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The effect of ultrasonic waves on the occurrence of a discharge in a

liquid
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An equation similar to the Rayleigh equation is obtained, describing the oscillation of a single small bubble in

a liquid, taking into account the compressibility of the liquid when exposed to a sound wave. Calculations of the

dynamics of the bubble show that there are two possible variants of such an impact: the convergence of the bubble

or its sharp expansion, depending on the frequency of the sound wave. The change in behavior occurs abruptly

with a small change in frequency. Theoretically, this can lead to unexpected physical effects, for example, the

formation of a high-temperature ionized gas, which causes a discharge in an electric field.

Keywords: bubble in liquid, ultrasound, cavitation, resonance, electric discharge.

DOI: 10.61011/TPL.2023.12.57607.197A

Cavitation phenomena in liquid media have a significant

effect on the physical properties of the media. This is due to

the change in the structure of the medium during cavitation

and the fact that cavitation leads to abrupt bubble conver-

gence when the bubble reaches some maximum size during

growth. As Zababakhin [1] showed, this size is determined

by viscous properties. Bubble
”
collapse“ is accompanied

by cumulative phenomena: an increase in temperature and

pressure in the centre of the bubble. This leads to physical

phenomena such as luminescence, chemical decomposition

of liquid molecules and even ionization [2].

The influence of ultrasound on cavitation phenomena is

generally recognized, cavitation of a liquid during expansion

in a sound field is called inertial cavitation [2]. To describe

the dynamics of a single bubble in an incompressible

fluid, the Rayleigh equation is used, which, when ul-

trasound is taken into account, is transformed into the

Nolting−Neppaires equation by adding to the free term

of the periodic pressure of the sound wave [3]. If com-

pressibility is taken into account, inside the fluid outside the

bubble, the solution has the appearance of a travelling wave,

since the conservation of matter equation is transformed

into a wave equation. In liquid, the speed of sound wave

propagation is much greater than the speed of sound in gas

(in water — 1500m/s). Therefore, delaying the appearance

of a wave at a distance much larger than the bubble size will

not affect the velocity of the flow, which is integrated in the

derivation of the Rayleigh equation. Thus, at these distances,

the solution must be sought in the form of a harmonic

oscillation. The velocity of the fluid outside the bubble

must be of the form V = V0 cos(ωt), since the velocity

V must continuously transition to the incompressible fluid

velocity V0, since the solution in the incompressible fluid

corresponds to the zero frequency of the ultrasonic field ω.

The harmonic solution is a simplification of the travelling

wave solution: V = V0 cos((d − at)/λ). Here d — the

distance from the center of the bubble, a — the speed of

sound in the medium, λ — the wavelength of the sound

perturbation, the frequency of sound ω = 2πa/λ.
If the travelling wave propagation is not taken into

account, the wave equation turns into an incompressible

fluid equation: divV = 0. So, the expression for the velocity

amplitude V0 under the condition of spherical symmetry will

be the same as for an incompressible fluid: V0 = U(R/d)2,
where U — the velocity of the bubble boundary.

In presented setting, a small concentration of bubbles is

assumed, which reduces the probability of their merging

mechanism. The dynamics of a single bubble are studied.

The viscosity of the fluid is also taken into account. The

diffusion and evaporation processes on the bubble surface

are not taken into account in this formulation. The same

derivation of the well-known Rayleigh equation for a single

bubble is made with the procedure of integrating three

integrals over the entire space surrounding the bubble. In

essence, the Rayleigh equation is a balance of pressure

in the bubble and pressure due to the inertial forces of

the surrounding mass. Then the Rayleigh equation for the

bubble radius R (cm [4], equation (1)) takes the form of
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Here, the dot above the letter stands for time differen-

tiation, R0 — initial radius of the bubble, ω = 2π f ( f —
frequency), ρ — density of the fluid, p0 — external pressure

(atmosphere), pva p — vapor pressure in the bubble, σ —
surface tension of the medium, γ — ratio of specific heat

capacities of the gas inside the bubble. Note that the

equation goes continuously to the Rayleigh equation at

ω = 0. The third term in (1) is a new differential term.

The last term in (1) describes the effect of the kinematic

viscosity of the medium ν . It is equation (1) that is

then numerically solved. In Nolting’s−Neppaires equation,

the fluctuations of the bubble boundary are not taken into

account, so an pm sin(ωt) term appears in the static pressure

balance term outside and inside the bubble (curly brackets).
In the proposed formulation, oscillations are taken into

account, and this term is reduced in the derivation process.

To find out the limits of this approach, let us substitute the

expression for the velocity V into the wave equation. We

obtain the equation for the velocity amplitude v

v ′′ +
4

d
v ′ +

[

2
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+

ω2R2
0

a2

]

v = 0. (2)

If the second summand in square brackets is negligibly

small, then the velocity amplitude v will not depend on

frequency, and the dependence remains only in the second

multiplier in the expression for V , i.e., the application of the

simplified form of the solution is possible if we consider

the bubble radius R0 to be much smaller than the sound

wavelength a/ω (for water at a frequency of 20 kHz —
14 cm). Thus, for small bubbles (10−2, 10−3 cm) equation

(1) can be applied since integration to infinity can be

considered reasonable. The proposed formulation means

that the bubbles in the fluid experience oscillations together

with the entire fluid column,
”
breathing“ with the medium.

In some cases, these oscillations, made together with the

medium, may enter into some resonance with the bubble’s

own oscillations, there is not a convergence, but a sharp

increase in the size of the bubble.

The external stretching or compression (initial velocity of

the bubble boundary) is the forcing force of the bubble

oscillation within the chosen formulation instead of the

periodic pressure term in the Nolting−Neppaires equation.

For dynamic effects to occur, the calculations show that the

initial velocity of the boundary u0 must be set.

However, in a sound wave, the initial velocity of the

u0 boundary occurs together with the very stretching or

compression of the fluid in the sound field. The velocity

of the boundary is related to the intensity of the wave,

since the volume energy of the expansion and contraction

of the fluid at the bubble boundary ρu2
0/2 must be equal

to the pressure amplitude in the sound wave pm. So in the

proposed formulation, the intensity of the sound wave is

taken into account.

In equation (1), the second-order senior derivative is

preceded by a multiplier cos(ωt), which goes to zero at

ωt = π/2. This is a classical problem with the multiplier in

front of the senior derivative going to zero.
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Figure 1. Qualitatively different behavior of the dimensionless

bubble radius as a function of ultrasound frequency when the

critical dimensionless time π/2 is reached.

Indeed, at a large step (five hundred steps on unit dimen-

sionless time), instability is demonstrated: the numerical

solution of (1) under the same conditions gives qualitatively

different results. When the step is reduced by a factor

of 2, the solution stabilizes but reveals different behavior

depending on the ultrasound frequency. In some frequency

ranges there is only convergence at ωt = π/2, and in

other — only a sharp increase in bubble radius R. But

in some cases there is a dramatic change in the behavior

of the solution at ωt = π/2. Thus, for the dimensionless

tensile velocity u0 = 10−4 and bubble size R0 = 10−5 m, a

sharp convergence occurs at frequency f = 15.5 kHz. At

frequency f = 16 kHz the bubble expands sharply (Fig. 1).
A critical frequency value of 15.674 kHz has been found,

beyond which the behavior changes dramatically. For a

bubble an order of magnitude larger beyond the ωt = π/2

point, the calculations show oscillations. For the smaller

bubble size (10−5 m), the drop in size to zero is due to the

fact that the rate of drop is so large that the program passes

the
”
gap“ of the solution by extrapolating beyond the

”
gap“

limit. This may be why fluctuations are not observed.

Calculations near the critical momentum (Fig. 2) show

only natural vibrations of the bubble with frequency

ω2
0 = [3γ p + 2σ (3γ − 1)/R0]/(ρR2

0) [5] of small amplitude.

At the critical moment, which is shown by the vertical line,

for an expanding bubble the acceleration of the boundary is

directed outward and for a collapsing bubble — inward. To

fulfil this condition, the period of sound must be a multiple

of the quadruple period of natural vibrations. This is the

criterion for resonance.

Analytical studies near the critical time were carried

out for three small parameters: δr — small devia-

tion of the radius from unity; τ = π/2 — t — small

time to critical moment; u̇ — small acceleration of

the boundary (assumed to be a constant value). The

results of the calculations are confirmed: δr = u̇t/1σ p,
where 1σ p = 2σ (3γ − 1) + 3γ(p0 − pva p) (here the val-

ues are dimensionless). The sign of the deviation of
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Figure 2. Calculations in the vicinity of the critical moment. At

the critical moment (shown by the vertical line), the behavior of

the solutions differs in the sign of the boundary acceleration: for

a collapsing bubble, the acceleration is directed inwards, while for

an expanding — outwards.

the bubble radius δr is equal to the sign of the time

derivative of the velocity, i.e., the acceleration of the

bubble boundary. It should be noted that the increase

in bubble size or collapse is proportional to the second

degree of frequency, since both surface tension σ , and

static pressure p are inversely proportional to the second

degree of frequency when returning to dimensional val-

ues.

Thus, on the basis of an equation similar to Rayleigh’s

equation but derived for a compressible viscous fluid for

a bubble of small size (10−5
−10−4 m), it was possible

to find in calculations and theoretically explain a new

effect. It manifests itself in the fact that the action of

ultrasound in expanding or contracting a sample as a

function of frequency can change dramatically with a very

small critical change in frequency near the time critical

value. A peculiar resonance of sound vibrations and natural

vibrations of the bubble occurs. This resonance belongs

to a class of hydrodynamic instabilities that are used to

explain astrophysical phenomena [6]. It can be called inertial

because it is related to the expansion and contraction of

the medium in a sound wave. Since sound waves are

a set of waves with close frequencies, unstable behavior

is possible: either simultaneous contraction and expansion

of bubbles of different sizes (the natural frequency of

bubble oscillation strongly depends on the size), or abrupt
oscillations of the bubble with large amplitude (the rate of

size change is shown to be proportional to the square of

the ultrasound frequency). The simultaneous expansion and

heating of the gas inside the converging bubbles leads to the

formation of gaseous substances with high temperature —
ionized gases. When an electric field is applied in such

a medium, an electric discharge occurs, which is caused

precisely by the ultrasonic action. There are reports that

such experiments have been done, although they have not

been explained [7].

Funding

Funding was provided by the A.F.Ioffe Institute of Physics

and Technology of the Russian Academy of Sciences

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] E.I. Zababakhin, Prikladnaya matematika i mekhanika, 24 (6),
1129 (1960). (In Russian)

[2] PhysicA. principles of medical ultrasonics, ed. by C.R. Hill,

J.C. Bamber, G.R. ter Haar (John Wiley and Sons, 2004).
[3] B.E. Noltingk, E.A. Neppiras, Proc. Phys. Soc. B, 63 (9), 674

(1950). DOI: 10.1088/0370-1301/63/9/305
[4] V.A. Akulichev, Akust. zhurn, 13 (2), 170 (1967). (In Russian)
[5] S.M. Gorsky, A.Y. Zinoviev, and P.K. Chichagov, Akust. zhurn,

34 (6), 1023 (1988). (In Russian)
[6] G.Y. Kotova, K.V. Krasnobaev, Fiziko-khimicheskaya kinetika v

gazovoy dinamike, 20 (3) (2019).(in Russian).
http://chemphys.edu.ru/issues/2019-20-/articles/814/

[7] N.A. Bulychev, M.A. Kazaryan, E.S. Gridneva, E.N. Murav’ev,

V.F. Solinov, K.K. Koshelev, O.K. Kosheleva, V.I. Sachkov,

S.G. Chen, Bull. Lebedev Phys. Inst., 39 (7), 214 (2012).
DOI: 10.3103/S1068335612070056.

Translated by J.Deineka

Technical Physics Letters, 2023, Vol. 49, No. 12


