10

Запись двулучепреломляющих микротреков в объёме плавленого кварца

© А.Е. Рупасов, И.В. Гриценко, Н.И. Буслеев, Г.К. Красин, Ю.С. Гулина, А.В. Богацкая, С.И. Кудряшов

Физический институт им. П.Н. Лебедева, 119991 Москва, Россия e-mail: rupasovan@lebedev.ru

Поступила в редакцию 11.12.2023 г. В окончательной редакции 09.01.2024 г. Принята к публикации 16.01.2024 г.

> Исследованы характеристики двулучепреломляющих микротреков, записанных ультракороткими лазерными импульсами с варьируемыми параметрами в объёме плавленого кварца. В частности, наблюдается образование двулучепреломляющих микротреков с фазовым сдвигом до 150°, при этом направление медленной оси совпадает с направлением вектора линейной поляризации индуцирующего лазерного излучения. Выявлены физические механизмы модификации плавленого кварца методом комбинационного рассеяния. С помощью микроскопа-спектрофотометра получены спектры пропускания и отражения двулучепреломляющих областей, состоящих из микротреков.

> Ключевые слова: двулучепреломление, микромодификация, плавленый кварц, прямая лазерная запись, ультракороткие лазерные импульсы.

DOI: 10.61011/OS.2024.01.57555.12-24

1. Введение

Последние годы активно развивается лазерная запись микротреков в объёме прозрачных твёрдых диэлектриков под действием ультракоротких импульсов. Особенностью данных микротреков является эффект двулучепреломления [1]. Двулучепреломляющие микротреки это постоянные модификации материала, формирующиеся вдоль оси распространения излучения. Двулучепреломление здесь обусловлено наличием упорядоченной субмикронной подструктуры [2] с периодом менее длины волны индуцирующего лазерного излучения, представляющей из себя области уплотнения и разуплотнения материала [3]. На сегодняшний день был предложен ряд механизмов, которые объясняют формирование подструктуры микротреков, например интерференция падающего излучения [4], интерференция плазмонов [5,6] и интерференция экситон-поляритонов [7].

На основе лазерной записи двулучепреломляющих микроструктур сегодня активно развиваются такие технологии, как оптическая память [8,9] и создание фазовых оптических элементов [10–12].

В настоящей работе было проведено исследование возможности записи однородных двулучепреломляющих областей на основе микротреков в объёме плавленого кварца при жесткой фокусировке лазерного излучения. Были исследованы структурные изменения в записанной области с помощью комбинационного рассеяния света.

2. Экспериментальные установки

Плавленый кварц сегодня является основным материалом для записи двулучепреломляющих микротреков в объёме, широко применяющихся для создания оптических фазовых элементов и оптической памяти [9,10]. В настоящей работе использовался плавленый кварц КУ-1 (ООО "Электростекло"), прозрачный в диапазоне от 170 до 2600 nm. Используемый образец имел толщину 3 mm, все его грани были предварительно отполированы.

В качестве источника лазерных импульсов использовался волоконный иттербиевый лазер Satsuma с основной длиной волны 1030 nm. Длительность импульсов варьируется в диапазоне от 0.3 до 10 ps, частота следования импульсов от 1 Hz до 500 kHz, максимальная энергия в импульсе $10 \,\mu$ J. Излучение фокусировалось в объёме плавленого кварца с помощью микрообъектива с числовой апертурой NA = 0.45 (рис. 1).

В объёме плавленого кварца под действием импульсов длительностью 0.3 и 0.6 ps, с энергиями в импульсе от 0.25 и до $3.5 \,\mu$ J, на глубине 1 mm, при частоте следования импульсов 100 kHz были записаны серии дорожек с шагом $10 \,\mu$ m и размером $100 \times 2000 \,\mu$ m. Образец плавленого кварца перемещался с помощью автоматизированного линейного транслятора Prior XYZ со скоростью $300 \,\mu$ m/s. Длительность импульсов измерялась с помощью сканирующего интерференционного автокоррелятора Avesta AA-10 DD-12 PS.

Для исследования двулучепреломления использовалась авторизированная система Thorlabs LCC7201. Эта

84

Рис. 1. Экспериментальная установка для лазерной записи двулучепреломляющих микроструктур: RMS — откидное зеркало, RM — зеркало.

Рис. 2. Оптические снимки записанных областей в объёме плавленого кварца в скрещенных поляризаторах.

система позволяет измерять величину фазового сдвига до 180° (длина волны источника света 633 nm) и направление медленной оси в диапазоне $\pm 90^{\circ}$.

Для исследования структурных изменений в области формирования двулучепреломляющих микротреков использовался конфокальный сканирующий микроскоп Confotec MR350. По сигналу фотолюминесценции были оценены толщины записанных структур. Исследования проводились с помощью лазера с длиной волны 532 nm в области 5 μ m (объектив с NA = 0.3).

Для исследования отражения и пропускания двулучепреломляющих микротреков использовался микроскопспектрофотометр ЛОМО МСФУ-К. Микроскоп позволяет измерять спектры отражения и пропускания в микронной области. В качестве источников света использовались галогеновые лампы.

Экспериментальные результаты и их обсуждение

3.1. Оптические исследования

В объёме плавленого кварца были записаны области, состоящие из двулучепреломляющих микротреков. Варыруя параметры лазерного излучения, можно управлять величиной фазового сдвига. Двулучепреломляющие микротреки были визуализированы с помощью оптического микроскопа, где в скрещенных поляризаторах области окрашиваются в цвета двулучепреломления (рис. 2).

Как видно из рис. 2, варьируя энергию импульсов и их длительность, можно управлять величиной фазового сдвига. Во время исследования был обнаружен пороговый режим формирования двулучепреломляющих микротреков — энергия в импульсе $0.25 \,\mu$ J, ниже которого формирования микротреков не происходит.

3.2. Поляриметрические исследования

С помощью поляриметрической системы были измерены величины фазового сдвига записанных областей через всю толщу образца (рис. 3.). Максимальный фазовый сдвиг двулучепреломляющих микротреков составил $\sim 150^\circ.$

Как видно из рис. 3, записанные области обладают хорошей однородностью по величине фазового сдвига, позволяя заполнять миллиметровые области. Это позволит создавать фазовые оптические элементы, размеры которых будут ограничиваться не технологией, а только экспериментальной установкой.

На рис. 4 продемонстрирована ориентация азимута двулучепреломляющих микротреков. Направление медленной оси (азимута) демонстрирует наибольшее изменение показателя преломления в записанных областях. Направление медленной оси двулучепреломляющих микротреков совпадает с направлением вектора линейной поляризации формирующего микротреки лазерного излучения. Таким образом, вращая вектор линейной поляризации лазерного излучения, можно управлять направлением медленной оси (азимута) микротрека.

3.3. Комбинационное рассеяние

Было выполнено исследование комбинационного рассеяния в области формирования двулучепреломляющих микротреков. Предварительно образцы были разрезаны пополам для непосредственного доступа к записанным в объёме плавленого кварца структурам (рис. 5, *a*). Полосы 490, 605 и $805 \,\mathrm{cm}^{-1}$ на спектре комбинационного рассеяния отвечают за мостиковые связи Si-O-Si (рис. 5, *b*), поэтому по изменению в соотношении между амплитудами этих пиков можно оценить структурные модификации и трансформацию плавленого кварца. Стоит отдельно отметить, что в области формирования двулучепреломляющих микротреков сильно возрастает сигнал фотолюминесценции. Этот рост может быть связан с дефицитом кислорода в результате лазерной обработки [13].

Из рис. 5, *b* по соотношению амплитуд пиков на 490, 605 и 805 cm^{-1} можно сделать вывод о том, что в области лазерной модификации происходит уплотнение материала, обусловленное фотоиндуцированным разрывом мостиковых связей Si-O-Si [14,15].

Рис. 3. Поляриметрические снимки двулучепреломляющих микротреков в объёме плавленого кварца: (*a*) псевдоцветовая карта значений фазового сдвига, (*b*) профили областей со значениями фазового сдвига.

Рис. 4. Поляриметрические снимки двулучепреломляющих областей, состоящих из микротреков, в объёме плавленого кварца: (*a*) псевдоцветовая карта значений азимута; (*b*) профили областей со значениями азимута. *E* отображает направление вектора линейной поляризации которая была при лазерной записи.

Рис. 5. (*a*) Оптический снимок сечения двулучепреломляющего микротрека. (*b*) Спектры комбинационного рассеяния — исходный спектр образца (красный) и спектр модифицированной области (черный).

Рис. 6. (*a*) Спектры отражения записанных областей в объёме плавленого кварца и исходного немодифицированного материала. (*b*) Спектры пропускания двулучепреломляющих микротреков в объёме плавленого кварца и исходного не модифицированного материала.

Таким образом, при лазерной обработке исходный материал трансформируется, что приводит к изменению спектра комбинационного рассеяния лазерномодифицированного плавленого кварца в сторону уплотнённого плавленого кварца.

3.4. Отражение и пропускание записанных областей

С помощью микроскопа-спектрофотометра были получены спектры отражения и пропускания двулучепреломляющих областей (рис. 6).

Как видно из рис. 6, *a*, при увеличении энергии импульсов уменьшается коэффициент отражения двулучепреломляющих микротреков, но при этом изменение коэффициента отражения незначительно относительно исходного материала. В то же время, как видно на рис. 6, *b*, с ростом энергии импульсов значительно уменьшается коэффициент пропускания модифицированных областей, что может быть связанно с рассеянием света на двулучепреломляющих микротреках. При этом для энергии в импульсе $0.25 \,\mu$ J пропускание двулучепреломляющих областей сопоставимо с пропусканием немодифицированного плавленого кварца, что наблюдалось ранее [16].

4. Заключение

В настоящей работе было проведено исследование возможности записи однородных двулучепреломляющих микротреков субпикосекудными лазерными импульсами с варьируемыми параметрами.

Было получено, что максимальная величина фазового сдвига двулучепреломляющих областей составляет ~ 150°. Направление медленной оси записанных

структур совпадает с направлением вектора линейной поляризации индуцирующего лазерного излучения.

Исходя из результатов исследования комбинационного рассеяния можно сделать выводы о том, что в области формирования двулучепреломляющих микротреков происходит уплотнение плавленого кварца, обусловленное фотоиндуцированным разрывом мостиковых связей Si–O–Si.

На основе анализа полученных спектров пропускания двулучепреломляющих микротреков было показано, что в записанных областях значительно уменьшается пропускание, что сильно ограничивает применение таких структур для создания фазовых оптических элементов и оптической памяти.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 22-72-10076).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Y. Shimotsuma, K. Hirao, J. Qiu, P.G. Kazansky. Mod. Phys. Lett. B, 19 (5), 225 (2005).
- [2] R. Taylor, C. Hnatovsky, E. Simova. Laser Photonics Rev., 2 (1-2), 26 (2008).
- [3] E. Bricchi, B.G. Klappauf, P.G. Kazansky. Opt. Lett., 29 (1), 119 (2004).
- [4] Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao. Phys. Rev. Lett., 91 (24), 247405 (2003).

- [5] S. Kudryashov, A. Rupasov, M. Kosobokov, A. Akhmatkhanov, G. Krasin, P. Danilov, B. Lisjikh, A. Abramov, E. Greshnyakov, E. Kuzmin, M. Kovalev, V. Shur. Nanomaterials, 12 (23), 4303 (2022).
- [6] S. Kudryashov, A. Rupasov, M. Smayev, P. Danilov, E. Kuzmin, I. Mushkarina, A. Gorevoy, A. Bogatskaya, A. Zolotko. Nanomaterials, 13 (6), 1133 (2023).
- [7] M. Beresna, M. Gecevičius, P.G. Kazansky, T. Taylor, A.V. Kavokin. Appl. Phys. Lett., **101** (5), 053120 (2012).
- [8] E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur. Opt. Lett., 21 (24), 2023 (1996).
- [9] H. Wang, Y. Lei, L. Wang, M. Sakakura, Y. Yu, G. Shayeganrad, P.G. Kazansky. Laser Photonics Rev., 16 (4), 2100563 (2022).
- [10] M. Beresna, M. Gecevičius, P.G. Kazansky, T. Gertus. Appl. Phys. Lett., 98 (20), 562 (2011).
- [11] J.D. Mills, P.G. Kazansky, E. Bricchi, J.J. Baumberg. Appl. Phys. Lett., 81 (2), 196 (2002).
- [12] M. Beresna, M. Gecevičius, P.G. Kazansky. Adv. Opt. Photonics, 6 (3), 293 (2014).
- [13] H.B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii. J. Phys. Chem. B, **104** (15), 3450–3455 (2000).
- [14] J.W. Chan, T. Huser, S. Risbud, D.M. Krol. Opt. Lett., 26 (21), 1726 (2001).
- [15] J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, M. Foret. Phys. Rev. B, 78 (18), 184203 (2008).
- [16] Н.И. Буслеев, А.Е. Рупасов, В.В. Кесаев, Н.А. Смирнов, С.И. Кудряшов, Р.А. Заколдаев. Опт. и спектр., 131 (2), 170 (2023).