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Stability of stationary solutions for the mode with charged particles

reflection from the potential barriers in the electron-positron plasma

diode
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The stability features of plasma steady-states in the diode with counter flows of electrons and positrons are

studied numerically for the case when portion of the particles is reflected from potential barriers and returns to

the electrode. The solutions are constructed for the non-monoenergetic particle velocity distribution function. It

has been established that solutions with reflection of particles from potential barriers located near the emitting

electrodes are stable when the interelectrode distance is less than some threshold value. All other solutions are

unstable.
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Pulsars — sources of pulsed radio emission whose bursts

follow each other with very slowly varying periods — were

discovered more than 50 years ago. However, there is still

no clear idea about either the mechanism of this emission

or the reason for the jump between modes [1,2]. Only

in recent years has it been realized that pulsar emission

is related to collective processes occurring in the electron-

positron plasma of the pulsar diode [3].

In [4], it was hypothesized that the pulsar emission

is caused by fluctuations of the electric field in the

plasma arising from the instability of the stationary states

characteristic of diodes with a collisionless plasma [5]. The
stationary states of a diode with monoenergetic counter

flows of electrons and positrons are studied in detail in [6].
They can be divided into two types: 1) all charged particles

reach the opposite boundary; 2) some particles are reflected

from the potential barrier in the plasma. The study of the

stability of stationary solutions without reflection is carried

out in [4,7]. Note that analytical methods for investigating

the stability states of diode with electron beam for an

inhomogeneous plasma have been proposed in [8,9].

In the present work, the stability of stationary solutions

in a planar diode for the regime with reflection of particles

from potential barriers is numerically studied. The initial

stage of development of small perturbation of solutions is

calculated. To validate the results obtained, the calculations

are carried out using two numerical codes: EK code

and PIC code.

We consider that the nonrelativistic electron flow comes

from the left electrode, and the positron flux — from the

right electrode with velocity distribution functions (VDFs)
slightly different from the monoenergetic ones, with mean

velocities equal in modulus: v p,0 = −ve,0. A particle

reaching any electrode is absorbed at it. The potential

difference between the electrodes U is assumed to be zero.

We convert to dimensionless units by choosing the

particle energy W0 and the Debye−Hückel length.

λD =
[

(2ε̃0W0)/(e2ne,0)
]1/2

(e — the electron charge,

ne,0 — the concentration of electrons as they fly off the

emitter, and ε̃0 — the dielectric permittivity of the vacuum)
as units of energy and length. For dimensionless coordinate,

potential and electric field strength we have: ζ = z/λD ,

η = e8/(2W0) and ε = eEλD/(2W0). In dimensionless

form, we define the particle VDF as a small-width gate

with 1 ≪ 1:

f (±)
0 (u) = (21)−1 in the velosity range

u ∈ [∓1− 1,∓1 + 1] and f (±)
0 (u) = 0 outside this

interval (here the signs
”
minus“ and

”
plus“ correspond to

electrons and positrons).
We first consider stationary solutions. In the 1 ≪ 1

case, they are close to the solutions for monokinetic VDFs

and are determined by three dimensionless parameters: the

interelectrode distance δ = d/λD , the potential difference

between the electrodes V = eU/(2W0), and the electric field

strength at the left electrode ε0.

The solutions will be represented by points in the plane

(ε0, δ). These points form separate curves called solution

branches [6]. For the case of 1 = 0, the solutions are shown

in Fig. 1, a.

In the case when V = 0, and particles enter the plasma

from opposite electrodes with charges, masses, and kinetic

energies equal in modulus, the potential distributions (PDs)
must have odd symmetry about the center of the gap [4],
which allows us to reduce the number of solution branches

compared to the general case V 6= 0 [6], as well as to correct

the calculation during simulation.

Stationary solutions are characterized by wave-like PDs.

The branches of the solutions for the mode without particle

reflection from the extrema of the potential in Fig. 1 are

labelled nk , where the index k — number of extrema on

the PD. In the case where there is electron reflection, we call
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Figure 1. Solution branches for 1 = 0 (a) and 0.01 (b).

the potential minimum at the PD a virtual electron emitter

(e-VE) and the potential maximum — a virtual positron

emitter (p-VE). There are two types of PDs with particle

reflection. When the e-VE is to the left of the p-VE, the
corresponding branches in Fig. 1 are labelled dk , where the

index k — the number of extrema on the PD lying between

e-VE and p-VE. In the opposite case, when p-VE is located

to the left of the e-VE, the corresponding branches in Fig. 1

are labelled di j , where index i — the number of minima

on the PDs lying to the left of p-VE, and index j — the

number of maxima on the PDs lying to the right of e-VE.
Due to the symmetry in the case of V = 0, only solutions

belonging to the branches nk and dk with k = 0, 2, 4, . . . ,

as well as dss with s = 0, 1, . . . can exist. Examples of

PDs corresponding to the branches n2 and d0, are shown

in Fig. 2, a, and the branches d00 and d11 — in Fig. 2, b.

The stationary concentrations of electrons and positrons

are determined from the law of conservation of energy.

To find the PD for each type of solution, the charged

particle concentrations are substituted into the Poisson

equation, after which it is integrated over the potential

between characteristic points (potentials at the left and

right boundaries and extrema). The integrals are taken

analytically. The equations obtained for the derivative of

the potential η′(ζ ) allow us to relate the values of the

potential at the extremes and the electric field strength

at the left electrode ε0, which acts as a parameter. The

intervals of variation of ε0, corresponding to each type of

solution, as a functions of 1 are determined by the values

of the potential at the extrema at which reflection begins or

becomes complete. The potential distributions are found by

numerical integration of η′(ζ ) over the coordinate, taking

into account the symmetry with respect to the diode center.

The solution branches are constructed by varying ε0 on the

intervals corresponding to these branches.

A typical PD corresponding to the n2 branch is shown

in Fig. 2, a by the red curve. The PD, characteristic of the

d0 branch, is shown in Fig. 2, a by the blue curve.

Figure 1, b shows the solution branches for a diode

with VDF having half-width 1 = 0.01, in the region δ < 6.

Comparison with similar curves for a diode with 1 = 0

shows that the transition to a narrow rectangular VDF

results in a shift of these dependencies to the right and

a slight stretch along the axis of δ .

In a numerical study of the stability of stationary solutions

in an electron-positron diode, we study the evolution of a

small perturbation of the stationary electric field distribution.

In all calculations described below, the half-width of the

VDF 1 = 0.01. In the case where the solution turns out

to be unstable, the evolution of the perturbation causes the

solution to move away from stationary. In the opposite case,

the solution returns to stationary. We used two different

numerical codes to simulate the evolution of the PD in the

electron-positron diode: PIC code and EK code.

In the PIC code, the VDF modelling considers individual

particles moving in an electric field given in Nζ equally

spaced grid nodes. The model used for the charge density at

grid nodes is the
”
cloud-in cell“ (linear particle contribution

to the density at neighbouring nodes) [10]. The electric field
at the grid nodes is found from Poisson’s equation, and a

linear approximation [10] is used between the nodes. The

position of the particles at the next time instant is calculated

using the
”
leapfrog method“ [10] with a constant time

step hτ . At end of each step, particles that hit the electrodes

are removed from the calculation and particles that arrived

from the electrodes at a random time point distributed

uniformly over the interval hτ , with random velocities

distributed uniformly over the intervals [∓1−1,∓1 + 1],
are added.

As an initial field distribution at time τ = τ0, a stationary

field distribution with a perturbation superimposed on it

η̃(ζ , τ0) = C sin(2πζ /δ), where C ≪ 1, is used. The initial
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Figure 2. Typical PDs for branches n2 (red curve) and d0 (blue curve) (a) and d00 (red curve) and d11 (blue curve) (b); V = 0. A color

version of the figure is provided in the online version of the paper.

VDF of particles at each point ζ of the perturbed stationary

field has the form of the
”
gate“, the boundaries of which

are determined from the law of conservation of energy.

The numerical algorithm implemented in the EK code

is described in detail in works [11,12]. The algorithm

is based on the sequential calculation of the VDF of

charged particles, their concentrations, and the electric field

distribution at each time step. To calculate the VDF, the

trajectories of the charged particles are traced in the field

known at all previous time instants up to the departure from

one of the electrodes.

The stability of the solutions belonging to the d00 and d11

branches was investigated at diode length values δ, equal

to 2.7, 2.8, 3, 3.5, 5, 5.6. These values cover almost the

entire range of diode lengths for which solutions of this

kind exist. At δ = 5.6, there are two stationary solutions of

the form d11, differing in the value ε0 (Fig. 1). In all cases

studied, the solutions were unstable. Note that different

scenarios for the development of the initial perturbation are

possible.

We also investigated the stability of solutions belonging

to the branch d0. Calculations were performed for diode

lengths δ, equal to 2.7, 2.8, 2.85, 2.9, 2.95, 3, 3.1, 3.2.

As in the calculations for the branches d00 and d11, the

time dependence of the maximum value of the deviation

of the solution from the stationary η̃M was analyzed.

For diode lengths of 2.7, 2.8, and 2.85, the perturbation

decreases with time, and the stationary solutions were

found to be stable. In the remaining cases, the solutions

proved to be unstable. At that, for all diode lengths,

except δ = 2.7, at the initial stage of the perturbation

evolution after a short transient process, we can distinguish

a time interval, where the dependence η̃M(τ ) has the

character of exponentially damped or increasing oscillations

of a regular sinusoidal form with a constant frequency:

Table 1. Increment Ŵ and frequency ω at different diode lengths δ

(1 = 0.01 calculation by EK code)

δ Ŵ ω

2.80 −0.18 2.25

2.85 −0.13 2.17

2.90 0.04 2.18

2.95 0.05 2.18

3.00 0.07 2.17

3.05 0.12 2.15

3.10 0.14 2.15

3.20 0.16 2.14

ηM(τ ) = ηM0 + A exp(Ŵτ ) sin(ωτ + φ). Note that the time

dependences ε0(τ ) have the same character.

From the results of the calculations, we determined the

increments Ŵ and oscillation frequencies ω at the selected

sites. These are presented in Table 1. The increment sign

of Ŵ changes between points δ = 2.85 and 2.9. In this

interval, there is a stability threshold δd
th for the solutions

corresponding to the branch d0.

In diodes with lengths above the stability threshold, the

exponential growth of the oscillation amplitude continues

up to values of the order of hundredth. After that, the

amplitude growth starts to slow down, and eventually the

oscillations turn into periodic oscillations. At diode length

δ near the stability threshold the dependences of η(τ ) and

ζ (τ ) are close to sinusoidal, with increasing δ the oscillation

shape becomes distorted.

In Table 2, the amplitude values of the nonlinear

periodic oscillations of the PD maximum in the vicinity of

the d0 branch for different diode lengths ηmax
M (δ)−ηmin

M (δ)
are given. Near δd

th, the dependence of the oscillation

amplitude on δ is well approximated by the function

Technical Physics Letters, 2023, Vol. 49, No. 12
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Table 2. Amplitude of steady-state nonlinear oscillations in the

diode (1 = 0.01)

δ ηmax
M −ηmin

M 0.35
√

δ−2.896

2.9 0.022 0.022

2.95 0.081 0.081

3.0 0.112 0.113

3.5 0.235 0.272

4.0 0.289 0.368

4.5 0.302 0.443

f H(δ) = A
√

δ−δd
th at A = 0.35, δd

th = 2.896. This indi-

cates that δd
th — the position of the stability threshold — is

a Hopf bifurcation point.

In the present work, we have actually completed the

study of the stability of the stationary states of a diode

with counter-flows of electrons and positrons [6] started

in [4,7]. In previous works this problem was studied for

the regime without reflection of charged particles from

the extrema of the potential, i.e., for branches nk with

k = 0, 2, 4, . . . . It was found analytically and numerically

that such inhomogeneous stationary solutions are unstable

with respect to small perturbations. In addition, it was found

that for homogeneous solutions there is a threshold for the

dimensionless interelectrode gap (or, that is the same, for

the current density), above which instability develops in the

diode. In this case, the unsteady process terminates in a

new state characterized by nonlinear oscillations that occur

near the stationary state corresponding to the mode with

particle reflection. The threshold δn
th turns out to be equal

to
√
2π λD .

In this paper, we study the stability of stationary states in

the regime with particle reflection from potential barriers,

i. e. solutions corresponding to the branches d0, d00 and d11.

It is found that the solutions for the d00 and d11 branches

are unstable, and the solutions belonging to the d0 branch

are stable only when the value of the interelectrode gap

is smaller than some threshold value δd
th ≈ 2.896. The

calculation of the nonlinear stage of the evolution of the

perturbed solution for the d0 branch ends with the nonlinear

oscillations in the vicinity of this branch, coinciding with

the nonlinear oscillations in which the development of the

perturbation of the solutions corresponding to the branches

without particle reflection is completed.

The study of the calculated nonlinear oscillations showed

that their amplitude near the threshold is proportional to
(

δ−δd
th

)1/2
, i.e., a Hopf bifurcation occurs here.

At present, there is no theory of diode stability for

the regime with reflection of charged particles from the

extremes of the potential. Therefore, we used two numerical

codes in our research: EK-code and PIC-code. When the

increments and frequencies of PD oscillations can be found

from these calculations, their values are close when both

codes are used. By doing so, we have demonstrated the

correctness of the results obtained.
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