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Analytical and numerical modelling of a buckling in a plastic regime of a

homogeneous console with symmetrical cross section
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The method of numerical-analytical modeling using Maple 18 of the strong buckling of a uniform console with

a symmetrical cross-section is presented. The range of plastic deformations in a materials with conditional yield

strength (CYS) is studied. Standard profiles and sections made of low-carbon steel, titanium, polyethylene etc.

were investigated. Were found and compared with the proper Eulerian values the critical loads of Fcr , N, the shape

of buckled console y(z ). The quasi-identity of the latter is established for the same slope p f = dy/dz near the

free console end. The method can be applied in robotics, structural mechanics, medical prosthetics, etc. where the

materials been used with relatively high Young’s modulus and low the CYS.

Keywords: buckling, plastic deformations, conditional yield strength, critical load, Maple.

DOI: 10.61011/TP.2023.12.57715.f207-23

Euler’s problem of buckling of a beam/column/console

under longitudinal load in the range of inelastic strains of

the material is relevant in many industries, such as sports

(pole vaulting), construction (bridges and truss structures),
robotics, medical prosthetics, etc. Therefore, starting with

the research of F.R. Shanley [1], it has attracted a large

number of researchers — from structural strength engineers

to pure mathematicians studying bifurcations, as well as

nanotechnologists synthesizing materials based on carbon

nanotubes [2].

For a number of metals with a high so-called offset yield

strength (OYS), the plastic mode is relevant in the case

of short consoles (stubs), when it is necessary to consider

the resulting shear deformations that take the problem out

of the category of one-dimensional [3–5]. However, for

the increasingly widely used polymers with high Young’s

modulus but low OYS (Teflon [6], high-density polyethylene

HDPE, etc.), the plasticity can be considered in the scope

of the plane-sections hypothesis (PSH), which is the topic

of this paper.

The author aspired to simplify the computational part

of the problem as much as possible through analytical

transformations and the use of model representations that

significantly reduce this part. These include:

a) cubic formula for the strain-stress diagram of the

material with the presence of the OYS and the densification

zone;

b) symmetry of the console cross-section.

A homogeneous console AB of free length (l0) and a

cross-section (S) symmetrical with respect to the axis x of

buckling is considered. The lower end A is rigidly clamped,

while to the upper B is applied a distributed across the

section compressive axial load F (Fig. 1, a).

According to the PSH, the relative deformation in the

cross-section layer with the internal coordinate η (Fig. 1, b)
is determined by the expression εη = εax +

η

ρ
, where ρ(z )

and εax — are the radius of curvature of the axis and its

strain in the cross-section with the vertical coordinate z .

Then, in the assumption of a cubic compressive diagram

(see below), the stress can be represented by a series of

σ (ε) = σ (εax ) +
dσ (εax )

dε
η

ρ
+

1

2!

d2σ (εax )

dε2

(

η

ρ

)2

+
1

3!

d3σ (εax )

dε3

(

η

ρ

)3

,

and the bending moment in the cross-section z is defined as

Mz (z ) =
{

σz ηdS =
dσ (εax )

dε
J(II)

x

dε
+

1

3!

d3σ (εax )

dε3
J(IV )

x

ρ3

with J(II)
x and J(IV )

x — area moments II and IV orders (the

term with J(III)
x = 0 disappears).

Substituting 1/ρ = y ′

z z /(1 + y ′

z
2)

3
2 , we get the governing

equation of buckling

dσ (εax )

dε

J(II)
x y ′′

z z

(1 + y ′2
z )

3
2

+
1

6

d3σ (εax )

dε3
J(IV )

x (y z z )
′3

(1 + y ′2
z )

9
2

= −(Fy + MA), (1)

where MA = −Fb — the embedding torque A and the

value b — the lateral displacement of the upper end B . By

substituting ν = y = b, ν ′ = p
(

pν ′

z z = p dp
dν = ν dp2

dν2

)

and
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Figure 1. a — console with lower end fixed A and loaded top B and symmetrical cross-section (b) with zero odd area moments

J(2n+1)
x = 0.

ν2 ≡ w, p2 ≡ s we get






















dw
ds = − J(II)

x

F(1+s)
3
2

(

dσ (εax )
dε

)

− 1
6

(

d3σ (εax )
dε3

)

J(IV )
x w

F(1+ε)
9
2 ( dw

ds )
2
,

w(0) = b2, w(p2
f ) = 0, p f = dy(z B)

dz ,

σax (p) = F cos θ
S = F

S(1+s)
1
2

.

(2)
A simple cubic formula for a compression diagram,

σ (ε) = Eε −
3Eµ
2

ε2 +
Eµ
2t

ε3, µ =
Et − σ f

Et2
,

σ f −OYS, t = ε(σ f ), (3)

the derivatives of which

dσ (ε)

dε
= E − 3Eµε +

3Eµ
2t

ε2,
d3σ (ε)

dε3
=

3µE
t

(4)

and the inverse to it (also cubic, but without a densification

zone)

ε(σ ) =
σ

E
+

3µσ 2

2E2
+

µ(9µt − 1)σ 3

2E3t
(5)

well describe the compression of Teflon, HDPE, steel

(Fig. 2), and other materials.

The substitution (5) to (4) gives an approximation in a

third order of the value σ :

dσ
dε

(σ ) = E−3µσ+

(

3µ

2Et
−
9µ2

2E

)

σ 2+

(

6µ2

E2t
−
27µ3

2E2

)

σ 3.

Navigating to the variables w = ν2 νs s = p2 converts

the equation to the form

dw
ds

= −
J(II)

x
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+

eJ(II)
x µ

S(1 + s)
−

J(II)
x
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9
2

(

dW
ds

)2
, (6)

which in a zero approximation of the small value J(IV )
x has

a solution
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2J(II)
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. (7)

The transverse coordinate is determined as

y(p) = ν0(p) + b = b −
√

w0(p2),

the longitudinal coordinate — z (p) =
p
∫

0

dν0(p′)
p′ , and the

axis length element — dl(p) =
dν0(p)

√
1+p2

p = − dw0

ds

√

1+p2

w0
.

Restored length element dlres(p) = dl(p)
1−ε(p) ≈

dw0

dp2

√

1+p2

w0
×

×
(

1 + ε(p) + ε2(p) + ε3(p)
)

: the recovered axis length

itself (l0)

−

p f
∫

0

dw0

d p2

√

1 + p2

√
w0

(1 + ε(p)) + ε2(p) + ε3(p))d p

= L(F, p f ) = l0. (8)

This relation defines the dependence of the final slope on

the load p f (F) (Fig. 3, a). For consoles made of HDPE

plastics, the slenderness of λ = l0
√

S
J(II) ∼ 10− 15 is close

to σ f = 26MPa. There is an approximately 40% drop in

the critical load Fcr compared to Euler’s formula for the
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Figure 2. Compressive strain-stress diagrams: a — Al/PTFE: experiment [6] (circles), cubic model σ (ε) (3) with E = 400MPa,

σ f = 44MPa, t = 0.3, Etang = 55.8MPa (solid black curve), Hooke’s law (continuous narrow gray line), inverse diagram ε(σ ) (continuous
wide gray curve), yield strain (black dots), yield stress (gray strokes); b — steel: diamonds — experimental points, solid black curve —
model σ (ε) (3) with parameters E = 170 ,GPa, σ f = 1.48GPa, t = 0.0134, solid gray line — Hooke’s law, dashed black curve — inverse

relationship ε(σ ) (5), gray strokes — stress σ f , black dots — strain t .
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Figure 3. a — dependency for rectangular-tubular HDPE console (Fig. 1) S = 0.0102m2, J(II) = 4.5 · 10−5 m4, l0 = 0.75m: gray wide

curve — Hooke’s law with E = 1.08GPa; black curve — diagram (3) with t = 0.05, σ f = 26MPa; gray narrow curve — approximation

of the tangent module; b — complete identical shape of the console (steel I-beam � 10, l0 = 0.5m) at p f = 0.5 for the case of Hooke’s

Law (long black strokes, 309 kN) and diagram (3) (gray continuous curve, 277 kN).

elastic case. The tangent modulus approximation [1] gives

a result close in the value Fcr to that resulting from the cubic

formula 3), but slightly exceeding it.

Applying the formulas for coordinates y and z , we

obtain the buckling shapes of the console of a given

length at a given upper end slope p f within various

approximations, namely for Hooke’s law and a cubic
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diagram (3) (Fig. 3, b). It is observed almost identical

buckling shape for the same value p f within different

approximations.
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