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The main features of electromagnetic fields follow from the analysis of regular solutions of the system of

equations of nonlinear electrodynamic minimally coupled to gravity (NED-GR). In this paper, a representation for

the derivative of the Lagrangian with respect to the field invariant, which ensures the consistency of the system of

equations NED-GR, is found and the exact solution of this system of equations is obtained. Expressions for the

components of the electromagnetic field are given.
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Introduction

Electrically charged objects coupled by electromagnetic

and gravitational interactions are described in the gen-

eral formulation by nonlinear electrodynamics related to

gravity (NED-GR) Nonlinear electrodynamics (NED) was

proposed by Born and Infeld in 1934 in order to consider the

electromagnetic field and particles within the same physical

system and to provide finite values of physical quantities [1].
These goals are achieved in NED-GR, which allows for

regular solutions describing compact finite energy objects

coupled by electromagnetic and gravitational interactions [2].
A detailed review of the literature is given in [2]. In

the paper [3] it was found that the NED-GR system of

equations is inconsistent in the case of arbitrary Lagrangian.

In this paper, firstly, an analytical expression has been

found for the parametric function LF(r, θ) (the derivative

of the Lagrangian with respect to the field invariant) for

which the system of equations NED-GR is consistent, and

secondly, the exact solutions of this system for the found

function have been obtained.

1. A necessary and sufficient condition
for the consistency of a system of
equations

The system of equations NED-GR for the two compo-

nents of the electromagnetic field F10(r, θ), F20(r, θ) in the

axially symmetric case has the form [3]:

∂

∂r
[(r2 + a2) sin(θ)LF F10] +

∂

∂θ
[sin(θ)LF F20] = 0, (1)

∂

∂r
[a sin(θ)LF F10] +

∂

∂θ
[

1

a sin(θ)
LF F20] = 0, (2)

∂F20

∂r
−

∂F10

∂θ
= 0,

∂

∂θ
[a2 sin2(θ)F10] −

∂

∂r
[(r2 + a2)F20] = 0, (3)

where a — is the angular pulse (Kerr parameter), (r, θ) —
Boyer-Lindquist coordinates (Cartesian coordinates x , y, z
are connected with Boyer-Lindquist coordinate by the rela-

tions x2+y2=(r2+a2) sin2(θ); z = r cos(θ)). Here LF(r, θ)
is the sought function, which plays the role of a parameter.

The equation that the function LF(r, θ) must satisfy in

order to provide a necessary and sufficient condition for

the consistency of the system of equations (1)−(3) has the

form [3]:

∂

∂r

(

1

LF

∂LF

∂θ

)

∂

∂θ

(

1

LF

∂LF

∂r

)

+
4a2 sin2(θ)

62

1

L2
F

×

[

r
∂LF

∂r
+ cot(θ)

∂LF

∂θ

]2

= 0. (4)

Here 6 = r2 + a2 cos2(θ). If the function LF(r, θ) is twice

continuously differentiable, then the sum of squares must be

zero, therefore:
∂

∂r

(

1

LF

∂LF

∂θ

)

= 0

and

r
∂LF

∂r
+ cot(θ)

∂LF

∂θ
= 0

simultaneously. Solving the system of these equations, we

find the general solution of the equation (4)

LF(r, θ) = C0

(

r cos(θ)
)µ
, (5)

where C0, µ — arbitrary real numbers. Thus, the system of

equations (1)−(3) is consistent if and only if the parametric

function LF has the form (5). In the future, we work only

with the joint system.
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2. Finding the Exact System Solution

Let us introduce the notation U10 = LF F10, U20 = LF F20.

Taking into account these notations, the system of equations

(1)−(2) can be reduced to the following form:

U10 =
1

2a2r sin(θ)
∂

∂θ

(

6

sin(θ)
U20

)

,

∂

∂θ

{

1

sin(θ)

[

∂

∂r

(

6

r
U20

)

+ 2U20

]}

= 0. (6)

The general solution of the second equation (6) can be

written in the form

U20(r, θ) =
r
62

[

9(θ) + sin(θ)

∫

8(r)6(r, θ)dr

]

, (7)

where 8(r) — arbitrary function r , 9(θ) — arbitrary

function θ. A system of equations (3) can be reduced to

the form

F10 =
1

a2 sin(2θ)

∂

∂r

(

6F20

)

,

∂

∂r

{

∂

∂θ

(

6

sin(2θ)
F20

)

− a2F20

}

= 0. (8)

Let us move to functions U10, U20 in equations (8) and will

assume that the function LF is of the form (5), then the first

of the equations (8) can be written as

U10 =
1

a2 sin(2θ)

[

∂

∂r

(

6U20

)

− µ
6

r
U20

]

.

On the other hand, the function U10 satisfies the first

of equations (6). By equating these two expressions, we ob-

tain the first additional equation that must be satisfied by the

function U20, which is the solution of the system (1)−(2):

r
∂

∂r

(

6U20

)

− cos(θ)
∂

∂θ

(

6

sin(θ)
U20

)

= µ6U20. (9)

The second of the equations (8), after moving to the

function U20 and take into account (5), gives a second

additional equation for finding the function U20(r, θ) . After
simplification this equation, will be written as

∂

∂r

{

r
∂

∂r

(

6U20

)

+ (r2 − a2 cos2(θ) − µ6)U20

}

− µ
r2 − a2 cos2(θ)

r
U20 = 0. (10)

Thus, there are two additional equations (9) and (10)
that the function U20 must satisfy. This function, as the

general solution of the second equation (6), depends on

two arbitrary functions 8(r), 9(θ) (expression (7)). By

substituting the representation (7) into the second additional

equation (10), we obtain (in assumption sin(θ) 6= 0) a

linear ordinary differential equation of the first order to find

the function 8(r) of the following form:

d
dr

(

r28(r)
)

− µr 8(r) = 0.

Its general solution will be as follows

8(r) = D1 r µ−2,

where D1 — arbitrary constant. By substituting (7) into the

first additional equation (9), we obtain an integro-differential

equation with respect to the functions 8(r) and 9(θ) with

the parameter µ as follows:

9′(θ) + [(1 + µ) tan(θ) − cot(θ)]9(θ) = sin(θ) tan(θ)

×

[

r38(r)−(1 + µ)

∫

8(r)r2dr

]

+a2 sin2(θ) cos(θ)

×

[

(1− µ)

∫

8(r)dr + r8(r)

]

. (11)

Let us substitute the found function 8(r) into the right-hand

side of the equation (11). Let µ 6= ±1, then

∫

8(r)dr = D1

rµ−1

µ − 1
,

∫

8(r)r2dr = D1

rµ+1

µ + 1
,

the right-hand side of the equation (11) will turn to zero,

and equation (11) will take the form

9′(θ) + [(1 + µ) tan(θ) − cot(θ)]9(θ) = 0. (12)

The general solution of this equation is

9(θ) = D2 sin(2θ)
(

cos(θ)
)µ
, (13)

where D2 — arbitrary constant. Thus, in the case of µ 6= ±1

the formula (13) yields 9(θ) and 8(r) = D1rµ−2 .

Let µ = +1, then

8(r) = D1 r−1,

∫

8(r)dr = D1 ln(r),

∫

8(r)r2dr = 0.5D1r2,

and the equation (11) looks like as follows:

9′(θ) + [2 tan(θ) − cot(θ)]9(θ) = D1a2 sin2(θ) cos(θ).

Its general solution is

9(θ) = sin(2θ) cos(θ)
{

D2 − 0.5D1a2 ln | cos(θ)|
}

. (14)

Thus, in the case of µ = +1, the formula (14) yields 9(θ),
and 8(r) = D1r−1.

Let µ = −1, then

8(r) = D1 r−3,

∫

8(r)dr = −0.5D1(r)−2,

∫

8(r)r2dr = D1 ln(r),

and the equation (11) looks like as follows:

9′(θ) − cot(θ)9(θ) = D1 sin(θ) tan(θ).
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Its general solution is

9(θ) = sin(θ)
{

2D2 − D1 ln | cos(θ)|
}

. (15)

Thus, in the case of µ = −1 we have 8(r) = D1r−3,

and 9(θ) gives the expression (15).
Once the functions 8(r) and 9(θ) have been found, we

can find the function U20 by formula (7), U10 — by the

first of formulas (6), and then find the components of the

electromagnetic field F10(r, θ), F20(r, θ).
As a result, we obtain:

field components in the case of µ 6= ±1:

F10(r, θ) = −D1

2r cos(θ)
(µ2 − 1)62

(

cos(θ)
)

−µ

− D2

r2 − a2 cos2(θ) + µ6

a262
(r)−µ,

F20(r, θ) = −D1

sin(θ)

(µ2 − 1)62

{

r2 − a2 cos2(θ) − µ6
}

×
(

cos(θ)
)

−µ
+ D2

r sin(2θ)
62

(r)−µ .

In particular, for the case µ = 0, we will have, in contrast

to the result given in [4]:

F10 = D1

2r cos(θ)
62

− D2

r2 − a2 cos2(θ)

a262
,

F20 = D1

sin(θ)(r2 − a2 cos2(θ))

62
+ D2

r sin(2θ)
62

.

For D1 = 0, D2 = −qa2 we get the known solution [4].
In the case of µ = +1:

F10(r, θ) = D1

1

2r62

{

2r2 + a2 cos2(θ)

− 2r2 ln

(

r
| cos(θ)|

)}

− D2

2r
a262

,

F20(r, θ) = D1

tan(θ)

62

{

0.5r2 + a2 cos2(θ) ln

(

r
| cos(θ)|

)}

+ D2

sin(2θ)

62
.

And finally, in the case of µ = −1:

F10(r, θ) = D1

r
2a262

{

r2 + 2a2 cos2(θ) + 2a2 cos2(θ)

× ln

(

r
| cos(θ)|

)}

+ D2

2r cos2(θ)
62

,

F20(r, θ) = D1

0.5r2 sin(2θ)
62

{

−0.5a2 cos2(θ)r−2

+ ln

(

r
| cos(θ)|

)}

+ D2

r2 sin(2θ)
62

.

Conclusion

In this paper, an analytical expression for the derivative

of the Lagrangian with respect to the field invariant, which

ensures the fulfillment of the necessary and sufficient

condition for the consistency of the NED-GR system of

equations is obtained. For the found function LF(r, θ), an
exact solution of this system of equations is received.

Analytical expressions for the components of the elec-

tromagnetic field are given, which open up opportunities

for studying their behavior at different values of the

parameter µ, which defines the form of the parametric

function LF(r, θ). Of undoubted interest is the study of

the asymptotic behavior of the obtained solutions at r → 0

and r → ∞, for example, the asymptotic behavior at r → 0

will reveal the features of electromagnetic dynamics on the

de Sitter vacuum disk. A more detailed analysis of these

issues will be the subject of further research.
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