions are

often used in the physics of the Rydberg states [12,33]. The
TFP method will underlie the research. After comparison of

the results with reference data, the calculations and analysis

of the parameters of the polarization interaction of RE with

the core will be performed. It will result, in addition to [31],
in refinement of limits of applicability of the TFP method.

The required formulas are derived in Section 1. Subsec-

tion 1.1 describes a general structure of the RE model po-

tential and lists the properties of the polarization component.

Subsection 1.2 specifies the TFP method for calculating the

screened and polarization components of the RE potential.

Subsection 1.3 derives the WKB formula of the RE quantum

defect in the model potential. The numerical results are

given and discussed in Section 2. The quantum defects

are analyzed in Subsection 2.1, the ≪cutoff≫ radii of the

polarization potential are considered in Subsection 2.2. The

main conclusions are given in Conclusion. The cumbersome

intermediate calculations used in derivation of the quantum

defect formula are given in Appendix. Hereinafter, unless

specified otherwise, the atomic system of units is used

(ℏ = e = me = 1).

1. Theoretical model for calculation of
quantum defects

The present paper deals with the RE motion in a neutral

atom of the alkali element, in a single-charged cation of the

alkaline earth element, etc.In this case, the RE is affected

by the Coulomb field of the point nucleus with the charge

number Z and the electrostatic field of the Nc -electron

core of the residual ion consisting on the closed shells

only. Therefore, there is no nonlocal exchange interaction in

the RE Hamiltonian, thereby making it possible to restrict

ourselves to a potential approach when describing the RE

motion. It means that the electron will move in a certain

r

r'

+Z

Nc

e

Figure 1. Polarization of the core by the Rydberg electron.

central field VRyd(r), which has no multipole component

and satisfies the condition

VRyd(r) →
{
−Z/r, for r → 0,

−z/r, for r → ∞.
(1)

Here, z = Z − Nc is the charge of the residual ion. For the

neutral atom z = 1, for the single-charged ion z = 2, etc.

1.1. Model potential of the Rydberg electron

This subsection analyzes the structure of the model

potential VRyd(r). It can be assumed that the RE potential

in the atom (or the ion) consists of the two terms:

VRyd(r) = −φscr(r) − φpolar(r). (2)

Here φscr(r) is the potential of the residual ion. It is the

potential of the nucleus incompletely screened by the core

shells, so it obeys the boundary conditions:

rφscr(r) ≈
{

Z, for r → 0,

z + h(r) e−qr , for r → ∞,
(3)

where q > 0 is a certain constant of screening, the function

h(r) can increase not faster than the exponential. The

potential φscr(r) has no multipole component due to

spherical symmetry of the core.

The term φpolar(r) is caused by reverse impact of the RE

on the core of the remaining ion. There is electrostatic

repulsion between the RE and the core, so the core is

somewhat deformed (Fig. 1). In other words, the RE

Coulomb field causes deformation (or polarization) of the

core. The core deformation results in an additional term

φpolar(r) in the potential, which additionally affects the RE.

To obtain an explicit form of φpolar(r), first of all, it is
necessary to investigate the core response to the external
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electrostatic field with the potential V (r). Its the 2L-pole

component VL has the following form:

VL(r) = −ζL

Nc∑

i=1

rL
i PL(cos θi), (4)

where the angle θi specifies orientation of the radius-vector

of the i-electron ri with respect to the electric vector of

the dipole component, PLis the Legendre polynomial, ζLis

a small parameter.

If the field strength (4) is much less than the inter-atom

one, then the core potential gets a little addition

δφL(r) = ζLηL(r)PL(cos θ) = ζL

√
4π

2L + 1
ηL(r)YL0(r̂),

(5)
where r̂ ≡ r/r , YLM(r̂)is the spherical harmonic, and the

function ηL(r) meets the boundary conditions:

ηL(r) ≈
{

aLrL, for r → 0,

rL − αL/rL+1, for r → ∞,
(6)

where aL and αLare the constants to be defined.

The electron density ρ(r) > 0 is related to the electro-

static potential φ(r) in any point of space via the Poisson

equation:

∇2φ(r) = 4πρ(r).

Outside the charge distribution region, the Poisson equation

becomes homogeneous and transforms to the Laplace

equation. The solid harmonics rLYLM(r̂) and r−L−1YLM(r̂)
satisfy the Laplace equation, so, in accordance with (5), (6)

∇2δφL(r) ≈ 0, r → 0, ∞.

The next step will include calculation of a correction to

energy of Coulomb interaction of RE with the core, which is

caused by polarization. It should be done by using multipole

expansion of the Coulomb potential created by RE:

|r− r′|−1 =

∞∑

L=0

rL
<

rL+1
>

PL(cos θ), (7)

where ris the RE coordinate, r′is the coordinate of

the observation point of the RE electric field (Fig. 1),

r< = min(r, r ′), r> = max(r, r ′), θ = (r̂, r′).
The classical speed of the RE in the Bohr orbit is much

less than the electron speeds inside the core, so, it can

be concluded that core configuration does ≪follow≫ the

Rydberg electron. This situation is partially similar to the

applicability condition of the Born–Oppenheimer approxi-

mation in the molecule. Thus, the retardation effects for

the atom’s electromagnetic field can be neglected to restrict

ourselves to taking into account only the electrostatic effects.

Since the radius of the classical Rydberg orbit substantially

exceeds the core radius, then in the expansion (7) it is

enough to assume that r< = r ′, r> = r . After this, the

expansion (7) will be similar to (4) with the small parameter

ζL = −r−L−1. The smallness of polarization interaction

makes it possible to independently consider the contribution

of each multipole component.

The correction δφL comprises not only the change of the

potential created by the core deformation, but a disturbing

potential created by the RE (see the boundary condition (6)
at r → ∞). Therefore, φpolar will be obtained by excluding

this self-action from ηL. As a result,

φpolar(r) ≈ 1

2

∞∑

L=1

rL − ηL(r)

rL+1
. (8)

There is no analytical formula for ηL(r). Nevertheless, in
accordance with (6), the asymptotic correction to the RE

potential caused by the dipole component is provided by a

comparatively simple model formula

φpolar(r) ≈ α1

2r4
, r → ∞ (9)

where α1is the dipole polarizability of the core [34].
The formula (9) neglects the contribution of the highest

multipoles, i.e. only a long-range component is taken

into account. It should be noted that in the case of the

open-shell core with a non-zero total orbital momentum

the polarization potential at infinity would decrease more

slowly: φpolar(r) ∼ r−3.

It is impossible to directly use the model formula (9)
instead of (8) in calculation of the RE spectrum due to

electron drop to the center in the field ∼ r−4 when r → 0.

Therefore, in practice the expression (9) is ≪cut off≫ in the

vicinity zero, i.e. it is replaced by a zero-regular expression

φpolar(r) ≈ α1

2r4

(
1− e−r 6/r 6c

)
, (10)

containing the free parameter rc . This parameter (the
≪cutoff≫ radius) is selected empirically, for example, to

obtain the result stable to its variations and having a core

size’s order. The expression (10) is often used to describe

interaction of the atom with slow charged particles. In

addition to (10), there are other forms of regularization of

φpolar(r), for example:

φpolar(r) ≈ α1r2

2(r2c + r2)3
, (11)

φpolar(r) ≈ α1

2(r2c + r2)2
. (12)

It should be noted that the ≪exact≫ expression (8)
also requires regularization in zero, since it has been

obtained in the approximation r ≫ r ′ . The perturbation

approach cannot be applied outside this approximation. The

regularization (8) is detailed in the next subsection.

Thus, for practical calculations of the RE spectra, the

potential approach will include the use of the screened

potential of the nucleus φscr(r) and the dipole polarizability

of the core α1.
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1.2. Thomas–Fermi–Patil method

The present subsection specifies the modern modification

of the statistical TF method for calculating the screened φscr

and polarization φpolar components of the potential (2).

1.2.1. Screened potential The TF method is one of

the those for obtaining the potential φscr, which is created by

the nucleus with the charge Z and by the core with the Nc

electrons in the Rydberg atom or ion. This method requires

solving the single differential equation instead of the system

of Hartree-Fock equations.

As known, the TF method is based on the Poisson

equation, which for the spherically symmetrical distribution

of the screening charge has the following form

1

r
d2

dr2
[φscr(r)] = 4πρ0(r), (13)

where ρ0(r)is the local electron density in the core. The

Telectrons in the TF model are presented as a completely

degenerate ideal gas that obeys the Fermi–Dirac statistics

and stays in the field of the atomic nucleus. Then, the

density ρ0 and the potential φscr will be interrelated by the

relationship:

ρ0(r) =
1

3π2
{2[φscr(r) − Ec ]}3/2 +

11

9π3
{2[φscr(r) − Ec ]},

(14)

where Ec is the core ionization energy. The first term of (14)
is of a statistical nature. It was obtained by Thomas [35]

and Fermi [36]. The second term takes into account

the exchange (Dirac) [37] and quantum (Schwinger) [38]
corrections. Therefore, the electron density in the form (14)

is sometimes called the Thomas–Fermi–Dirac–Schwinger

model (TFDS). It should be noted that the formula (14)

is a particular case of the density functional.

The TFDS model (14) is applicable in a classically

accessible region, i.e. in case of meeting the condition

Ec < φscr(r). (15)

In other words, the TFDS model can be used within the

interval

Z−1 . r . (Z − Nc + 1)−1, (16)

wherein the semi-classical approximation can be applied for

the core electrons.

However, near the nucleus and at great distances, i.e.

when (16) is violated, the formula (14) provides an incor-

rect result. The point is that together with inapplicability of

the semi-classical approximation, these domains also have a

low electron density, therefore, the laws of statistical physics

are not applicable. The modification of the TFDS method

bypassing the said drawback has been proposed by S. Patil

in the papers [27,28]:

ρ0(r) =

{
1

3π2

[
2r(φscr − Ec)

r + c1

]3/2

+
11

9π3

[
2r(φscr − Ec)

r + c1

]}
θ(φscr − Ec)

+
A
4π

(
2κr

2κr + 1

)v (
r +

1

2κ

)
−2β

×
(
1− κc2

2κr + 1

)2

%e−2κr . (17)

Here,

κ =
√
2Ec , β = 1− z/κ, z = Z − Nc + 1

is the charge of the residual ion. The Heaviside function

θ(φscr − Ec) provides for meeting the condition (15), and,
therefore, the first term of (17) describes the local electron

density in the classically accessible region of the electron

motion. The constant c1 is introduced to describe the charge

density near the nucleus. Its value can be obtained by

numerical solving the equation

[
3

(
2Z
c1

)1/2

+
22

3π

][
g ′(0) − Ec −

Z
c1

]

= −(2Z)2%

[(
2Z
c1

)1/2

+
11

3π

]
, (18)

g(r) = rφscr(r)

by the iteration method with selecting c1 ≃ 0.95Z−1.05 as a

zero approximation. Namely, first of all, the equation (13)
is solved with the right-hand side as (17) and with the value

c1 as the zero approximation; then, the first approximation

for c1 is derived from the equation (18). Next, the cycle is

repeated until the difference between subsequent values of

c1 becomes smaller than a specified value. The difference

between the exact and initial values ofc1 can be up to

10%. Thus, the TFP method comprises elements of the self-

consist field method. The factor r/(r + c1) is introduced to

eliminate singularity at zero.

The second term of (17) describes the asymptotic form of

the electron density away from the nucleus in the classically

forbidden region of motion. For the large and small values

of Nc

v =

{
2, for 2 6 Nc 6 17,

4, for Nc > 18.

The constant c2 is determined by the orbital quantum

number of the electron in the outermost shell of the core lc

by the formula

c2 =
1

κ
(β + lc)(β − lc − 1) − 1

2κ
(v + 2β). (19)
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The value of the constant A can be found from the first

boundary condition (3) to the equation (13):

rφscr(r) → Z, r → 0. (20)

In practical calculations, zero can be replaced by a small

distance to the nucleus, for example, ∼ 10−6 Bohr.

The second boundary conditions follows from (3). It is

caused by behavior of the electron density at infinity and

within the framework of the TFP model [28] it takes the

form:

rφscr(r) → Z − Nc + A
[

f (v + 2β)

− c2 f (v + 2β + 1) +
1

4
c2
2 f (v + 2β + 2)

]
, (21)

r → ∞,

where

f (a) →
{

1

(2κ)2
+

2

(2κ)3

[
v + 1

r
− 2κa

2κr + 1

]

+
3

(2κ)4

[
v + 1

r
+

4κ2a(a + 1)

(2κr + 1)2
− 4κa(v + 1)

r(2κr + 1)

]
+ . . .

}

× rv+1

(r + 1/2κ)a
e−2κr .

In practice, the present study replaces infinity with the

distance ∼ 4N1/3
c Bohr, which substantially exceeds the core

radius.

Taking into account (17), the Poisson equation (13)
becomes non-linear.

Thus, the modification proposed by Patil introduces

two additional parameters into the traditional TFDS model

containing only the parameters Z and Nc , as follows: lc

and Ec . Unlike the TFDS model, the TFP model formally

cancels the limitations (15) and (16). In particular, the TFP

model correctly reproduces the electron density at the core

periphery and can be used for solving the problems, which

require the wave functions in the asymptotically remote

region, for example, when investigating interaction of the

atoms with optical radiation. However, actual applicability

of the TFP requires additional investigation.

1.2.2. Polarization corrections If the residual ion is

subjected to impact of the 2L-pole potential (4), then its

electron configuration is deformed resulting in polarization.

If the potential (4) is small as compared to the field inside

the core, then its influence can be regarded as perturbation

and taken into account by a respective correction to the local

electron density in the TFP model:

φ → φscr + δφL = φscr + ηL(r)PL(cos θ).

The function ηL(r) can be obtained by solving the non-linear

equation [28]:

1

r
d2

dr2
(rηL) −

L(L + 1)

r2
ηL = 4π

{
1

2π2

[
2r

r + c1

]3/2

× (φscr − Ec)
1/2+

11

9π3

[
2r

r + c1

]}
θ(φscr − Ec) ηL

+
2ArL+1

κ(L + 1)

(
2κr

2κr + 1

)v

(r + 1/2κ)−2β

×
[
1− κc3

2κr + 1

]2

e−2κr . (22)

Here, the constant c3 is defined similarly to c2 (19):

c3 = −(v + 2β)/2κ.

Only the solutions (22) meeting the boundary conditions

(6) are selected. The constants aL and αL are obtained from

the equations

ηL(R0) = RL
0 −

αL

RL+1
0

, η′
L
(R0) = LRL−1

0 + (L + 1)
αL

RL+2
0

,

(23)
whence

αL =
RL+1
0

L + 1
[R0η

′

L
(R0) − LRL

0 ]. (24)

The constant aL is implicitly included in (23) via ηL. The

distance R0 is selected larger as compared to the core radius

(as mentioned above, the present paper specifies it to be

R0 ≈ 4N1/3
c ). The constant αL is mentioned in [28] as the2L-

pole polarizability (at L = 1 it coincides with the usual

dipole polarizability α; at L = 2 it differs from the usual

hyperpolarizability γ by the constant factor: α2 = γ/48).
The polarization interaction (8) in the TFP model is

regularized in the same way as the density (17):

φpolar(r) ≈ 1

2

(
r

r + c1

)v ∞∑

L=1

rL − ηL(r)

rL+1
. (25)

As shown by the calculations, the polarization corrections

are mainly contributed only by the dipole component φpolar,

i.e. it is enough to take into account only VL(r) with L = 1.

The contribution of the non-dipole terms VL(r) into φpolar

usually does not exceed ∼ 0.1%.

1.3. WKB formula of the quantum defect

It is convenient to describe the RE energy spectrum due

to the Coulomb asymptotic form of the potential VRyd(r) at

r → ∞ with the following formula

Enl = − z 2

2ν2nl

, (26)

where n and lare the principal and orbital quantum numbers,

respectively,

νnl = n − µnl

Optics and Spectroscopy, 2023, Vol. 131, No. 10



1262 A.S. Kornev

is the effective principal quantum number (non-integer),
µnl is the quantum defect, which in case of meeting the

conditions

n ≫ max(l, 1) (27)

ceases to depend on n:

lim
n→∞

µnl = µl . (28)

Calculation of the QD µl is the primary aim of this

subsection.

Without taking into account the spin, the RE wave

function in the states with the given values of the squared

orbital momentum and its projection is factorized into a

radial and angular parts:

ψnlml(r) =
1

r
Rnl(r)Ylml (r̂),

where ml is the magnetic quantum number.

The radial wave function Rnl(r) satisfies the radial

Schrödinger equation taking into account (26)

−1

2

d2Rnl

dr2
+

[
l(l + 1)

2r2
+ VRyd(r)

]
Rnl = − z 2

2ν2nl

Rnl (29)

and is normalized to the unity by the condition

∫
∞

0

R2
nl(r) dr = 1.

The excited states of the alkali atoms were investigated

in the model potential in the pioneering study [39]. The

potential VRyd(r) was obtained there within the Thomas–
Fermi method accounting for the Amaldi correction [40].
In order to rectify the influence of the incorrect form of

VRyd(r) at the core periphery, the authors of [39] used

specific schemes for solving the radial Schrödinger equation

(29). The present paper will use the potential VRyd(r) found
with the TFP method. The equation (29) will be solved in

the WKB approximation. This approach is more simple as

compared to [39].

As well-known, for the highly-excited states in the

potential with the Coulomb asymptotic form, the WKB

approximation is always applicable. The Rydberg states

satisfy this condition (see (1) and (27), as well as [41]).
However, for the central field, the WKB formulas somewhat

differ from the case of one-dimension motion. In particular,

the Bohr–Sommerfeld formula takes the form [42]:

∫ r 2

r 1

pnl(r) dr = π(n −Ll), n = l + 1, l + 2, . . .

(30)

Here, the classical momentum is given by the expression

pnl(r) =
√
2

[
− z 2

2ν2nl

−VRyd(r) − L
2
l

2r2

]1/2

,

r1,2are the classical turning points, wherein pnl goes to zero

(in the s -states it is assumed that r1 = 0),

Ll = (1− δl0)

(
l +

1

2

)
. (31)

In the states with l > 0 the value Ll differs from the exact

value
√

l(l + 1), thereby resulting in an additional term

1/(8r2) appearing in the centrifugal potential. However,

when Ll is selected as specified in (31), it provides exact

values both for the energies of the bound states and for

the scattering phases when the electron moves in a purely

Coulomb field of attraction.

The equation (30) is scarcely suitable for numerical

calculation of QDs. With the growth of n, the classical

turning point is shifted to infinity as r2 ∼ n2/z , while the

integrand pnl(r) is still a limited magnitude, due to an

asymptotic form of (1). Thus, the value of the integral

is unlimited and it monotonically increases with increase of

n. The right-hand side of the equation (30) linearly depends

on n. Therefore, for the case of infinitely large values of n,
computer numerical solving the equation (30) can exhibit

both accuracy loss and bit overflow.

This problem can be solved quite simply, if the potential

VRyd(r) is represented in accordance with (1) as

VRyd(r) = vRyd(r) − z
r
,

where vRyd(r)is the short-range component, which de-

creases faster than ∼ r−2 at large distances.

Let r1 < R < r2be a finite radius of action of the

component vRyd(r), starting from which it can be neglected

to transform the integral in the equation (30) into the

following form:

∫ r 2

r 1

pnl(r) dr =

∫ R

r 1

pnl(r) dr +

∫ r 2

R
p(0)

nl (r) dr, (32)

where p(0)
nl (r)is the classical electron momentum in the

pure Coulomb potential, which differs from pnl(r) by

replacement

VRyd(r) → −z/r.

The second integral of (32) can be analytically evaluated

by the replacement

r = r(ϕ) = anl(1− ǫnl cosϕ), (33)

where

anl =
ν2nl

z
, ǫnl =

√
1− M2

l

ν2nl

are the parameter and eccentricity of the electron classical

orbit, respectively. Such replacement is used in [43] when

solving the classical Kepler’s problem. After (33) done, the

integration limits are transformed into the form:

R → ϕnl = arccos

[
1

ǫnl

(
1− R

anl

)]
, r2 → π.
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The final analytical expression for the second integral in

(32) has a quite cumbersome but elementary form (see
Appendix):

∫ r 2

R
p(0)

nl (r) dr = π(νnl − M l) − νnl(ϕnl + ǫnl sinϕnl)

+ 2Ll arctan

[
Ll

νnl(1− ǫnl)
tan

ϕnl

2

]
. (34)

Under the condition (27), the formula (34) can be

simplified by expanding the right-hand side into the Tailor

series in powers of the small parameters Ll/νnl and z R/ν2nl
and neglecting the terms O(ν−1

nl ) (see Appendix):

∫ r 2

R
p(0)

nl (r) dr ≈ π(n − µnl −Ll) − 2Ll(4l − arctan4l),

(35)
where

4l =

√
2z R

L2
l

− 1. (36)

It is clear from (35) that as n increases, the integral will

infinitely increase only due to the term πn. The other terms

except for µnl will not depend on n at all.

After substitution of (35) into (32), the terms πn of the

Bohr–Sommerfeld equation (30) cancel each other out. In

the limit n → ∞, the Bohr–Sommerfeld equation provides

an explicit formula for the QD, which ceases to depend on

n in accordance with (28):

πµl =

∫ R

r 1

pl(r) dr − 2Ll(4l − arctan4l). (37)

Here,

pl(r) = lim
n→∞

pnl(r) =
√
2

[
−VRyd(r) − L

2
l

2r2

]1/2

,

and the quantity 4l is defined by (36).
In case of the s -states (l = 0), the expression (37) will

be formally transformed by the limit transition Ll → 0:

πµs =

∫ R

r 1

ps(r) dr −
√
8z R, (38)

where

ps(r) =
√
−2VRyd(r).

The formulas (37) solve the assigned problem of QD

calculation in the WKB approximation. They require

numerical integration of the classical momentum over the

range of action of the ionic core. In other words, the QD is

expressed in quadratures. The radius R is selected so as to

negligibly change the result with its insignificant variation.

It is easy to make sure that if the pure Coulomb potential

−z/r is selected as VRyd(r), then QD will tend to zero.

Thus, the QD is caused the core presence in the potential

VRyd(r) and by penetration of RE into this core.

2. Numerical results and discussion

This section provides the results of numerical calculation

of the QDs and the parameter rc in the potential of

polarization interaction of RE with the core (10) in several

atoms and ions with one highly excited electron above the

core with the closed shells. The components of the potential

VRyd(r) have been obtained by numerical integration of the

differential equations (13) with the boundary conditions

(20), (21) and the equations (22) with the boundary

conditions (6) in the Wolfram Mathematica package with

automatic selection of the method and the step. The atoms

and ions with the outermost s2 shell of the core (Li, Be+),
p6 shell (Na, Mg2, K, Ca+, Rb, Sr+, Cs, Ba+) and d10 shell

(Cu, Zn+, Ag, Hg+) were considered. Only the nll+1/2-

configurations of the Rydberg electron have been studied.

First of all, the TFP method has been tested by calculating

the QDs of the Rydberg states using the formulas (37) and

(38). The obtained values were compared with the reference

data. Then, the same method was used to find the values

of the ≪cutoff≫ radiusrc in the polarization potential (10).
The numerical results are given in Tables 1 and 2. The core

ionization energy Ec was taken from [32].

2.1. Quantum defects

The quantum defects calculated within the TFP method

have been compared with those obtained from the NIST-

tabulated reference energy levels E(ref)
nl (in cm−1) of the

excited states of the atoms and ions [32] at the fixed l by

the formula

µ
(ref)
nl = n − z

√
RyM

E(ref)
nl − IL

, (39)

where ILis the ionization limit, RyM = Ry
∞
/(1 + me/M),

Ry
∞

= 109 737.04 cm−1is the Rydberg constant, meis the

electron mass, Mis the nucleus mass. The consideration

included the most common stable isotopes.

It should be noted that the information system [44] that
is different from the NIST database, has the Rydberg atom

levels with the higher values of the principal quantum

number n with the same accuracy as in [32]. However, with

the growth of n, the formula (39) subtracts more and more

closer numbers. As a result, the accuracy of QD calculation

starts quickly decreasing, if n exceeds the values from [32].
In this situation, it is impractical to use the information

system [44].
The Ritz formula was applied to the quantum defects (39)

(it is the asymptotic series):

µ
(ref)
nl = µ

(0)
l + µ

(2)
l [n − µ

(0)
l ]−2 + µ

(4)
l [n − µ

(0)
l ]−4 + . . .

(40)

The parameters µ
(0)
l , µ

(2)
l , µ

(4)
l , . . . were obtained by non-

linearly fitting the formula (40) to the values of µ
(ref)
nl for

the entire set of the involved principal quantum numbers n
by the least-square method. In accordance with the results
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Table 1. Quantum defects in the atoms and cations µl and the ≪cutoff≫ radii of the polarization potentials of their cores r c in the TFP

model (see explanations in the text)

Quantum defect µl

Atom Ec , α1, Configu Only φscr µ
(ref)
l r c , R i ,

(ion) eV Bohr3 ration φscr +φpolar Bohr Bohr

Li 75.64 0.1923 [He]ns 0.355 0.363 0.400 0.576(3) 1.44

[He]np 0.007 0.014 0.048 −

Be+ 153.9 0.05226 [He]ns 0.233 0.236 0.260 0.374(2) 0.85

[He]np 0.017 0.022 0.050 −

Na 47.29 1.001 [Ne]ns 1.266 1.329 1.348 0.826(2) 1.93

[Ne]np 0.597 0.704 0.855 0.584

[Ne]nd 0.000 0.010 0.015 −

Mg+ 80.14 0.4533 [Ne]ns 0.996 1.034 1.067 0.567(2) 1.36

[Ne]np 0.536 0.593 0.695 0.461(1)
[Ne]nd 0.004 0.017 0.046 −

K 31.63 5.480 [Ar]ns 2.011 2.123 2.180 1.197(3) 2.61

[Ar]np 1.431 1.578 1.711 1.140(1)
[Ar]nd 0.002 0.039 0.277 1.125(1)
[Ar]n f 0.000 0.006 0.010 −

Ca+ 50.91 3.26 [Ar]ns 1.669 1.747 1.803 0.968(1) 1.89

[Ar]np 1.243 1.338 1.429(1) 0.898(3)
[Ar]nd 0.064 0.387 0.626 0.856

[Ar]n f 0.000 0.014 0.029 −

Cu 20.29 6.57 [Ar]3d10ns 2.667 2.792 2.586 − 1.46

[Ar]3d10np 2.112 2.264 2.021 −

[Ar]3d10nd 0.650 0.998 1.017 1.500(1)
[Ar]3d10n f 0.000 0.011 0.011 −

Zn+ 39.72 3.032 [Ar]3d10ns 2.231 2.309 2.256(1) 1.993(55) 1.40

[Ar]3d10np 1.801 1.893 1.861(2) 1.438(29)

[Ar]3d10nd 0.836 0.993 0.956(2) 1.341(13)

[Ar]3d10n f 0.001 0.019 − −

Rb 27.29 9.211 [Kr]ns 2.991 3.149 3.131 1.628(6) 2.87

[Kr]np 2.424 2.611 2.639(1) 1.444(5)
[Kr]nd 0.972 1.347 1.347 1.673(2)
[Kr]n f 0.000 0.012 0.016 −

Sr+ 42.89 5.813 [Kr]ns 2.596 2.713 2.707(1) 1.332(11) 2.23

[Kr]np 2.165 2.300 2.308(3) 1.260(13)
[Kr]nd 1.227 1.434 1.456(2) 1.231(7)
[Kr]n f 0.001 0.033 0.069 −

Ag 21.49 9.21 [Kr]4d10ns 3.436 3.570 3.534 1.918(5) 2.17

[Kr]4d10np 2.881 3.040 3.024(1) 1.739(10)
[Kr]4d10nd 1.486 1.841 2.001 1.282(1)

[Kr]4d10n f 0.000 0.012 0.017 −

of the paper [45], it is enough to restrict ourselves to three

parameters in the Ritz formula. The value of µ
(ref)
l ≡ µ

(ref)
∞l

from Tables 1 and 2 coincides with the parameter µ
(0)
l . Its

accuracy is determined by the accuracy of specifying the

Rydberg energy levels and the value of Ec . Three decimals

are shown in the fractional parts of QDs. If the precision

of µ
(ref)
l is lower than above-specified, then the error is

indicated in parentheses in the tables.

The quantum defects reflect the influence of the ionic

core on the RE. The more the RE penetrates the core, the

higher the QD. With the fixed charge of the residual ion z ,

the core size increases as the number of the electrons Nc

grows. Consequently, the QD also grows for the fixed value

of l . Such penetrating Rydberg states have a low orbital

momentum. The s -states are always penetrating, except for

the H atom and the H-like ions. As the orbital quantum

number l grows, the centrifugal repulsion displaces the RE

outside the core. As a result, the QD decreases, and the

Rydberg state becomes non-penetrating.

The tables show the quantum defects calculated both

for the potential including only the screened component

VRyd(r) = −φscr(r) and for the potential (2) additionally

including the polarization component −φpolar(r) specified
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Table 2. The same as in Table 1, but for the Cs atom and the Ba+ and Hg+ ions (see explanations in the text)

Quantum defect µl

Atom Ec , α1, Configuration Only φscr + φpolar µ
(ref)
l r c , R i ,

(ion) eV Bohr3 φscr Lm = 1 Lm = 2 Bohr Bohr

Cs 23.16 16.09 [Xe]ns 3.734 3.919 3.995 4.049 1.341(2) 3.16

[Xe]np 3.183 3.400 3.491 3.559 1.319(1)
[Xe]nd 1.825 2.271 2.410 2.466 1.397(1)
[Xe]n f 0.055 0.204 0.298 0.034 −

[Xe]ng 0.000 0.006 0.004 0.007 −

Ba+ 35.00 10.61 [Xe]ns 3.315 3.457 3.536 3.576 1.118(1) 2.55

[Xe]np 2.891 3.049 3.141 3.166 1.149(1)
[Xe]nd 2.008 2.223 2.341 2.369 1.156(1)
[Xe]n f 0.144 0.353 0.517 0.851(1) 1.002(1)
[Xe]ng 0.000 0.015 0.024 0.021 −

Hg+ 34.20 6.827 [Xe]4 f 145d10ns 3.997 4.101 4.182 4.153(1) 1.174(6) 3.94

[Xe]4 f 145d10np 3.575 3.697 3.786 3.688(5) 1.452(36)

[Xe]4 f 145d10nd 2.699 2.861 2.972 2.836(1) 1.539(8)
[Xe]4 f 145d10n f 0.899 1.058 1.200 − 1.135(1)

[Xe]4 f 145d10ng 0.000 0.011 0.032 0.014 −

in (25). The latter is generally a sum of the contributions of

the various multipoles (L = 1, 2, . . . , Lm). In Table 1, the

core polarization 1 is restricted to the dipole component

(Lm = 1). Table 2 has a quadrupole component added

(Lm = 2).

If the pure screened potential of the nucleus provides

the value of the quantum defect underestimated by several

percent with respect to the NIST data, then accounting the

polarization potential reduces this difference to ∼ 0.1%.

It is convenient to divide the results of the quantum

defects into two sets. (i) Atoms of the group 1 and the

single-charge ions of the atoms of the group 2.

These are alkali atoms and ions of the alkaline earth

atoms, whose core has a configuration of an inert element.

The calculated QDs well agree with the reference values

for moderately light atoms. Specifically, starting from the

s -states of sodium, the difference is 1% and it decreases

as the atomic number grows. For example, in the Sr+ ion,

the difference from the reference value does not exceed

0.1%. With increase in the orbital quantum number l, this
difference increases and, vice versa, the QD decreases. This

feature is explained by lower penetration of RE inwards the

core. The electron density in the core peripheral domain is

not high enough for applicability of the TFP method.

Poor agreement with the reference data for the Li

atom and the Be+ ion from the beginning of the Pe-

riodic table can be explained by a small number of

the electrons in the core (two). Naturally, in this

situation the statistical laws practically do not appear,

and the TFP method is inapplicable again. It can

be additionally mentioned that in this case the QDs

of the Rydberg s -states is less than unity, thereby in-

dicating insufficient RE penetration in the core. One

should use traditional many-part methods here, includ-

ing more precise model potentials, ab initio calculations,

etc.

If prior to Rb and Sr+, the accuracy of the TFP method

increases with the growth of the number of the core

electrons, then, in case of Cs and Ba+, it decreases again

(see Table 2). This paradox is caused by a xenon-like

structure of the core. It consists of the closed shells

and contains 56 electrons, thereby being quite sensitive

to the impact of the external electric field. In this case,

the expansion (8) should also additionally account for the

quadrupole component as well, i.e. it should be assumed

that Lm = 2. Then, the accuracy of the TFP method in

the QD calculation is restored to the accuracy achievable in

the atoms of the previous period for Lm = 1. The similar

situation was also in the problem of tunneling ionization

of xenon. Namely, accounting for the Stark shift of the

energy level, that is squared in the electric field strength,

is not enough. At the same time, the ionization rate

is overestimated and restored to the reference values by

accounting for hyperpolarizability in the Stark shift [46].

(ii) Atoms of the group 11 and the single-charge ions of

the atoms of the group 12.

The cores of the Cu, Ag atoms and the Zn+ ion

have a configuration of inert gas with an extra 3d10-

shell (see Table 1), the core of the Hg+ ion has

a xenon configuration with two extra 4 f 14- and 5d10-

shells (see Table 2). The accuracy of QD calcu-

lation is comparable here with the alkali atoms and

the alkaline earth ions of the same periods. How-

ever, for the copper atom, the agreement is somewhat

worse.
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Thus, the TFP model well reproduces the QDs

of the penetrating Rydberg states in the moderately

light atoms with one electron above the closed core.

For the superlight atoms (ions) and weakly pene-

trating Rydberg states, whose QDs are below unity,

the agreement with the reference data becomes worse.

The quantum defects are equally determined both by

the screened nucleus potential and the core polariza-

tion.

The proposed method can be formally used for QD

calculation in the higher-multiplicity ions of other groups

(the double ones of the groups 3, 13, the triple ones of the

groups 4, 14, etc.). However, with increase in the charge

of the rsidual ion z , the fine splitting becomes noticeably

contributing. However, it is not taken into account within

the framework of the TFP model due to the purely Coulomb

nature of the potential VRyd(r) that is used here. Therefore,

the present paper does not deal with the multiply-charged

ions in order to exclude the influence of relativistic effects.

2.2. Polarization interaction

In this subsection, the polarization potential (25) that

is numerically found by the TFP method, is replaced

with the approximate analytical form (10). Both the

potentials are structured so as they vanish at the origin

of coordinates. The free parameter (the ≪cutoff≫ radius)
rc is selected from the condition of coincidence of the

calculated QDs with its reference values. The recommended

values of polarizabilities of the single-charged ions of the

alkali atoms α1 are taken from the article [47]. The

benchmark values of α1 for the doubly-charged ions of

the alkaline earth atoms are given, for example, in the

paper [48]. It contains both the experimental (if available)
and the calculated values of the polarizabilities. Since the

theoretical models usually provide underestimated values

of polarizability, then maximum values have been selected

from the calculated ones. Specifically, for the Cu+ and

Ag+ ions, the polarizabilities were taken from [49], for

Be2+ from [50,51], for Mg2+ and Ca2+ from [52], for Sr2+

and Ba2+ from [53]. The polarizabilities of the Zn2+ and

Hg2+ ions were calculated by the TFP method according to

(24). The polarizabilities found with the TFP method for the

neutral atoms and the single- and doubly-charged ions with

the number of electrons from 2 to 92 were analyzed in the

paper [28]. They turned out to be somewhat underestimated

as compared to the reference values as in the case of other

calculation methods. The results of fitting of rc are also

given in Tables 1 and 2.

An important criterion of internal consistency of the po-

tential approach is independence of the potential parameters

on the energy and the orbital quantum number (in the

central field). It follows from the general principles of the

quantum mechanics. The studied case is limited by the

low energies of the REs, so it is impossible to estimate the

dependence of rc on the energy. However, the tabulated

results make it possible to estimate the dependence of
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Figure 2. Radial distribution of the electron density in the core

of the atom Cu. The dashed line means the contribution of the

argon-like configuration. The calculation was performed with the

Hartee–Fock method.

rc on l . The ≪cutoff≫ radii coincide with each other

within 15% only for the penetrating Rydberg states in the

many-electron atoms of the alkali metals and the ions of

the alkaline earth metals. Despite good compliance of

the QDs with the reference data, the parameter rc turns

out to be strongly dependent on l in the Na atom and

the + ion, which is possibly stipulated by a relatively

small number of the electrons in the core (ten electrons).
In the weakly penetrating states of REs, rc becomes

substantially dependent on l as well or the quantity is

absent. Here, the core electrons’ density is so low that

individual properties of the atoms prevail over the statistical

ones.

In the atoms and the ions of the groups 11 and 12, whose

core has an external d10 shell (Cu, Zn+, Ag, Hg+), the

calculation of rc with the TFP method is either impossible

or again results in the strong dependence of rc on l in

the penetrating Rydberg states (for Zn+, Ag and Hg+, the

difference between the neighbor values of rc exceeds 25%).
The possible cause of such behavior of rc is that the core

has the external d10-shell, which is absent in the atomic

configurations of the noble gases and broadens a peripheral

domain of the core with the low electron density, which is

important for calculations of the QDs and the polarization

characteristics, where the TFP model is actually inapplicable

(Fig. 2 for the Cu core). In other words, the TFP model is

valid if the electron density is quite high and the peripheral

domain is quite narrow.

In most cases, the parametrization of polarization in-

teraction by the formula (11) cannot provide the values

of rc , since this potential is substantially ≪shallow≫ as

compared to (10). The polarization potential from the

paper [31] has been taken in an incompletely correct

form (12) (all the polarizabilities were calculated in [31]
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with the TFP method). Unlike (10) and (11), it has a

non-zero value in the origin of coordinates and provides

rc , which are by ∼ 20% smaller as compared to (10).
However, the potential (12) keeps all the trends in the

change of rc from state to state, as given by the poten-

tial (10).
Thus, the fitting of the polarization potential parameter

rc is a more sensitive tool for testing the TFP method as

compared to the QD calculation. It reduces the applicability

of the TFP method to the Rydberg states of quite heavy

atoms and ions only, whose core has a configuration of an

atom of the inert gas, starting from argon.

It is interesting to compare the ≪cutoff≫ radiusrc with the

ionic radius Ri , which defines a length of the ionic chemical

bond in the molecules [54] (the present paper takes all the

ionic radii Ri from the database [55] for the coordination

number VI, since it is valid almost for all the ions specified

in the base). Under the conditions of applicability of the

TFP method, the ratio rc/Ri will stay in a quite narrow

range from 0.4 to 0.6. In other words, rc lies inside the core

and has an order of its radius. A small growth of rc/Ri

with increase in Nc can be explained by the total increase

in the core electron density. However, the parameter rc

lies outside the specified range in the Cs atom and the Ba+

ion. The possible cause of this paradox is discussed in the

previous subsection. It is caused by the high sensitivity of

the xenon-like core to external influences. In this case the

analytical expression (10) should have been replaced by

φpolar(r) ≈ α1

2r4

(
1− e−r 6/r 6c

)
+
α2 + β′

2r6

(
1− e−r 10/r 10c

)
,

where α2 is the hyperpolarizability of the core (in the terms

of [28]), β′is a non-adiabatic free parameter. However, an

additional problem of consistent selection of rc and β′ arises

here.

The Fr atom and the Ra+ ion are not considered here due

to instability of their nuclei.

The proposed method of testing the TFP method can

be transferred to the other density functionals as well.

Presently, 128 standard density functionals are known [56].
Some of them correctly reproduce the low electron density

in the peripheral domains. For example, the mPW1PBE

functional is suitable for calculating the dynamic polarizabil-

ities of the diatomic molecules [57]. It would be interesting

to study such functionals using the proposed methods.

Conclusion

Within the framework of the model-potential approach,

the WKB formula of the quantum defect for the Ry-

dberg electron is derived. Using the model potential

obtained within the Thomas–Fermi–Patil method, the quan-

tum defects of the atoms with one electron above the

closed core shells have been calculated. It has demon-

strated that the screened and the polarization compo-

nent of the RE potential should be jointly taken into

account. In case of the heavy atoms, the highest mul-

tipole components of polarization potential of the core

can noticeably affect the RE motion. The values of

the cutoff radius have been found in the formula of

polarization potential for some alkali atoms and similar

ions.

The calculation results have been compared to the

reference data, thereby establishing the boundaries of

applicability of the TFP method for the RE: the atom or ion

must have a core with the configuration of the inert element,

the Rydberg state must significantly penetrate the core, i.e.

the QD value must exceed unity (usually, these are the s -, p-
and d-states). These requirements are fulfilled for the stable

alkali atoms K, Rb, Ca of the group 1 and the alkaline earth

ions Ca+, Sr+, Ba+ of the group 2. The ≪cutoff≫ radius

demonstrated the high sensitivity to selecting the RE model

potential as compared to the QD. If the closed core contains

the outermost d10- and/or f 14-shells (the subgroup 11 and

12 of the Periodic table), then the ≪cutoff≫ radius either

substantially depends on the RE orbital momentum or is

absent. Under the conditions of applicability of the TFP

method, the ≪cutoff≫ radius is 0.4 – 0.6 of the respective

ionic radius.

The proposed approach can be applied in testing the

accuracy of the various density functionals and the model

potentials. The obtained results can be used as an initial

approximation in precise calculations of the characteristics

of the Rydberg atoms and ions, and when there are not

more accurate values in the literature and the databases.
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Appendix

After the substitution (33), the integral (34) is trans-

formed into the form:

∫ r 2

R
p(0)

nl (r) dr=νnlǫ
2
nl

∫ π

ϕnl

sin2 ϕ

1−ǫnl cosϕ
dϕ =νnl

{
ϕ + ǫnl cosϕ

− 2

√
1− ǫ2nl arctan

[√
1− ǫ2nl

1− ǫnl
tan

ϕ

2

]}∣∣∣∣∣

ϕ=π

ϕ=ϕnl

= π(νnl −Ll) − νnl(ϕnl + ǫnl sinϕnl)

+ 2Ll arctan

[
Ll

νnl(1− ǫnl)
tan

ϕnl

2

]
.
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If the parameters Ll/νnl and z R/ν2nl are small, then the

elements of this expression can be expanded into the Taylor

series:

ǫnl ≈ 1− L
2
l

2ν2nl

, cosϕnl ≈ 1 +
L

2
l − 2z R

2ν2nl

,

sinϕnl =
√
1− cos2 ϕnl ≈

Ll4l

νnl
≪ 1,

ϕnl ≈ sinϕnl ≈
Ll4l

νnl
, tan

ϕnl

2
≈ ϕnl

2
≈ Ll4l

2νnl
,

arctan

[
Ll

νnl(1− ǫnl)
tan

ϕnl

2

]
≈ arctan4l .

Here, 4l is defined in (36).
Finally, we obtain the expression (35).
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