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We have developed a theory of the anomalous Hall effect in two-dimensional electron gas in the case where the

time of electron-electron collisions is much smaller than the transport relaxation time. The transition between the

diffusive transport regime, when the momentum relaxation length of electrons is much smaller than the channel

width, and the hydrodynamic regime, when the momentum relaxation length exceeds the channel width, has been

traced. The contributions of the anomalous velocity, wave packet shifts, and asymmetric scattering to the anomalous
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scattering mechanism.
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1. Introduction

In recent years, the studies of the spin and anomalous

Hall effects have became topical [1,2]. In these phenomena

the spin degrees of freedom of charge carriers and the spin-

orbit interaction are clearly manifested. The spin Hall effect

(SHE) consists of generating a spin flux perpendicular to the

applied electric field [3–6]. In multi-valley semiconductors,

such as atomically thin transition metal dichalcogenides,

a valley Hall effect (VHE) is possible, where carriers in

different valleys propagate in opposite directions [7,8]. In

the anomalous Hall effect, the spin flux is converted into

electric current in presence of external magnetic field. This

leads to anomalous contributions to the Hall voltage and

Hall constant, unrelated to an action of the Lorentz force on

the charge carriers, but proportional to the spin polarization

of the system [9].

The microscopic mechanisms of the spin and anomalous

Hall effects are closely related to each other and have

been actively discussed in the literature over the last half

a century [10–19]. By now, it is firmly established that

there are three main mechanisms for these effects in

non-magnetic semiconductors: (i) asymmetric scattering

on impurities or phonons (skew scattering), (ii) shifts of

electron wave packets during scattering (side-jump) and

(iii) anomalous velocity, induced by an external electric

field [17]. Since the nature of the anomalous velocity and

the side-jump contribution is the same and these effects are

caused by the action on the electron of either an external

field or a field created by a static defect or phonon, then

under the steady state conditions a part of the side-jump

contribution compensates the contribution of the anomalous

velocity [1,8], see also [20].

Nowadays, the spin and anomalous Hall effects have

been studied in detail for the diffusive regime of the

electron transport. This is a typical situation for sufficiently

large, macroscopic samples, whose geometric dimensions

exceed both the electron mean free path l, caused by the

scattering of electrons on impurities and phonons, and the

spin relaxation length ls . However, the development of

nanotechnology and progress in material science make it

possible to create ultraclean structures with two-dimensional

electron gas, where the mean free path exceeds the width

of the conducting channel l ≫ w . In this case, the

electron transport turns out to be qualitatively different

compared to the diffusive case. A striking example is

the hydrodynamic flow of electrons, recently discovered in

ultraclean electronic systems [21–28]. In this regime, the

mean free path with respect to the interparticle collisions

lee is small compared to the channel width. Accordingly,

the loss of momentum of charge carriers occurs mainly at

the scattering on the channel edges, while the interparticle

collisions provide the viscosity of the electron liquid. This

leads to a number of nontrivial effects in the transport and

magnetotransport of electrons in ultraclean systems [29–35],
see also reviews [36,37].

In ultraclean electronic channels, a significant modifica-

tion of the anomalous Hall effect is expected [38–43]. In
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recent works [42,44], within the framework of the kinetic

equation for the spin density matrix, a theory of the spin

and anomalous Hall effects in ultraclean channels with

a two-dimensional electron gas has been developed and

the contributions of microscopic mechanisms have been

studied in case where momentum relaxation occurs on

the edges of the channel, and the field acts on electrons

over the entire area of the structure. In these works, the

cases of ballistic transport, when lee ≫ w (and interparticle

collisions practically do not play a role), and hydrodynamic

transport, when lee ≪ w ≪ l, were considered separately.

The purpose of this article is to develop the theory of

transition between hydrodynamic and diffusion regimes of

electron transport in the anomalous Hall effect. Here we

consider an electron gas with a parabolic spectrum and

assume an arbitrary relation between l and lee , but assume

that lee ≪ w, i.e. that electron-electron collisions are very

efficient.

In Sec. 2 we present a model of the anomalous Hall effect

within the framework of the spin density matrix method and

present the general form of the kinetic equation. Section 3

discusses the normal Hall effect at the transition from the

diffusive to the hydrodynamic one. Section 4 is devoted to

the anomalous Hall effect, it contains the main results of the

work. The results are summarized in section 5.

2. Model

The geometry of the system is presented in Fig. 1. An

external electric field is applied along the axis of the channel

with a quasi-two-dimensional electron gas, E ‖ y (in this

direction the channel is assumed to be infinite, electric

current can flow along y), the channel width along x is equal

to w, the external magnetic field is applied perpendicular

to the plane of the two-dimensional electron gas B ‖ z .
Scattering on the channel edges is assumed to be diffusive.

We describe electron transport in the channel in terms of

the kinetic equation for the spin density matrix

ρ̂p = f p Î + sp · σ̂ , (1)

where p is the electron momentum, Î is the identity matrix

of size 2× 2, σ̂ = (σ̂x , σ̂y , σ̂z ) is a vector composed of

Pauli matrices, f p = Tr{ρ̂p/2} is a spin-averaged electron

distribution function, sp = Tr{ρ̂pσ̂/2} is a spin distribution

function. The density matrix satisfies the kinetic equa-

tion [44]

∂

∂r
v̂pρ̂p + e(E + EH)

∂ρ̂p

∂p
+

e
c

[v× B]
∂ρ̂p

∂p

= − ρ̂p − ρ̂p

τ
+ Q̂ee{ρ̂p} + Ĝp, (2)

where v̂p is the electron velocity operator (taking into

account the anomalous contributions given in Sec. 4), v is

the normal electron velocity EH is the Hall field arising

y

x

E

E
H

B

Figure 1. Schematic representation of the system under study.

The external electric field E is directed along the channel axis y ,
the external magnetic field B is directed along the normal to the

structure z . As a consequence, a Hall field EH appears, directed

along x . The arrows and parabolic curve show the electric current

profile in the channel in case of hydrodynamic regime.

due to the redistribution of electrons induced by the Hall

effect, e < 0 is the electron charge, c is the speed of

light, ρ̂p = (2π)−1
∫ 2π

0
ρ̂pdϕ is the density matrix averaged

over the angle of the vector p, τ is the electron scattering

time due to electron-impurity and electron-phonon collisions

(momentum relaxation time), Qee{ρ̂p} is the electron-

electron collision integral, Ĝp is the generation rate of

anomalous Hall current. Here and below, ∂/∂r and ∂/∂p

denote gradients in spatial coordinate and momentum. We

neglect Fermi-liquid renormalizations.

The kinetic equation (2) should be supplemented with

the boundary conditions. For the diffusive scattering on the

channel edges, these conditions have the form

ρ̂p(±w/2) =

{

const, px > 0, x = −w/2,

const, px < 0, x = w/2,
(3)

where px = p cosϕ is the x -component of the momentum.

The physical sense of the boundary condition (3) is that

electrons after scattering on the edges have an isotropic

distribution function. Also, we require that the electron flux

through the edges is zero,
∑

p v̂p,x ρ̂p = 0.

We are interested in case of degenerate electron gas,

where T . εF , where εF is the Fermi energy, and the

Boltzmann constant is set equal to unity. Let us introduce

the energy-integrated particle and spin distribution functions,

which depend only on the angle between p and the x axis
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and x coordinate, namely,

Fϕ = D

∫

∞

0

f pdε, Sϕ = D

∫

∞

0

spdε, (4)

where D = m/2π~
2 is the density of states per spin,

ε = p2/2m is the electron spectrum, which we consider to

be parabolic, m is the electron effective mass.

Since the Hall field is parallel to the x axis (see Fig. 1),
we introduce the electrostatic potential 8(x) according to

EH = −∂8(x)

∂x
x̂, (5)

where x̂ is the unit vector in the x direction. This potential

can be included in the renormalized distribution function by

defining F̃ϕ(x) as

F̃ϕ(x) = Fϕ(x) + eD8(x). (6)

Under typical conditions, the electric current caused by

the imbalance of charges significantly exceeds the diffusive

current caused by the gradient of the chemical potential,

therefore [44,45]

EH ≈ − 1

eD
∂F̃ϕ

∂x
x̂. (7)

Our goal is to find the Hall field in the linear-E and linear-

B approximation. Taking the trace of the equation (2)
and integrating it over energy taking into account the

replacement (6), we obtain the following kinetic equation:

∂

∂x

(

vx F̃ϕ + vaS0
z ,ϕ

)

+ ωc
∂F̃ϕ

∂ϕ
+

F̃ϕ − F̃ϕ

τ

= Qee{F̃ϕ} + eDEvy + Gϕ. (8)

Here vx = v cosϕ, vy = v sinϕ are the velocity com-

ponents, where v =
√
2εF/m is the Fermi velocity,

ωc = −eB/mc is the cyclotron frequency, va ∝ E is the

anomalous part of the velocity (see section 4), and

S0
z ,ϕ ≡ S0

z = −1

2
DgµBB (9)

is equilibrium spin polarization in a magnetic field, g is the

g-factor of the electron, µB is the Bohr magneton.

3. Normal Hall effect

In this section, to illustrate the general approach, we

briefly discuss the kinetic equations for the ordinary and

spin distribution functions and their solutions without taking

into account anomalous contributions. Here we describe the

normal Hall effect caused by the action of the Lorentz force

on electrons. We also analyze how the Hall field changes

during the transition from the diffusive to the hydrodynamic

regimes of transport.

A. Distribution function and Hall field

The kinetic equation (8), neglecting anomalous contribu-

tions, takes the form

∂

∂x

(

vx F̃ϕ

)

+ ωc
∂F̃ϕ

∂ϕ
+

F̃ϕ − F̃ϕ

τ
= Qee{F̃ϕ} + eDEvy .

(10)
To describe electron-electron collisions, we use the relax-

ation time approximation. Then the integral of interparticle

collisions is written as [37,42,44,46–48]

Qee{F̃ϕ} =
F̃ϕ − F̃ϕ − F̃c

ϕ cosϕ − F̃s
ϕ sinϕ

τee
, (11)

where

F̃c
ϕ =

1

π

∫ 2π

0

F̃ϕ cosϕ dϕ, F̃s
ϕ =

1

π

∫ 2π

0

F̃ϕ sinϕ dϕ.

(12)
Here τee is the effective time of electron-electron collisions.

We emphasize that this simplified form of the electron-

electron collision integral takes into account the conservation

of the number of particles (the zero harmonic of the

distribution function harmonic) and momentum (the first

harmonic of the distribution function).
In our case where lee/w ≪ 1, l/lee is arbitrary, we

can solve the kinetic equation by expanding the integral

distribution function over angular harmonics and taking into

account only angular harmonics up to the second order, at

any ratio l/lee . Assuming the magnetic field to be weak

ωcτee ≪ 1, we will look for a solution to the equation (10)
by iterations over the magnetic field. Setting B = 0, we

write the distribution function in the form

δF̃ϕ(x) = δF1(x) sinϕ + δF2(x) sin 2ϕ ∝ E, (13)

Substituting the expansion (13) and the collision inte-

gral (11) into the kinetic equation (10), we obtain the

equations on angular harmonics

l1
2

∂δF2

∂x
+ δF1 = eEl1D, (14a)

l2
2

∂δF1

∂x
+ δF2 = 0, (14b)

where l1,2 = vτ1,2, and τ1 ≡ τ , τ2 = (τ −1 + τ −1
ee )−1, re-

spectively, are the relaxation times of the first and sec-

ond angular harmonics. Solving this system taking into

account the condition of vanishing current at the boundary,1

δF1(x = ±w/2) = 0, we get

δF1,2 = eEDλ1,2(x), (15)

with functions

λ1(x) = l1

(

1− cosh
(

2x/
√

l1l2
)

cosh
(

w/
√

l1l2
)

)

, (16a)

1 For lee ≪ w the condition (3) is reduced to the requirement that the

electron velocity at the boundary vanishes.
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Figure 2. Coordinate dependence of electron velocity

vy ∝ δF1(x) in (13), calculated using the Eqs. (15) and (16)
for various ratios l/lee indicated in the legend. Velocity nor-

malized to its value in the hydrodynamic regime (at l → ∞)
vh

y (0) = eEDw2/4τee .

λ2(x) =
√

l1l2
sinh

(

2x/
√

l1l2
)

cosh
(

w/
√

l1l2
) . (16b)

In the limit l → ∞ or, more precisely, at llee ≫ w2,

the hydrodynamic regime of electron transport and the

Poiseuille flow are realized, characterized by a parabolic

dependence of the electron velocity on the coordinate

(Fig. 1). In the limit l ≪ w the diffusive regime is realized,

and the flow profile becomes flat and does not depend on

the coordinate (strictly speaking, the velocity vanishes near

the walls on a negligibly small scale ∼ l2). The transition

between these regimes is illustrated in Fig. 2, which shows

the velocity profile calculated according to (15) and (16) for
different ratios l/lee . It can be seen that as the mean free

path l decreases, the electron velocity decreases, and the

spatial distribution of velocities changes qualitatively: from

parabolic at l → ∞, which corresponds to the Poiseuille

flow, to flat at l → 0, which corresponds to diffusive regime.

Now, let us take into account the magnetic field and

find the Hall field. We substitute the solution in presence

of only the electric field (15) into the Lorentz term with

ωc in (10) and determine the linear-B contribution to

the integral distribution function. The expansion of this

magnetic field induced contribution into angular harmonics

will be as follows

1F̃ϕ(x) = 1F̃0(x) + 1F1(x) cosϕ + 1F2(x) cos 2ϕ, (17)

and the coefficients for angular harmonics satisfy the

equations
v

2

∂1F1

∂x
= 0, (18a)

v
∂1F̃0

∂x
+

v

2

∂1F2

∂x
+ ωcδF1 +

1F1

τ
= 0, (18b)

v

2

∂1F1

∂x
+ 2ωcδF2 +

1F2

τ2
= 0. (18c)

Solving this set of equations and using the relation (7), we
obtain an expression for the normal Hall field:

EH = E · ωcτ2

(

λ1

l2
− ∂λ2

∂x

)

, (19)

where the functions λ1, λ2 are introduced in (16). Fi-

gure 3, a shows Hall field EH(x), calculated using the

equation (19) for various ratios l/lee . Panel (b) of Fig. 3

shows the Hall voltage obtained by integrating EH into (19),
for the same values of l/lee . In the limiting case of the

diffusive regime EH = ωcτ1E , and in the hydrodynamic

regime, when llee ≫ w2 and the Hall field has a nontrivial

coordinate dependence in accordance with Ref. [49].

B. Spin distribution function

Now let us determine the spin distribution function s z ,p,

which is necessary for further calculation of the anomalous

Hall effect (cf. Ref. [44]). As above, to calculate the spin

distribution function we neglect the anomalous contributions

to the kinetic equation and take into account only the

relaxation of the spin to the equilibrium one, Eq. (9). Let

us write down the kinetic equation for the spin distribution

function integrated over energy, expanding it similarly to

the ordinary distribution function, up to the second angular

harmonic:

cosϕ
∂Sz ,ϕ

∂x
+

S1
z sinϕ

τ s
1

+
S2

z sin 2ϕ

τ s
2

= eDE
S0

z

N
sinϕ,

(20)
where S1

z , S2
z are expansion coefficients of the first and

second angular harmonics respectively, τ s
1 , τ s

2 are their

relaxation times, N is the average electron density in the

system.

It is important to note that the relaxation times of the spin

distribution function depends on the magnetic field. In the

case of a low magnetic field, where

|gµBB | ≪ T ≪ εF , (21a)

relaxation of both the first and second harmonics occurs due

to both electron-impurity and electron-electron collisions,

with τ s
1 = τ s

2 = (τ −1 + τ −1
ee )−1 [50–53]. As we will see

later, in this situation, the diffusive regime is always realized,

as lee ≪ w . For moderate magnetic fields, when

T ≪ |gµBB | ≪ εF , (21b)

relaxation of the first harmonic at electron-electron collisions

is suppressed [54], as collisions between electrons with

opposite spins become extremely ineffective. In this case,

τ s
1 = τ and τ s

2 = (τ −1 + τ −1
ee )−1.

Solution of Eq. (20) is similar to determination of δF1,2

from Eqs. (14). By analogy with Eq. (15) we obtain

S1,2
z (x) =

S0
z

N
eEDλs

1,2(x), (22)

where the functions λ21,2 differ from the functions λ1,2 in

(16) by replacing the relaxation lengths l1,2 with
”
spin“ ones

ls
1,2 = vτ s

1,2.
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Figure 3. Coordinate dependence of the Hall field (a) and voltage (b) during the transition from the diffusive to hydrodynamic regime

in the normal Hall effect.

In the case of a low magnetic field (21a) the second

harmonic (22) is zero everywhere except for a narrow

regions with width l2 near the channel edges. These stripes

do not make a noticeable contribution to the anomalous

Hall effect, so we will neglect it in follows. The first

angular harmonic (22) in this limit does not depend on the

coordinate. This result corresponds to the diffusive regime

of spin transport, despite the fact that l ≫ lee .

In moderate magnetic fields (21a) both harmonics remain

and, generally speaking, significantly depend on the coor-

dinate. In this case, the evolution of the S1
z profile with a

change in the ratio τ /τee is similar to that shown in Fig. 2

for the spatial distribution of velocities.

4. Anomalous Hall effect

A. Model

It is known that anomalous Hall effect is caused by spin-

orbit interaction. There are three main mechanisms of the ef-

fect [17]: anomalous velocity, shifts of electron wave packets

caused by scattering on impurities, and asymmetric electron

scattering. These three mechanisms are accounted for in

what follows. Following the works [8,42,44], where these

mechanisms are discussed in detail, we present expressions

for the corresponding contributions to the kinetic Eq. (8).
Let us start with mechanisms whose contributions does

not depend on the transport regime and coordinate. The

first one is anomalous velocity, that arises in an electric

field for spin-polarized electrons in the presence of non-

zero Berry curvature of energy bands. It has a different

sign for electrons with different spins and included in the

velocity operator in the kinetic equation (2) as:

v̂a,B = σ̂zva,B , va,B = −2ξe
~

[ẑ× E], (23)

where ẑ is the unit-vector perpendicular to the structure,

and the subscript B in va,B means that this is a contribution

to the anomalous velocity due to the presence of Berry

curvature. The parameter ξ characterizes the strength

of the spin-orbit coupling [8,42,44]. The corresponding

contribution to the anomalous velocity in the equation (8)
can be represented as

va,B =
2ξe
~

E. (24)

The second coordinate and transport regime independent

contribution is due to the anomalous distribution of elec-

trons that arises due to scattering on impurities or phonons,

taking into account the scattering asymmetry induced by

shifts of wave packets: the contribution of anomalous

distribution. The anomalous distribution effect contributes

to the generation term in the kinetic Eq. (8)

Gϕ,adist = Gadist cosϕ, (25)

where

Gadist = − (1 + ν)
2ξe
l~

ES0
z , (26)

and ν is a parameter that depends on the scattering

mechanism [8,44].
Shifts of wave packets during scattering also lead to a

contribution in anomalous velocity, called the side jump

accumulation. The corresponding anomalous contribution

to the velocity in (8) depends on the coordinate

va,s j(x) = − (1 + ν)
λs
1(x)

l
ξ

~
eE, (27)

where the function λs
1(x) describes the spatial profile of the

first angular harmonic of the spin distribution function, see

Eqs. (22) and (16a).
The last mechanism of the anomalous Hall effect is

associated with asymmetric scattering (skew scattering)
on impurities. It makes the following contribution to the

generation term in Eq. (8)

Gϕ,sk(x) = Gsk cosϕ, (28)

16 Physics of the Solid State, 2023, Vol. 65, No. 12
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where

Gsk = Simp
τ 2

~

λs
1(x)

l
ξe
l~

E
NS0

z

2
, (29)

and the coefficient Simp determines the degree of scattering

asymmetry. The expression for Simp according to [8] (see
also [18]) includes two contributions 2

Simp =
2πUv

τ
+

8ν~

Nτ 2
, (30)

where in the case of scattering by short-range defects Uv is

the Fourier transform (power) of the potential of a single

defect. The first term in (30) corresponds to the third-

order contribution in the defect potential, and second term

corresponds to the contribution to two-impurity coherent

scattering [8,44]. We emphasize that electron-electron

collisions conserve the total momentum of the pair, so they

cannot contribute to the anomalous Hall effect, but can lead

to the generation of spin currents.

Since in the linear-B approximation the normal and

anomalous contributions to the Hall effect are additive, the

anomalous part of the distribution function (responsible for

the anomalous Hall effect) satisfies the following equation

∂

∂x

[

vx F̃ϕ + (va,B + va,s j)S
0
z ,ϕ

]

+
F̃ϕ − F̃ϕ

τ

= Qee{F̃ϕ} + (Gadist + Gsk) cosϕ. (31)

This equation is obtained from (8) by eliminating the

contributions containing the external electric field eDEvy

and the Lorentz force ωc∂F̃ϕ/∂ϕ. As in Sec. 3, the

distribution function, can be expanded into three angular

harmonics:

F̃ϕ = F̃ϕ + F1 cosϕ + F2 cos 2ϕ. (32)

The coefficients for angular harmonics satisfy the system of

equations [cf. Eq. (18)]

∂

∂x

(v

2
F1 + vaS0

z

)

= 0, (33a)

∂

∂x

[

v

(

F̃ϕ +
F2

2

)]

= −F1

τ1
+ G, (33b)

∂

∂x

(v

2
F1

)

+
F2

τ2
= 0. (33c)

Generalizing the solution obtained in [44] in the hydrody-

namic regime, and taking into account the relation (7), we
obtain the expression for the anomalous Hall field:

EH,a = − 2S0
z

evD
va

l1
+

l2
2evD

∂2

∂x2
(va S0

z ) −
G

evD
. (34)

where va = va,B + va,s j , G = Gadist + Gsk . Equation (34)
is the key result of our work; it generalizes the formulas

obtained in [44] to the case of an arbitrary relation between

l and lee .

2 The expression (30) corrects a typo in the formula (26) from [42].

B. Analysis of results

Now we turn to the analysis of the obtained results. We

will consider two cases of low and moderate magnetic fields,

where the condition (21a) or (21b) is satisfied, respectively.

1. Low magnetic fields

In case of low magnetic fields, where Eq. (21a) is

satisfied, the first harmonic of the spin distribution function

effectively relaxes due to interparticle collisions. For the

spin distribution function in this case, the diffusive regime is

realized regardless of the relationship between l and lee , and

the contributions of all mechanisms of the anomalous Hall

effect turn out to be coordinate independent. The quantities

va,s j and Gϕ,sk take the form (44a) and (50a) from [44]. For
l → ∞ from (34) we obtain for the anomalous contributions

formulas (68a), (68b) and (68d) from [44]. For an arbitrary

l/lee, the sum of all contributions will be as follows:

EH,a = − S0
z E

evD
· 2ξe

~(l + lee)

(

1− ν +
πUvN
2v~

lee

)

. (35)

The anomalous Hall voltage

VH,a = −
∫ x

0

EH,a(x
′)dx ′,

[cf. Eq. (15)] turns out to be a linear function of the

coordinate in this case. The coordinate dependencies of

individual contributions to the anomalous Hall voltage are

shown in panels (a) and (b) of Fig. 4, respectively, for

two-impurity coherent scattering and scattering on single

impurities in the third order in the impurity potential. The

sum of contributions from other mechanisms to the Hall

voltage is shown in Fig. 4, c. Depending on the main

mechanism of the anomalous Hall effect, the signs of the

parameters ξ , ν and Uv , the anomalous Hall field, Eq. (35),
can be either collinear or opposite to the normal one,

Eq. (19), and does not change direction when passing from

the limiting case l → 0 to the limiting case l → ∞ (for a

fixed lee).

2. Moderate magnetic fields

In the case of moderate magnetic fields, where the

condition (21b) is satisfied, collisions of electrons with

opposite spins are suppressed. In this case, the contributions

from va,B and Gadist are the same as in the previous

case, since they do not depend on the transport regime.

The anomalous velocity associated side jump accumulation

va,s j in coordinate dependent, however, the sum of the

contributions from the first and second terms in Eq. (34)
turns out to be coordinate independent. Finally, for the sum

of contributions from anomalous velocities and anomalous

distribution in case of moderate magnetic field, we have

ẼH,a,B + ẼH,a,s j + ẼH,adist =
4ES0

z

evD
ξeE
~l

ν, (36)
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Small fields: |gµ B| << T << ϵB F Moderate fields:  T << |gµ B| << ϵB F
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Figure 4. Coordinate dependencies of the contributions of coherent skew scattering (a, d), third-order skew scattering (b, e) and

anomalous contributions (c, f) to the anomalous Hall voltage for different l/lee ratios in case of low [panels (a−c)] and moderate

[panels (b−f)] magnetic fields, calculated using the expression (34). In this calculation, ν = 1, πUvN/τee~ = 1, w/lee = 5.

The Hall voltage dependence corresponding to the field

in (36) is shown in panel (f) of Fig. 4. Note that the

contributions of asymmetric scattering associated with both

two-impurity coherent scattering and third-order asymmetric

scattering on single impurities have a nontrivial coordinate

dependence:

ẼH,sk,coh+ẼH,sk,III=− ES0
z

evD
ξe
~l

λs
1(x)

l
ν

(

4 +
πUvNl
v~ν

)

,

(37)
described by the function λs

1(x). The corresponding

coordinate dependencies of the Hall voltage VH , presented

in Fig. 4, d, e, deviate from linear l & w2/lee . In the opposite

limit they become linear, as expected in the diffusion

regime. In the limit l → 0 (but within the applicability

of the kinetic equation, i.e. when mvl/~ ≫ 1) the first

contribution to (37) from coherent scattering on impurity

pairs reduces the contributions from anomalous velocities

and anomalous distribution (36). This is a feature of

scattering on a short-range potential, see [8,18,55]. As a

result, only the contribution from third-order asymmetric

scattering with respect to the impurity potential remains,

which in the deeply diffuse limit l ≪ lee ≪ w ceases to

depend on l :

Ẽd
H,a = − ES0

z

evD
ξeE
~

· πUvN
v~

. (38)

It is interesting to note that when passing from l → 0 to

l → ∞ for a fixed lee and the condition

πUvNw2

8v~lee
< 1,

the direction of the Hall field can change as a function of

the x coordinate. In this case, the dependence of the voltage

VH,a , caused by the anomalous Hall effect, on the coordinate

becomes non-monotonic, as shown in Fig. 5 in a certain

range of ratios l/lee . This is due to the competition between

the contributions of third-order asymmetric scattering (the
second term in Eq. (37)) and the anomalous contributions,

Eq. (36). We emphasize that in narrow edge strips (marked

in gray in Fig. 5), the expansion of the distribution function
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Figure 5. Coordinate dependence of anomalous Hall voltage

found from the total Hall field [sum of Eqs. (36) and (37),
in the case of moderate magnetic fields. The gray stripes

indicate the regions of width ∼ lee near the edges where the

three harmonics approximation is invalid. At l = 0.1 · lee (red
curve), the voltage increases monotonously and linearly in the

sample, which corresponds to the deeply diffuse regime, Eq. (32).
For l = lee , the Hall voltage is a non-monotonic function of the

coordinate. At the value l = lE,0, the Hall field at the point x = 0

vanishes and the Hall voltage again becomes a monotonic function

of the coordinate. For l & lE,0 remains a monotonic function

with a third order coordinate dependence. In the calculation

πUvNτee/ν~ = 0.05, w/lee = 10. In case of such parameters

lE,0/lee ≈ 19.941.

over three angular harmonics turns out to be insufficient.

A full analysis of the role of such edge regions is beyond the

scope of this article; preliminary estimates show that these

narrow stripes do not really make a noticeable contribution

to the anomalous Hall effect.

Thus, the observation of a nonlinear and, moreover,

nonmonotonic dependence of the anomalous contribution to

the Hall voltage on the coordinate can serve as evidence of a

hydrodynamic regime of electron transport, with suppressed

collisions of electrons with opposite spins (moderate mag-

netic fields).

5. Conclusion

To conclude, we developed a theory of the anomalous

Hall effect for two-dimensional electron gas in the case of

transition between the diffusive and hydrodynamic transport

regimes. All the main mechanisms of the anomalous Hall

effect are taken into account: anomalous velocity, the effect

of accumulation of wave packet shifts, the contribution of

the anomalous distribution and the contribution from the

skew scattering both on single impurities and on pairs of

impurities. All these mechanisms make, generally speaking,

comparable contributions to the anomalous Hall field and

voltage. In the case of low magnetic fields, where the

Zeeman splitting of the electron spectrum is much smaller

than the thermal energy of electrons T , all anomalous

contributions lead to a coordinate-independent Hall field

and a linear coordinate dependence of the Hall voltage

for any ratio between the scattering lengths on impurities

l and interelectronic collisions lee . On the contrary, the

contribution of asymmetric scattering to the Hall field and

voltage has a nontrivial coordinate dependence at lee . l
and moderate magnetic fields, where the Zeeman splitting

exceeds temperature. In the case of both low and moderate

magnetic fields, the sign of the potential difference at the

edges of the sample, due to anomalous contributions, can

be different depending on the relationships between the

parameters of the system. The effects considered are

also preserved in the general case of nonparabolic electron

dispersion, but specific expressions for the contributions of

various mechanisms to the anomalous Hall effect differ.

Experimentally, anomalous contributions to the Hall

voltage and field can be identified on top of the normal

Hall effect in samples containing magnetic impurities,

where the equilibrium spin polarization turns out to be

a nonlinear function of the external field, or using the

electron paramagnetic resonance method: By applying a

weak alternating magnetic field in the channel plane with a

frequency |gµBB |/~, it is possible to depolarize the charge

carriers and, thereby, eliminate the anomalous contribution

to the Hall effect.
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