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Instability of steady states with inhomogeneous field in electron-positron

plasma diode
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extrema are studied. It is shown that all considered solutions are unstable. We have also confirmed this result when
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The emission of pulsars in the radio band has been at-

tracting the attention of researchers for more than 50 years,

but the mechanism of formation of this emission, as well as

the explanation of its features, in particular jumps between

modes, still raises questions [1,2]. Relatively recently, it

has been suggested that pulsar emission is associated with

collective processes in the electron-positron plasma of the

pulsar diode [3].

In the work [4], a hypothesis was put forward according

to which the pulsar emission is caused by fluctuations of the

electric field in the plasma arising from the instability of sta-

tionary states. Stationary solutions for a diode with counter

electron and positron fluxes are studied in detail in [5].
In [4], the equation for the amplitude of a small perturbation

of the potential distribution (PD) is derived and its analytical

solution is found in the case of a homogeneous PD. It was

shown that the homogeneous stationary solution is stable

only at diode length δ <
√
2π λD , where λD — the Debye

length of Hückel.

In the present work, the stability of inhomogeneous

stationary solutions is studied in the case when all charged

particles reach the opposite electrode without reflection

from the potential extrema. Note that analytical methods

for investigating the stability of diode states with elec-

tron beam for inhomogeneous plasma have been used

in [6,7]. As in work [4], consider that the monoenergetic

electron flux comes from the left electrode with density

ne,0 and non-relativistic velocity ve,0, and the positron

flux — from the right electrode with density np,0 = ne,0

and velocity v p,0 = −ve,0. The particle energies are

W0 ≡ mev
2
e,0/2 = mpv

2
p,0/2, where me and mp — the

masses of the electron and positron, respectively. We

consider that the particles are absorbed at the electrodes.

The potential difference between the electrodes U is

assumed to be zero.

We convert to dimensionless units by choosing the

particle energy W0 and the Debye length of Hückel

λD =
[

(2ε̃0W0)/(e2ne,0)
]1/2

(e — the electron charge,

and ε̃0 — the dielectric permittivity of the vacuum) as

units of energy and length. For dimensionless coordinate,

potential and electric field strength we have: ζ = z/λD ,

η = e8/(2W0) and ε = eEλD/(2W0).

The stationary solutions are defined by three dimension-

less parameters: the interelectrode distance δ, the potential

difference between the electrodes V , and the electric field

strength at the left electrode ε0. At a fixed potential

difference, these solutions are conveniently represented by

points on the plane (ε0, δ), which form separate curves —
branches of solutions [5].

Stationary solutions are characterized by wave-like PDs.

The branches of the solutions for the regime without particle

reflection from the extrema of the potential are shown

in Fig. 1. They are labelled nk , where the index k — number

of extrema on the RD In the case when V = 0, and particles

enter the plasma from opposite electrodes with identical

charges (of opposite sign), masses, and kinetic energies, the

RD must have odd symmetry about the center of the gap [4].
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Figure 1. The branches of the stationary solutions n0, n2 and n4

for the case of monoenergetic charged particle beams at V = 0.
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Due to the symmetry in the case of V = 0, only solutions

corresponding to the branches of nk at k = 0, 2, 4, . . . can

exist. A typical distribution of a potential of the form n2 is

shown in Fig. 2.

Let us consider the evolution of small perturbations of the

solutions corresponding to these branches. Let’s represent

the RD as

η(ζ , τ ) = η0(ζ ) + η̃(ζ ) exp(−i�τ ), |η̃(ζ )| ≪ |η0(ζ )|.
(1)

Here η0(ζ ) — unperturbed PD, η̃(ζ ) — the amplitude

of the PD perturbation, τ — dimensional time, and

� = ω + i Ŵ — complex frequency.

The equation for η̃(ζ ) is obtained by linearizing the

Poisson equation, into which are substituted expressions for

the concentrations of charged particles movingin field (1).
For the case of absence of reflection of charged particles

in [4], the following is obtained

η̃′(ζ )+

ζ
∫

0

dx [ue,0(x)]−3

x
∫

0

dy η̃′(y) exp
{

i�[σe(ζ )−σe(y)]
}

+

δ
∫

ζ

dx [up,0(x)]−3

δ
∫

x

dy η̃′(y) exp
{

i�[σp(ζ ) − σp(y)]
}

= η̃′(δ) +

δ
∫

0

dx [ue,0(x)]−3

x
∫

0

dy η̃′(y)

× exp
{

i�[σe(δ) − σe(y)]
}

. (2)

Here,

ue,0(ζ ) = [1 + 2η0(ζ )]
1/2

, up,0(ζ ) = [1− 2η0(ζ )]
1/2

,

σe(ζ ) =

ζ
∫

0

dx [ue,0(x)]−1, σp(ζ ) =

δ
∫

ζ

dx [up,0(x)]−1

(3)

are the velocities of the electron and positron at the point ζ

and the travel times of these particles from the correspond-

ing electrode to this point in the unperturbed field.

Solving equation (2), we can find an expression for the

perturbation potential η̃(ζ ). The boundary condition at

the right electrode η̃(δ;�) = 0 gives a dispersion equation

whose solutions determine the relationship between the

natural frequency � and the dimensionless diode length

δ (called dispersion branches). In the case where the

increment Ŵ > 0, the stationary solution is unstable.

Let’s introduce a new function ϕ(ζ ) = η̃′(ζ ). Since the

solution of equation (2) is defined to the multiplicative

constant proportional to the value of the electric field

perturbation at the right boundary −η̃′(δ), let us put

ϕ(δ) = 1. After changing the order of integration in the

double integrals, equation (2) reduces to the Fredholm
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Figure 2. Typical RD for the n2 branch at V = 0.

integral equation of the second kind with respect to the

function ϕ(ζ ):

ϕ(ζ ;�) +

δ
∫

0

dyK(ζ , y ;�)ϕ(y ;�)

−
δ

∫

0

dy K(δ, y ;�)ϕ(y ;�) = 1, (4)

where

K(ζ , y ;�) = P(ζ , y) Q(ζ , y ;�),

P(ζ , y) =



















ζ
∫

y
dx [ue,0(x)]−3, y ≤ ζ ,

y
∫

ζ

dx [up,0(x)]−3, y ≥ ζ ,

Q(ζ , y ;�) =

{

exp {i�[σe(ζ ) − σe(y)]} , y ≤ ζ ,

exp {i�[σp(ζ ) − σp(y)]} , y ≥ ζ .
(5)

Given that ϕ(ζ ) = η̃′(ζ ), on the right boundary we obtain

η̃(δ;�) =

δ
∫

0

dy ϕ(y ;�) + η̃(0;�). (6)

Since the value of the potential at the electrodes is given,

then η̃(0;�) = 0, η̃(δ;�) = 0, and from (6) we obtain the

dispersion equation

δ
∫

0

dy ϕ(y ;�) = 0. (7)

Analysis of solutions of equation (7) allows us to deter-

mine the stability of stationary solutions with inhomoge-

neous PDs. Thus, to obtain the dispersion equation, it is
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Figure 3. Aperiodic variance branches for solutions correspond-

ing to the branches n0, n2 and n4 .

necessary to solve the integral equation (4), i.e. i.e. deter-
mine the function ϕ(ζ ;�).

In the general case, it is not possible to find the solution

of this equation analytically. Therefore, we propose a

numerical method for its solution. To do this, we divide the

entire interval [0, δ] into N intervals and replace the integrals

in (5) by sums using the trapezoidal method. For the values

of the unknown function at the nodes we obtain a system

of linear equations. Substituting the solutions of this system

into the dispersion equation (7) allows us to determine the

natural frequencies and find both aperiodic and oscillatory

dispersion branches.

The aperiodic dispersion branches corresponding to the

solution branches n0, n2 and n4, are shown in Fig. 3.

The branch for n0 is exactly the same as that obtained

in work [4], where equation (4) was solved analytically.

As can be seen from Fig. 3, the stationary solutions

corresponding to the branch n2, are aperiodically unstable

(increment Ŵ > 0). On the branch n4, there is a window

of values 6.766 < δ < 7.752, in which the stationary states

are aperiodically stable. However, an examination of the

oscillatory branches in this interval shows that one of them

has a positive increment; hence, these stationary solutions

are unstable with respect to small oscillatory perturbations.

The dependences of Ŵ on δ for RDs corresponding to the

same branch nk , but with different signs of the tensions

at the left boundary ε0, in the case of V = 0 coincide.

Moreover, this fact is true for both aperiodic and oscillatory

branches.

Thus, it is shown that the inhomogeneous stationary

solutions corresponding to the branches n2and n4 are

unstable, i.e., such stationary states cannot exist. We can

assume that the stationary solutions corresponding to the

n2s with s ≥ 3 branches are also unstable with respect to

small perturbations.

In a numerical study of the stability of stationary solutions

in an electron-positron diode, we study the evolution

of a small perturbation of the stationary electric field

distribution. We select velocity distribution functions

(VDFs) on electrodes in the form of small-width
”
gates“

of 1 ≪ 1: f (±)
0 (u) = (21)−1 in the velocity interval

u ∈ [∓1−1,∓1 + 1] and f (±)
0 (u) = 0 outside this interval

(here the signs
”
minus“ and

”
plus“ correspond to electrons

and positrons).
Stationary solutions should be slightly different from

those forδ-shaped VDF. For solutions belonging to the n2i

branches (where i = 0, 1, . . .), the particle concentrations

are determined using the following formulae:

n±(η) =
1

21

[

√

(1 + 1)2 ∓ 2 η −
√

(1− 1)2 ∓ 2 η

]

. (8)

Substituting the particle concentrations (8) into the

Poisson equation, multiplying both parts of it by η′ and

integrating the result over the potential, we obtain the

equation for η′, from which we can find the relationship

between ε0 and the minimum potential ηm. Integrating

the obtained equation for η′, we find the distributions of

the potential and electric field along the coordinate. As

a parameter we use the electric field strength at the left

boundary ε0. The position of the minimum ζm is found by

integrating from ηm to 0.

Since the RD has symmetry about the point ζ = ζm, the

center of the gap is at the point ζ = 2 ζm, and the value of

the gap δ for the branch n2 is 4 ζm(ε0).
We used two different numerical codes to model the

evolution of the electric field distribution and the VDF of

charged particles: PIC code and EK code.

In the PIC code, the VDF modelling considers individual

particles moving in an electric field defined at grid nodes.

The
”
cloud-in-a-cell“ (linear particle contribution to the

density at neighboring nodes) [8] model is used to find the

charge density at grid nodes. To calculate the electric field

at the grid nodes, the Poisson equation is solved and a

linear approximation [8] is used between the nodes. To

find the position of the particles at the next instant of

time, the
”
method of stepping over“ [8] with step hτ . At

the end of each step, particles that hit the electrodes are

removed from the calculation and particles that arrived from

the electrodes with random velocities uniformly distributed

over the interval [∓1− 1,∓1 + 1], at a random time instant

distributed uniformly over the interval hτ , are added.

The numerical algorithm implemented in the EK code is

described in detail in works [9,10]. The particle trajectories

are traced back in time up to the moment of departure

from the electrode. The field distribution is found from the

Poisson equation. The calculations are iterated at each step

to ensure self-consistency.

Calculations were performed at values of the interelec-

trode gap δ = 3 and 4 for stationary solutions with both

positive and negative values of ε0. After a short transient,

the maximum disturbance value η̃M(τ ) grows exponentially

Technical Physics Letters, 2023, Vol. 49, No. 12
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with increments of Ŵ = 0.7 for δ = 3 and Ŵ = 0.33 for

δ = 4. This agrees well with the increment values given

by the semi-analytical method for monoenergetic beams

(Ŵ = 0.68 and 0.31), as well as with the result of the

calculation using the PIC code (Ŵ = 0.31 in the case of

δ = 4).
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