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It is shown that the reason for the appearance of the complex pattern of chiral spin short-range order observed

in the helical ferromagnet MnSi is a topological electronic transition (TET). TET occurs under conditions of

thermodynamic instability of ferromagnetism, when the mode-mode parameter in the Ginzburg-Landau functional

becomes negative, and the chemical potential falls into the energy region of Berry curvature. It was found that the

topological features of the electronic structure lead to the appearance of skyrmion lattices phases and fluctuations

of left-chiral spin helices. In the paramagnetic region, a phase of fluctuations of left- and right-handed spin spirals

appears. The emergence of a thermodynamically stable non-chiral paramagnetic phase is accompanied by a shift

in the chemical potential beyond the energy region of Berry curvature and an abrupt disappearance of local

magnetization (delayed magnetic phase transition). The constructed h−T phase diagram (h is the magnetic field

strength, T is the temperature) is consistent with experiment.
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1. Introduction

MnSi manganese monosilicide is one of the most studied

prototypes of spintronic materials with a B20 type crystal

structure, in which there is no inversion center [1–3]. The

ferromagnetic state of the MnSi spin subsystem is chiral

because, along with the exchange interaction, an antisym-

metric Dzyaloshinsky-Moriya (DM) exchange occurs in it.

In the paper of Jansen-Bak [4] it was shown that the

competition of the DM-interaction with the inhomogeneous

exchange interaction leads to the occurrence of ferromag-

netic long-period spin spirals with a wave vector q0, at

that the transition from the helicoid ferromagnetic phase to

paramagnetic phase is not a second-order phase transition.

As was shown in [5], that one of the reasons for the

disruption of the second-order transition is the interaction

of spin fluctuations with phonon fluctuations.

On the other hand, analysis of the results of DFT-

calculations of the electronic structure shows [6,7] that a

significant enhancement of zero spin fluctuations occurs

in the ground state of MnSi. The temperature increasing

of thermal fluctuations leads to the suppression of zero

fluctuations [6]. As a result, there is a change in the

sign of the mode-mode parameter, which, according to the

Ginzburg-Landau model [8], shall lead to thermodynamic

instability of chiral ferromagnetism to a first-order magnetic

phase transition.

However, the nature of the resulting phase transition

remains unclear. In particular, the reasons, why the observed

phase transition is accompanied by the appearance of the

topological Hall effect (THE) [9], were not fully identified.

Moreover, it was noted in [9,10] that the reason for the

THE appearance in MnSi is the topological features of the

electronic structure associated with the Berry curvature on

its Fermi surface.

The experimentally established h−T -diagram of magnetic

states of MnSi (see, for example, [1]), along with the

regions of helical ferromagnetic spirals and magnetic field-

induced ferromagnetism, also contains phases of skyrmion

lattices and fluctuations of spin spirals. In this case, it

should be supplemented by taking into account the unusual

intermediate phase with partial spin chirality discovered

during small-angle scattering of polarized neutrons [11].

To clarify the nature of phase transitions that occur with

changes in temperature and magnetic field, in particular

leading to the formation of a phase with partial spin chirality,

it is necessary to develop a spin-fluctuation approach to the

study of chiral band ferromagnetism, taking into account the

topological features of the electronic structure. In this paper,

such approach is developed on the basis of the interpolation

spin-fluctuation theory of band magnetism [12]. Taking into

account the concepts of MnSi electronic structure, resulting

from ab initio GGA modeling, the topological nature is

clarified of phases of chiral spin short-range order in the

h−T -diagram of the chiral ferromagnet under study.

2. Model

Let us consider the Hubbard Hamiltonian (H) for

strongly correlated electrons of a chiral ferromagnet, in

which we take into account the topological features of
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the electronic spectrum in the term of the Hamiltonian

responsible for the band motion (H0). In this case,

along with the term of the intra-atomic Coulomb repulsion

(δHU ) with the Hubbard interaction parameter (U), we will

consider the antisymmetric spin-spin DM interaction (δHD).
Then

H = H0 + δHU + δHD, (1)

where

H0 =
∑

k,σ

εka+
k,σ ak,σ ,

Moreover, the topological features of the spectrum

d-electrons εk are taken into account in the DFT approxi-

mation;

δHU = U
∑

q

(

4−1|δnq|
2 − |S(z )

q |2
)

— Hamiltonian of the Hubbard interaction, written through

the spin and charge density operators;

δHD =
∑

q

h
(D)
q S−q

— DM interaction Hamiltonian, presented in the mean field

approximation h
(D)
q = −id[Mq × q] (Dzyaloshinsky field),

in which d — DM interaction constant, Mq = 〈Sq〉 —
vector of the Fourier transform of the inhomogeneous

magnetization of a spin configuration with a wave vector q;

S(z )
q =

∑

σ

σ nq,σ /2, δnq =
∑

σ

nq,σ − δq,0n,

nq,σ =
∑

k

a+
k,σ ak+q,σ , a+

k,σ (ak,σ )

— birth (annihilation) operators of d-electron in a state

with quasi-momentum kand spin quantum number σ , n —
number of d-electrons per site Mn.

Let’s write the partition function of the considered

dynamical system of strongly correlated d-electrons in the

Matsubara representation [13]:

Z = SpTτ exp
(

−

β
∫

0

H(τ )dτ
)

,

where β = 1/T , T — temperature in energy units, Tτ —
Matsubara time ordering operator τ , H(τ ) = eH0τ He−H0τ .

For the thermodynamic potential, we will use the known

thermodynamic relation � = T lnZ. At the same time,

using the Stratonovich–Hubbard transformations [12], we

reduce the original many-particle problem of the motion and

interaction of d-electrons to description of their motion in

fluctuating in space and time exchange (ξν(τ )) and charge

(ην(τ )) fields. As a result, additionally taking into account

the Dzyaloshinsky fields, we have

� = �0 + 1�. (2)

Here �0 — thermodynamic potential of non-interacting

electrons described by the Hamiltonian H0;

〈(. . .)〉 = Sp

{

(. . .) exp

(

β�0 −

β
∫

0

(

H0(τ ) − µ
∑

q

|nq|
2
)

)}

;

1� = T ln
〈

Tτ

∫

(dηdξ)exp
[

−
∑

q

(|ξq − h(D)
q /c|2 + |η̃q|

2)

− (U/T )1/2
∑

q

(δnq(i η̃q/2) − Sqξ−q)
]〉

0
, (3)

c = (UT )1/2; q = (q, ω2n), ω2n — Matsubara Bose

frequency;η̃q = ηq(1− δq,0);

(dηdξ) = dξ0
[

∏

q 6=0, j

dξ( j)
q dη( j)

q

]

,

dη( j)
q and dξ ( j)

q — actual ( j = 1), imaginary ( j = 2) parts of
Fourier images of the charge (ην(τ )) and vector of exchange

(ξν(τ )) fields, respectively; hq = (hδq,0 + h
(D)
q )δq,q, h —

homogeneous external magnetic field in units of two Bohr

magnetons (µB).

Further, following the interpolation theory [12], we will

split 1� into a homogeneous and inhomogeneous part

(which corresponds to the gradient terms in the Ginzburg–
Landau functional [8]). As a result, we get expression

� = − T ln

∞
∫

−∞

(dξ, dη) exp
(

−
∑

q

(

(1− Xq)|ηq |
2

+ (1 + Xq)|ξq − c−1hq|
2
)

− 8(ξ, η)
)

, (4)

in which 8(ξ , η) — functional of the free energy of

d-electrons moving in stochastic charge and exchange fields

fluctuating in space and time

8(ξ , η) =

β
∫

0

dτ
∑

v,α(=±1)

∫

g0(ε)

× ln
(

1 + exp T−1
(

µ − ε + αc|ξ ν(τ )| + ic η̃ν)
)

)

dε; (5)

and the correction Xq = U(χ
(0)
0 − χ

(0)
q ), which takes into

account the inhomogeneity of the isotropic exchange in-

teraction, is determined through the Pauli susceptibility of

d-electrons and is described by the Lindhard function [9]:

χ(0)
q = χ

(0)
0

(

1− Aq2 − iB
ω

|q|

)

,

where the homogeneous static component χ
(0)
0 corresponds

to the density of d-states g0(ε) at ε = µ (chemical potential).
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3. Equation of magnetic state

To estimate the functional integrals in the expression of

the thermodynamic potential (4), we will use the procedure

of the saddle-point method for the actual and imaginary

parts of charge (with q 6= 0) and static (with q = q)

exchange fields ηq and ξ
(γ)
q ; and also modulus of dynamic

(with ω2n 6= 0) exchange fields: |ξ
(γ)
q | = r (γ)

q , where γ —
index of spatial coordinate axes.

At the same time, taking into account the connection

between the saddle values of the exchange fields ξ
(γ)
q with

the average values of the spin density operators, coinciding

with the magnetization (Mq), as well as the connection r (γ)
q

with the root-mean-square amplitudes spin fluctuations [9],
we obtain the equations of magnetic state in the form

M(z )
0 (D−1 + 2κ

∑

q

|Mq|
2)

+ 2κ
∑

q(1),q(2),q(3)

M(z )

q(1)(Mq(2)Mq(3))δ∑3

1
q(1)=0

= h/U, (6a)

M(γ)
q

(

D−1 + 2κM(z )
0 + κ

∑

q(1) 6=0

|M
(1)
q |2 + Aq2

)

+ κ
∑

q(1),q(2),q(3) 6=0

(Mq(1)Mq(2))M
(γ)

q(3)(1− δq(3),q)δ∑3

j=1
q( j);q

= h(D)
q,γ /(U), (6b)

taking into account the exchange enhancement of band

magnetism (with a factor D) and the interaction of spin

modes with mode-mode parameters (κ):

D = (1−Uχ⊥ + κ(〈δM2〉 + 〈m2〉/3))−1

and

κ = U(χ⊥ − χ‖)/(2M2).

Here

χ⊥ = (2UM)−1
∑

α=±1

α

∫

dε f (ε − µ − αUM)g0(ε)

and

χ‖ = 2
(

∑

α=±1

gα(µ)
)−1 ∏

α=±1

gα(µ),

where

g0(ε) = g0(ε + αUM),

g(n)
α (µ) = (−1)n+1

∞
∫

−∞

gα(ε)(d
n+1 f (ε − µ)/dn+1ε)dε,

correspond to the transverse and longitudinal susceptibility

of electrons, M = (M2
0 + 〈δM2〉 + 〈m2〉)1/2 — root mean

square magnetic moment, the amplitude of dynamic spin

fluctuations is determined by the expression coinciding with

the fluctuation-dissipation theorem

〈m2〉 = 2U−1
∑

q,γ

∞
∫

0

(1

2
+ f B(ω/T )

)

× Im
(

D−1 + 2κ(M)|Mq,γ |
2 + Xq,ω

)−1
dω, (7a)

and the contribution of fluctuations of spin density waves

(SDWs) arises, with the mean square amplitude

〈δM2|〉 =
∑

q

|Mq|
2. (7b)

The solutions for dynamic thermal and zero-spin fluc-

tuations (7a) and for spatial fluctuations of SDW (7b)

correspond to the saddle-point variables |ξ
(γ)
q | = r (γ)

q .

The wave vector q0 of the realized spin configurations is

determined from the conditions of the minimum thermody-

namic potential and turns out to depend on the projections

onto the coordinate axes of magnetization M(γ)
q :

q(x)
0 = |q0|

(

(M(+)
q0 M(−)

−q0
)1/2

|Mq0 |
2

)

ReM(z )
+q0

;

q(y)
0 = |q0|

(

(M(+)
q0 M(−)

−q0
)1/2

|Mq0 |
2

)

ImM(z )
q0 ;

q(z )
0 = ±|q0|

(

M(+)
q0 M(−)

−q0

|Mq0 |
2

)

, (8)

where |q0| = d/2AU , M(+)
q0 = (M(−)

−q0
)∗ = M(x)

q0 + iM(y)
q0 —

circular components of the vector Mq0
.

The equations of magnetic state can be solved numeri-

cally only, taking into account the features of the electronic

spectrum and DOS of d-electrons. Moreover, to analyze

the possibilities of the occurrence of thermodynamic and

topological phases, information is necessary on the chemical

potential µ dependence on temperature and magnetic field.

The latter can be obtained from the saddle point condition

for η0 and the electroneutrality requirement for the number

of s- and d-electrons

Ne = NS +
∑

α=±1

∫

dε f (ε − µ + αUM)g(ε), (9)

where Ne — total number of electrons, NS — number of

s-electrons, f (ε) — Fermi-Dirac function.

4. h−T-spin state diagram

We will perform a numerical analysis of the chiral spin

states of MnSi using, when solving the equations of the

magnetic state, the results of ab initio calculations of the

electronic structure. Such calculations for the electronic

spectrum and density of states (DOS) of electrons in this
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Figure 1. Electronic spectrum (left) and density of states of MnSi (right). The density of states (DOS) curve depicted by the solid line

corresponds to d-electrons, and the dotted line corresponds to sp-electrons. The position of the Fermi level coincides with the origin of the

energy reference. The energy region of Berry and DOS curvature is circled. Also circle marks the X -point of intersection of the branches

at which Berry curvature occurs.

paper were performed taking into account the features of the

MnSi crystal structure in the GGA approximation (Figure 1).
The Elk code, which implements the full potential method

of augmented plane waves, was used in the calculations.

The exchange-correlation potential was chosen as GGA. The

wave functions were taken on a grid of 16× 16× 16k-
points, and the cutoff length of the inverse wave vector G

was set to 3.77 a.u.−1.

The obtained results of DOS GGA calculations are in

good agreement with those given in databases on topological

materials [14]. However, they are insufficient to deter-

mine the temperature-field dependence of the mode-mode

parameter, which, under the conditions of a temperature-

prolonged phase transition in MnSi, is determined only

after taking into account the features of the fine structure

of DOS. Therefore, modeling of the fine structure of DOS

of d-electrons in the energy range |ε − εF| ≤ 0.1 eV was

carried out, which led to the approximate expression

g(ε) = 147.05ε6 + 61.9ε5 − ε4 − 19.9ε3

− 6.96ε2 + 0.21ε + 0.03, eV−1.

The comparison of the modeling results of the fine

structure of DOS with calculations of electronic spectra

(Figure 1) shows that in the reviewed energy range, near

the Fermi energy, there is an intersection of the branches of

the electronic spectrum, leading to Berry degeneracy [10].
In this case, the DOS curvature, determined by its second

derivative with respect to energy in the considered range, is

negative.

The main results of the numerical analysis of solutions to

the equations of magnetic state (6) in the considered model

of the electronic structure are reduced to the following.

1. If the chemical potential determined by the electrical

neutrality condition (9) is outside the Berry curvature of

the electronic spectrum, and the value of the mode-mode

interaction parameter is positive (κ > 0), then we obtain

solutions corresponding to the spin helicoid with left-handed

chirality

M(x)
ν = MS sin(q0ν),

ν (y) = −MS cos(q0ν), M(z )
ν = χh. (10)

Here the local magnetization

M2
S =(2κ)−1

(

(

D−1+2κM2
0+X(q0, 0)

)2
−(d|q0|/U)2

)1/2

.

(11a)
magnetic susceptibility

χ = 2U−1
(

1− (D−1 + 2κM2
0)

−1
)

, (11b)

and fluctuations of spin density waves (7b) are not observed:
〈δM2〉 = 0.

In this case, just as during LDA+U+SO modeling

in [6,7], the thermodynamically equilibrium chiral ferro-

magnetic state is realized only in the presence of zero

spin fluctuations with a root-mean-square amplitude, which

is comparable to the magnetization modulus Mq. The

condition for the existence of such solutions is determined

by the inequality

D−1 + 2κM(z )
0 < −3dq0/4U.

The wave vector q0 of the helicoid (8) turns out to

be fixed in absolute value (see (6))and perpendicular to

the plane of the spiral in which the rotation occurs of

xy -projection of local magnetization Mν . In the external

uniform magnetic field perpendicular to the xy -plane, spin
cones appear. In this case, the local magnetization acquires

a z -component, and its x - and y -components decrease with

the field h increasing.

Physics of the Solid State, 2023, Vol. 65, No. 12
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Figure 2. Phase diagram of MnSi. Solid lines — calculation

results, dashed line — experiment data [1,15]. 1 — helicoidal

(spiral) magnetism, 2 — helicoidal cone, 3 — skyrmion A-phase,

4 — field-induced h ferromagnetism, 5 — ferromagnetic helicoidal

fluctuation disorder, 6 — paramagnetic helicoidal disorder, 7 —
paramagnetism. The calculated values of the magnetic field

of the helicoidal cone
”
collapse“ at T → 0 µBhC = 0.60T are

used. The horizontal axis shows in relative units the calculated

values of the temperature TS = 0.93TDM of the formation of left-

hand chiral ferromagnetic fluctuations of spin spirals and the

temperature of the formation of paramagnetic spin liquid with

mixed (right-hand and left-hand) spin chirality — TC = 0.96TDM .

TDM = 31.08K — the calculated value of the temperature of

the chirality disappearance and the paramagnetism appearance at

h = 0. The calculations use the parameters U = 0.93 eV, A = 0.07

and B = π/2.45 from [16,17].

On the phase diagram we calculated (Figure 2), these

solutions to the equations of magnetic state (11) describe

phase 1.

In the external magnetic field h > hC , where the critical

field hC is determined by the condition

2κM2
0(hC) = −D−1 −

3d|q0|
U

,

the helicoidal cone
”
collapses“ and field-induced ferromag-

netism occurs (phase 2).

2. Analysis of the electrical neutrality condition and

solutions to the magnetic state equation shows that a change

in the mode-mode parameter at temperature-field offset of

the chemical potential to the region with negative DOS

curvature leads to the suppression of zero fluctuations. In

this case, the amplitude of the root-mean-square moment

becomes small. As a result, for the parameters of

mode-mode interaction and exchange enhancement, we

approximately have

κ ≈ U3
(

g−1(µ)(g(1)(µ))2 − g(2)(µ)
)

and

D0 ≈ (1−Uχ
(0)
0 )−1. (12)

According to (12) κchanges sign when the chemical

potential shifts to the region of negative DOS curvature

without changing the sign of the exchange enhancement

parameter. Since the chemical potential shifts to the energy

region of Berry curvature, TEP is induced in the system.

As a result of TEP, along with weak thermal spin

fluctuations, topologically determined spatial fluctuations of

SDW (7b) and fluctuations of charge fields η with a mean

square 〈δη2〉 = N−1
0

∑

ν(ην − ν0)
2 arise:

〈δM2〉 = 〈δη2/4〉 −
[

D−1
0 + κ

(

M2
0 + 5〈m2〉/3

)]

/κ, (13a)

〈

δη2

4

〉

= 〈δM2〉 −
[2− D−1

0 − κ(M2
0 + 〈m2〉)]

κ
. (13b)

According to the considered model of the elec-

tronic structure, if at κ < 0 and D < 0 the condition

D−1
0 − 2|κ|M2

0 < −3d|q0|/4U is satisfied, then for the

magnetic field induction b <
d|q0|MS

4
the solutions to the

equations (6) describe a skyrmion lattice

M(x)
ν

∼= MS cos(q0,iν + φ), M(y)
ν

∼= MS sin(q0,iν + 8),

M(z )
ν = |M(z )

q0
| cos(q0,iν + φ) + M(z )

0 , (14a)

M2
S = (2|κ|)−1

(

(D−1
0 − 2|κ|M2

0 − |κ|(〈δM2〉

− 〈δη2/4〉) + X(q0, 0))
2 − (d|q0|/U)2

)1/2

, (14b)

The feature of skyrmion solutions is the occurrence of

magnetization in the direction perpendicular to the plane of

the spirals. However, according to estimates

|M
(z )
q0 |

2 = (4U)−2(|κ|dq0)
2〈δM2〉 − (h/U)2 ≪ M2

S, (15b)

due to which the spin configurations under consideration

are quasiplanar.

According to the analysis of the terms of mode-mode

coupling in the equation of magnetic state, the triple of

wave vectors q0,i in expressions (14a) is equal to zero

in sum. Therefore, the angle between adjacent wave

vectors of spin modes M(γ)
q is 120◦, which, in accordance

with [1,15], corresponds to the condition for the skyrmion

lattice occurrence, which is the result of the superposition

of three helical modes.

The calculated region of existence of the skyrmion

phase 3 is shown in Figure 2. Phases 4 and 5 in the

diagram we calculated (Figure 2) are also observed in

experiment [1,15]. However, in contrast to [1,15], we

show that one should distinguish between spin liquids with

ferromagnetic and paramagnetic fluctuations of spin spirals.

Ferromagnetic fluctuations of spin spirals arise under

the conditions both 0 > D−1
0 + 2κM(z )

0 > −3dq0/4U and

Physics of the Solid State, 2023, Vol. 65, No. 12
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κ < 0, and are described by solutions of the magnetic state

equation

M(x)
ν = MS cos(q0ν + φ),

M(y)
ν = MS sin(q0ν + φ), M(z )

ν = χh, (16)

in which stochastically changing phases φ appear. Just like

for spin spirals (11), left-hand spin chirality is preserved

here.

If the condition 0 < D−1
0 + 2κM2

0 < 3d|q0|/U and κ < 0

are satisfied, then phase 5 appears, which corresponds to the

paramagnetic spin liquid with mixed (right-hand and left-

hand) spin chirality. In this region, we obtain the following

solutions to the equation of magnetic state

M(x)
ν = MS cos(q0ν + φ),

M(y)
ν = ±MS sin(q0ν + φ), M(z )

ν = χh. (17)

Note that, as in the ordinary (non-chiral) paramagnetic

state, in phase 5 the electron system is not magnetized at

h = 0. However, in external magnetic field the magnetiza-

tion proportional to h appears. The similar state of MnSi

spin system was observed in experiments on small-angle

scattering of polarized neutrons in [11], where mixed left-

hand and right-hand spin chiralities were detected.

Note that chiral spiral modes M(γ)
q with fixed Berry

phases shall be preserved within the correlation radii

described by the expressions

RC = 2πk−1
F (AUχ)1/2, (19)

where the magnetic susceptibility is

χ = 2χ
(0)
0

(

D−1
0 + κ(2M2

0 + 〈δM2〉 + 5〈m2〉/3)
)−1

.

The estimates made taking into account the parameters of

the electronic and magnetic subsystems [16,17] show that

the value RC ≈ 50 angstrom, and weakly depends on the

external magnetic field.

Finally, note that the non-chiral paramagnetic phase 6

(Figure 2) arises under conditions when, due to changes in

temperature and magnetic field the chemical potential shifts

beyond the Berry curvature region. In this case, a delayed

magnetic phase transition to paramagnetic state takes place,

it is accompanied by change in the negative sign of the

mode-mode parameter to positive one, by the disappearance

of spatial fluctuations of the electron density (13) and

local magnetizations. Due to the disappearance of local

magnetizations, the chiral effects of DM interaction also

disappear.

5. Conclusion

Thus, we show that the topological features of the

electronic structure lead to the appearance of topological

magnetism phases on h−Tdiagram of MnSi. The reason

for the skyrmion phase, as well as phases with ferro- and

paramagnetic chiral spin liquids occurrence is a topological

electronic transition. In this case, TEP is caused by

temperature- and external magnetic field-induced offset of

the chemical potential of the electronic system into the

region of Berry curvature.

TEP is accompanied by the appearance of spatial fluc-

tuations of spin and charge density waves, which are

the necessary condition for the topological magnetism

formation. In this case, the comparison of the features

of the electronic spectra leading to the Berry curvature

with DOS features leads to the conclusion that the sign

of the mode-mode parameter is related to the considered

topological features of the electronic structure.

Since the degeneracy of electronic states associated with

the Berry curvature is the cause of the topological Hall

effect (THE) [9], as in accordance with the found phase

diagram we can expect that even minor changes in the

electronic structure will have a significant effect on THE. In

particular, we expect that the experimental results describing

the discovered THE [9] will be significantly supplemented

after further, and primarily experimental its study on MnSi

samples doped with various impurities.

Therefore, the study of topologically determined features

of the fine electronic structure and spin correlations in chiral

ferromagnets belonging to the B20 structure type is relevant

for the further development of spintronic technologies.
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