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Introduction

Isolated radio pulsars are considered to be one of the

most stable sources of periodic signals. Nevertheless, due

to the constant loss of rotational energy to accelerate the

particles and form their radiation, the period of pulsars P is

constantly increasing. At the same time, slowly rotating

pulsars with periods P > 100ms, in addition to regular

deceleration, show some cyclic changes in their parameters

with a characteristic time scale T ∼ 103 − 104 year [1]. One
possible explanation for such variations — is the precession

of the neutron star due to the difference in its shape

from the spherical or anomalous braking moment (see, for
example, [2]), which is actually the moment of inertia of

the star’s magnetic field [3]. Apparently, the precession of

the pulsar B1828-11 is due to the difference in the shape

of the neutron star from the spherical one [4]. It is possible
that the recurrence of FRB flares is also related to the free

precession of the neutron star (see, e.g., [5]). It should

be noted, however, that the flattening of a neutron star

due to its rotation does not contribute to precession, and

the flattening caused by the deformation of the star by its

magnetic field is comparable to the
”
oblateness“ due to the

anomalous magnetic moment (see, for example, estimates

in [6]). It is worth noting that both of these effects provide

a precession period of the order of T ∼ 103−104 year for

slowly rotating pulsars with periods of P > 100ms. In

this paper, we consider the effect of the curvature of space-

time around a neutron star on the moment of inertia of

its magnetic field outside the star. At the same time, we

assume that the metric outside the star coincides with the

Schwarzschild metric, and neglect the corrections to the

metric due to the rotation of the star. In this paper, we

consider the case of both the dipole magnetic field and the

non-dipole
”
of the small-scale“ field, but we limit ourselves

to the case of only one axisymmetric harmonic.

1. Model

The solution for the magnetic field of a neutron star in

the Schwarzschild metric was considered in the paper [7],
in the axisymmetric case m = 0 it has the form [7]:

Bα = B r̂ ·
√

h δαr + B θ̂ ·
1

r
δαθ ,

B r̂ =

+∞
∑

l=0

bl0 (l + 1)
(rns

r

)l+2

f l(r)Yl0,

B θ̂ = −
+∞
∑

l=0

bl0

( rns

r

)l+2 √

h(r) g l(r)
∂Yl0

∂θ
, (1)

where h(r) = 1− rg/r , rg = 2GMns/c2 — the gravita-

tional radius of the star, Mns — the mass of the star, rns —
its radius, Yl0 — spherical functions at m = 0 and functions

f l(r) and g l(r) are defined as [7]:

f l(r) = F
(

l, l + 2 ; 2(l + 1) ,
rg

r

)

,

g l(r) = F
(

l + 1, l + 2 ; 2(l + 1) ,
rg

r

)

. (2)

The components of the angular momentum of the field in

the Schwarzschild metric have the form [8]:

LA = −
∫ √−g T 0

m(~x , t) · ξm
A d3x , A = x , y, z , (3)

where g = det(g ik) , g ik — is the space-time metric, T n
m —

is the energy-momentum tensor of the field, and ξm
A — are

the Killing vectors corresponding to the spherical symmetry

of the metric [9]:

ξm
x = − sinφ δm

θ − ctg θ · cosφ δm
φ ,

ξm
y = cosφ δm

θ − ctg θ · sinφ δm
φ ,
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Figure 1. Dependence of δI f on l for different values rg/rns .

ξm
z = δm

φ . (4)

Thereat, considering that the electric field in the magneto-

sphere is shielded by plasma, which means that the electric

field is equal to zero in the reference system rotating with

the star, we get that the angular momentum of the field

outside the star is equal to [3]:

LA = IAB �B + O(�2), (5)

where � = 2π/P — is the angular velocity of rotation of

the star and IAB — moment of inertia of the field outside

the star [3]. In the case of m = 0, this expression can be

written as [3]:

~L = I f
~� f + δI f~ez (~ez · ~�), (6)

where the coefficient δI f describes the difference between

the field inertia tensor and the spherically symmetric case.

In the case of one harmonic l at m = 0, the expression for

δI f of [3] retains its form in the Schwarzschild metric as

well:

δI f =
b2

l0 r4ns

c2
· l (l + 1)3

(2l + 3) (2l − 1)
×

×
(

2l2 + 2l + 3

2l2 (l + 1)2
· Q⊥ − Qr

)

, (7)

and only the Qr (r) and Q⊥(r) functions of [3] change their

appearance slightly due to the curvature of space:

Qr =
1

l2

∫ r LC

0

1

h(r)

(rns

r

)2l
f 2

l (r) dr,

Q⊥ =

∫ r LC

0

(rns

r

)2l
g2

l (r) dr, (8)

where rLC = c/� — is the radius of the light cylinder.

2. Results

Fig. 1 shows the dependence of δI f on the number l
for different values of the rg/rns ratio. Fig. 2 shows the

dependence of δI f / δI f |r g=0
on the number l , i.e. the

difference between the value of δI f and its value in the

case of a flat space δI f |r g=0
. Fig. 3 shows the relationship

δI f / δI f |r g=0
as a function of rg/rns . In all the figures

on the right graph, the values δI f were calculated at a

constant value of bl0, i.e. at a constant moment at infinity,

at the left — with a constant value of the mean square

of the field < B2 > on the surface of the star. It can be

seen that in the case of constant < B2 > the magnitudes

δI f do not change very much due to the curvature of

space, decreasing by a factor of only 2−10. In the case

of a constant moment at infinity bl0 the difference from

the case of flat space can reach 102 − 103 times, which

is a manifestation of the magnetic field magnification noted

in [7] in the Schwarzschild metric. We note that the decrease

in the value of δI f in the case of constant < B2 > is

related to the same phenomenon: in the Schwarzschild

metric, the high harmonics of the field are pressed more

strongly against the neutron star, and accordingly, the

contribution of the field at large distances from the star

to the inertia tensor decreases. Though, definitely both

options are acceptable, in our opinion, it is more reasonable

for neutron stars to consider the values of the magnitude

δI f at the given field value on the surface, i.e. with

”
constant“ value < B2 >. And hence, when considering the

contribution of the magnetic field outside the neutron star at

the moment of inertia of the pulsar, one can safely neglect

the corrections associated with the curvature of space-time.

It is also worth noting that the peculiarity in the graph for

Technical Physics, 2023, Vol. 68, No. 12



1688 International Conference of PhysicA.SPb 23−27October, 2023

l

0 5 10 15 20

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

lg
(

/
|

)
d

d
I

I
f

f
r g

=
 0

r rg ns= 0·

r rg ns= 0.4·

r rg ns= 0.3·

r rg ns= 0.2·

r rg ns= 0.1·

r rg ns= 0.5·

l

0 5 10 15 20

–1

0

1

2

3

4

5

r rg ns= 0·

r rg ns= 0.4·

r rg ns= 0.3·

r rg ns= 0.2·

r rg ns= 0.1·

r rg ns= 0.5·

6

lg
(

/
|

)
d

d
I

I
f

f
r g

=
 0

Figure 2. Relationship of δI f / δI f |rg =0 on l for different values rg/rns .
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Figure 3. Dependence of the relation δI f / δI f |rg =0 on the value of rg/rns for different l.

the case of the dipole field l = 1 at rg ≈ 0.38 rns is due

to the fact that at this point the value of δI f changes the

sign. In the paper, we used the approximation (5) and

neglected the corrections ∼ (�rns/c)
2
. This is valid for

slowly rotating pulsars with periods of P & 100ms. At the

same time, for such pulsars, one can neglect the corrections

for the difference between the space-time metric and the

Schwarzschild metric due to the rotation of the neutron star,

since this gives a correction at the angular momentum of

the order of magnitude of the discarded terms ∼ (�rns /c)
2
.

In the case of rapidly rotating pulsars, the task becomes

much more complicated even in the case of a flat metric,

since in this case it is necessary to correctly consider the

deceleration of the pulsar, considering the influence of the

pulsar’s magnetosphere on it (see, e.g., in [2] comments

about the difficulty of calculating these corrections), as well

as considering the processes of particle acceleration in the

magnetosphere (see e.g. [10]). And, accordingly, the rotation
of the pulsar will be extremely complicated and will not be

described by simple precession.
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