15.1

Физический механизм регистрации гелия в вакуумном датчике Пирани

© Е.В. Рутьков¹, Е.Ю. Афанасьева¹, О.А. Беляева², Н.Р. Галль¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
² ООО "ТЕХНАН", Санкт-Петербург, Россия
E-mail: rutkov@ms.ioffe.ru, afanaseva@ms.ioffe.ru

Поступило в Редакцию 14 декабря 2023 г. В окончательной редакции 11 января 2024 г. Принято к публикации 11 января 2024 г.

Предложен физический механизм, описывающий работу вакуумного датчика типа Пирани в атмосфере гелия и в гелиево-воздушных смесях. Показано, что скорость охлаждения нагревателя в датчике Пирани определяется отводом тепла атомами гелия, десорбирующимися с поверхности металла, причем атомы гелия уносят существенно больше тепла от поверхности, чем хемосорбированные молекулы атмосферных газов. В случае гелиево-воздушных смесей имеет место конкуренция между атомами гелия и молекулами атмосферных газов за адсорбционные места, приводящая к существенному изменению температуры нагревателя.

Ключевые слова: гелий, атмосферные газы, измерение вакуума, датчик Пирани.

DOI: 10.61011/PJTF.2024.08.57520.19844

Вакуумные термоэлектрические датчики, предложенные в начале XX века М. Пирани [1], остаются наиболее распространенным средством измерения давлений в интервале $10^3 - 10^{-3}$ mbar, т.е. в области "низкого" вакуума [2,3]. Они также широко используются как "датчики теплопроводности" газа, позволяя детектировать изменение газового состава для решения различных аналитических и промышленных задач [4].

Между тем еще в начале прошлого столетия стало понятно, что работа данного типа датчиков определяется не теплопроводностью газа, которая с хорошей точностью не зависит от давления [5], а механизмами съема тепла с поверхности нагревателя. До недавнего времени механизм этого процесса был не выяснен, и для его описания использовали "коэффициент аккомодации", который не имел физического объяснения и вводился в формулу Герца—Кнудсена лишь для согласования ее с измеренными данными.

В нашей недавней работе [6] был предложен механизм, основанный на закономерностях адсорбционнодесорбционного равновесия атмосферных газов на поверхности металлических нагревателей. Он позволяет вполне корректно описывать работу термоэлектрических датчиков в контакте с атмосферными газами. Однако даже незначительная примесь гелия очень сильно искажает результаты измерений.

Целью настоящей работы является рассмотрение молекулярного механизма, который описывал бы закономерности работы датчика Пирани в атмосфере гелия и в гелиево-воздушных смесях в широком интервале давлений и электрофизических параметров датчика.

Эксперименты проводились на вакуумном датчике ТЕХНАН ВВ 2, в котором низковакуумные измере-

ния в режиме Пирани и высоковакуумные в режиме Байарда—Альперта реализованы на одном нагревательном устройстве — иридиевом катоде, активированном окисью иттрия. Длина проволочного нагревателя составляла 50 mm, его диаметр был $100 \,\mu$ m. Часть экспериментов проводилась в самодельной экспериментальной установке, где в качестве материала нагревателя использовались различные металлы: вольфрам, молибден и рений.

Температуру нагревателей в датчике определяли, используя стандартную формулу

$$R_t = R_0(1 + \alpha t),$$

причем для иридия $\alpha = 4.0 \cdot 10^{-3} \circ C^{-1}$ [7]. В пирометрической области данные измерений хорошо согласовывались с температурой, определенной микропирометром.

На рис. 1 представлены зависимости температуры иридий-иттриевого нагревателя от тока накала: кривая I измерена в вакууме $p = 10^{-3} \cdot 10^{-7}$ mbar (не зависит от давления); кривая 2 — в атмосфере воздуха p = 1000 mbar, кривая 3 — в атмосфере гелия $p_{\text{He}} = 1000$ mbar. Видно, что напуск воздуха или гелия уменьшает температуру нити, причем гелий охлаждает нить гораздо сильнее.

Замена иридий-иттриевого нагревателя на молибденовые или вольфрамовые нити, иридиевые или рениевые ленты также подтверждает очень сильное охлаждение нагревателей в атмосфере гелия.

Зависимость сопротивления нагревателя от давления воздуха или гелия в камере для всех используемых материалов в случае I = сопst имеет сложную Z-образную форму. При этом в области давлений $10-10^{-1}$ mbar наблюдается резкая зависимость температуры нагревателя

Рис. 1. Зависимости изменения температуры иридийиттриевого катода от тока накала нити. I — вакуум $(p < 10^{-3} \text{ mbar}), 2$ — воздух (p = 1000 mbar), 3 — Не (p = 1000 mbar).

Рис. 2. Изменение сопротивления иридий-иттриевого катода от давления газа в камере для I = 1.4 А. I — только гелий, 2 — только воздух, 3 — напуск гелия до p = 4 mbar и затем воздуха до p = 1000 mbar.

от давления газа. Наоборот, при предельно низких и высоких давлениях эта зависимость слаба [6]. Например, в случае гелия в области изменения давлений от 1-4 до 1000 mbar наблюдается плато (кривая 1 на рис. 2). Для сравнения приведен аналогичный график для воздуха (кривая 2 на рис. 2), на котором эта зависимость проявляется гораздо сильнее.

Совместный напуск воздуха и гелия приводит к весьма интересным результатам, проясняющим физическую картину процессов на поверхности катодов при их контакте с газом. Сначала напускался гелий до давления $p_{\text{He}} = 4$ mbar, затем дозированно добавлялся воздух, так что общее давление росло. Видно, что добавление воздуха в гелий снижает эффективность охлаждения на-

гревателя, и его температура растет (кривая *3* на рис. 2). Однако полностью вклад гелия нивелируется лишь тогда, когда его концентрация составляет менее 0.4% от концентрации молекул атмосферных газов, т.е. при напуске до атмосферного давления.

В случае атмосферных газов отвод тепла от металлического нагревателя осуществляется хемосорбированными на поверхности молекулами (N₂, O₂, ...) с малой энергией связи $E \approx 0.5$ eV. Отметим, что замена воздуха чистым азотом (99.9%) не приводила к изменению результатов опыта. Как показано в работе [6], при повышении давления до 10–1000 mbar теплообмен газ-подложка слабо зависит от давления азота (воздуха). В этих условиях хемосорбированный молекулярный слой оказывается заполненным, а теплообмен газ-подложка определяется временем жизни хемосорбированной молекулы азота на поверхности, зависящим только от температуры (рис. 3, a).

При напуске только гелия наблюдается похожая ситуация: при давлениях $\text{He} \ge 1-4$ mbar слой адсорбированных атомов гелия насыщается (рис. 3, b), и теплообмен между катодом и газом определяется не внешним давлением, а временем жизни атома гелия на поверхности нагревателя. При этом на зависимости сопротивления нагревателя от давления наблюдается плато (кривая 1 на рис. 2), хотя давление меняется в 250 раз.

В случае совместного напуска азота и гелия, скорее всего, происходит конкуренция между ними на поверхности (рис. 3, *c*). Из рис. 2 видно, что вначале при равных давлениях воздуха и гелия (около 4 mbar) гелий вносит

Рис. 3. Упрощенная иллюстрация процессов на поверхности металла для газовой смеси азота и гелия. 1 — хемосорбированный слой из атомов азота, не участвующий в теплообмене; 2 — атомы гелия; 3 — молекулы азота.

основной вклад в охлаждение. В конечной же точке при давлениях воздуха, близких к атмосферному, вклад гелия отсутствует: видимо, молекулы атмосферных газов вытесняют атомы гелия с поверхности и он полностью "выходит из игры".

Сделаем некоторые оценки, относящиеся к адсорбционно-десорбционным свойствам гелия. При $p_{\rm He} = 1$ mbar зависимость $R = f(p_{\rm He})$ практически выходит на плато (кривая *I* на рис. 2). Используем известное выражение для плотности потока ν молекул газа на поверхность

$$\nu = p(2\pi m kT)^{-1/2},$$

где k — постоянная Больцмана, m — масса молекулы (атома), p — давление газа. Зная площадь поверхности нагревателя, можно рассчитать поток атомов гелия, падающих на нее.

Рассчитанная величина потока составляет $v' = 1.9 \cdot 10^{20} \, \mathrm{s}^{-1};$ этот поток "гасит" температуру нити до $T = 220^{\circ}C = 493$ К. В предположении, что все поступающие атомы Не в равной степени аккомодируют, этот поток "унесет" с поверхности мощность $P_{\text{He}} = v'kT = 1.3$ W. В то же время мощность, выделяемая на нити, $P_f = I^2 R = 1.47$ W. Таким образом, из наших оценок следует, что тепловое равновесие $P_{\rm He} \approx P_f$ обеспечивается потоком атомов He, причем при $p_{\text{He}} = 1 \text{ mbar}$ практически все атомы Не участвуют в теплообмене с полной тепловой аккомодацией. Если предположить, что концентрация атомов Не на поверхности $N \approx 10^{14} \,\mathrm{cm}^{-2}$, то время жизни атома гелия при T = 493 К составит $\tau = N/\nu \approx 5 \cdot 10^{-7}$ s.

Рассмотрим ситуацию при совместной адсорбции азота и гелия. Используя значение энергии десорбции хемосорбированных молекул азота с поверхности металлов (Ir, W, Mo) $E \approx 0.5 \,\text{eV}$ [8], оценим время жизни молекул азота по отношению к десорбции при той же температуре T = 493 К, для которой выше проведена оценка времени жизни атомов гелия. Используя формулу Френкеля [9] и положив предэкспоненту $\tau_0 = 10^{-13}$ s, получим время жизни азота $au \approx 10^{-7} - 10^{-8}$ s. Можно сказать, что в первом приближении времена жизни атомов гелия и молекул азота близки. Поэтому при дальнейшем существенном увеличении давления азота в камере в конкурентной борьбе физадсорбированные атомы гелия будут вытеснены хемосорбированными молекулами азота, имеющими сравнительно большую энергию связи. Отметим, что все описанные выше процессы не имеют никакого отношения к объемной теплопроводности гелия, а относятся только к его адсорбционнодесорбционным характеристикам.

Таким образом, предложен непротиворечивый физический механизм, связывающий известные адсорбционнодесорбционные свойства гелия с эффектами, наблюдаемыми в датчике Пирани. Процессы, протекающие при измерении гелий-воздушных смесей, определяются механизмами конкуренции адсорбатов на поверхности. Данный механизм может быть использован и для описания работы датчиков с другими газами, такими как неон или метан.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] M.S. Pirani, Dtsch. Phys. Ges. Verh., 8, 686 (1906).
- [2] S. Xu, N. Zhou, M. Shi, C. Zhang, D. Chen, H. Mao, Micromachines, 13, 945 (2022). DOI: 10.3390/mi13060945
- [3] S. Chen, L. Feng, S. Guo, Y. Ji, S. Zeng, X. Peng, Y. Xu, T. Hu, Z. Wu, S. Wang, Sensors, 23, 1276 (2023). DOI: 10.3390/s23031276
- [4] H. Budiman, Nuryatini, O. Zuas, Procedia Chem., 16, 465 (2015). DOI: 10.1016/j.proche.2015.12.080
- [5] А.К. Кикоин, И.К. Кикоин, *Молекулярная физика* (Наука, М., 1976).
- [6] Е.В. Рутьков, О.А. Беляева, Н.Р. Галль, ЖТФ, 93 (2), 286 (2023). DOI: 10.21883/JTF.2023.02.54505.187-22
 [E.V. Rut'kov, O.A. Beliaeva, N.R. Gall, Tech. Phys., 68 (2), 267 (2023). DOI: 10.21883/TP.2023.02.55483.187-22].
- [7] Таблицы физических величин, справочник, под ред. акад. И.К. Кикоина (Атомиздат, М., 1976).
- [8] I. Tovoshima, G.A. Somorjai, Catal. Rev. Sci. Eng., 19, 105 (1979). DOI: 10.1080/03602457908065102
- [9] Э.Я. Зандберг, Н.И. Ионов, Поверхностная ионизация (Наука, М., 1969). [E.Ya. Zandberg, N.I. Ionov, Surface ionization (Israel Program for Scientific Translation, Jerusalem, 1971).]