
Technical Physics, 2023, Vol. 68, No. 10

03

Physicomathematical model of icing of the rotating sphere in a coaxial

supercooled gas-drop flow
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A physico-mathematical model is proposed for assessing the effect of centrifugal force on the characteristic

dimensions of needle-shaped ice formed as a result of the collision of a large supercooled drop with a sphere

rotating in a coaxial air flow. The mass loss of droplets upon collision with the surface due to splashing is taken

into account. The numerical implementation of the model makes it possible to study the effect of surface properties

on the icing process and, in particular, to estimate the ice-free surface area due to centrifugal force.
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Introduction

The icing of the body in a supercooled air-drop stream

is accompanied by a combination of complex physical

phenomena. Certified numerical codes have been created

to date in many countries to predict the spatio-temporal

evolution of ice on the structural elements of an aircraft.

Some of these codes, in particular FENSAP-ICE, also

consider icing of rotating engine structural elements. At

the same time, additional complications arise in the physical

and mathematical modeling of icing. Thus, the results of

studies in an air-cooling pipe of ice forms on fans with

different shapes of central bodies (cone, ellipsoid and cone

with ellipsoidal extension) in a supercooled air stream with

drops with a small diameter (∼ 20µm) are presented in [1].
It is found, in particular, that rotation leads to the formation

of needle-like icicles on a part of the surface of the central

body at some distance from its top, and then an ice-free

zone arises due to the breakdown of ice under the action of

centrifugal forces. Existing codes do not yet allow modeling

such ice growths.

Needle-shaped icicles appeared at a slightly negative

temperature of the air flow (−5◦C) and a sufficiently large

mass concentration of liquid water in it (LWC — Liquid

Water Content) under conditions of formation of the so-

called glaze ice. At the same time, the supercooled drops

did not freeze completely when they hit the surface, forming

a flowing liquid film. The formation of needle ice is

explained in [1] by the separation of the film from the

surface under the action of centrifugal forces, followed by

freezing. It is reported in [2] that similar needle formations

were found on the engine fan cone in the real flight of A321

aircraft in icy rain conditions, i.e. large supercooled drops.

A discrete-drop model of icing of a transverse non-

rotating cylinder under such conditions is proposed in [3],

using the results of experimental and theoretical studies

of [4,5] collision of a drop with a flat surface. The discrete-

drop approach proposed in [3] is modified and applied

in this paper to simulate the shape of a frozen large

supercooled drop on the surface of a rotating sphere.

1. Preliminary considerations

Consider an air flow with a velocity of u∞ carrying

large supercooled drops with a radius of ad , but they

collide with the surface of a rotating sphere with a radius

of R unlike the case of [3]. Drops with a diameter of

more than 100µm are considered as
”
large“ according to

international airworthiness standards.

The flow pattern of a drops on a rotating sphere is shown

in Fig. 1. Note that the angular velocity of rotation of the

sphere W is depicted in the
”
fixed“ coordinate system. The

rotation of the sphere results in the formation of a flow

around the surface of the sphere in the opposite direction

indicated by the vector VW . However, the choice of the

direction of rotation of the sphere with axisymmetric flow

does not affect the result of icing.

In case of a collision the drop splashes and only part

of m of its original mass m0 remains on the surface. An

approximation dependence of the coefficient ξ = m/m0 on

the angle of incidence of α drops is proposed for a fixed

surface in [3], based on the results of [4].
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Figure 1. Geometry of a rotating sphere. The angular velocity �

is given in the laboratory coordinate system, the components of

the drop velocities — in the local non-inertial system.

Here Rs ,l = ρs ,lcs ,l — wave resistances (impedances) of

materials of a streamlined body and drops (ρs ,l and cs ,l —
their densities and sound velocities in them, s — solid,

l — liquid), vn — normal component of the impact

velocity, µl — viscosity of the liquid. The values

of the reference parameters: d∗ = 250µm, v∗ = 80m/s,

µ∗ = 1.75 · 10−3 Pa · s.
The effect of rotation on the fraction ξ of the mass

remaining on the surface is determined by changing the

angle of incidence α (Fig. 1), so that

cosα = cos θ[1 + (V�/u∞)2]−1/2, V� = �R sin θ,

where θ — polar angle of the spherical coordinate system,

V� — circumferential velocity of the drop at the point of

incidence, � — angular velocity of rotation of the sphere.

Further, it is assumed in [3], that the liquid remaining after

the impact spreads over the surface, and at the moment of

the cessation of spreading, the shape of the liquid contact

spot with the surface is an ellipse with semi-axes

a l = r l cos
−2/5 α, bl = r l cos

1/5 α;

for the maximum radius r l of the contact spot in normal

collision (α = 0) an estimate was obtained:

r l ∼
2ξ5/12ad√

6

(

ρlvnad

µl

)1/4

. (1)

A classic example of a significant deformation in a

force field is a drop hanging on a stream. In contrast

to this situation, the solidification of a supercooled drop

after collision with a rotating body is accompanied, in

addition to elongation under the action of centrifugal force

and possible disruption from its surface, by a complex of

physical phenomena, in particular, nucleation, the velocity

of which depends on the characteristics of the shear flow of

the liquid [6]; crystal growth, total volume which increases

the effective viscosity of the suspension (for example, the

well-known Einstein formula) and its thermal conductivity

coefficient; by the release of phase transition heat, which is

removed by heat exchange with flowing air and, possibly,

radiation [7,8].
As the experiment [9] shows, a polar sharpening is

formed even in case of a drop solidifying on a stationary

substrate; needle-like icicles are formed in case of rotation

of axisymmetric bodies (cone, ellipsoid), as already noted

in Introduction [1,2].
The purpose of this work is to determine the shape and

inclination of ice needles, as well as the place of their

separation under the action of centrifugal force. The model

proposed below is valid for drops of any size; of course, for

small drops, the effects considered are not so expressive.

2. Physical and mathematical model

The abundance of complex physical processes leads to

the need to build mathematical models using a number of

simplifying assumptions and heuristic considerations. We

will replace the liquid remaining on the surface with an

equally large accompanying body of a simpler shape. The

most suitable companion body for simulating the formation

of a needle-shaped icicle is a cone. Unfortunately, the

surface area of an inclined cone cannot be represented in

elementary functions. Therefore, we will take a pyramid

with a square base as a companion body. Note that

the difference in the areas of contact with air for straight

pyramids and cones of the same volume and height does

not exceed ∼ 10%. One can hope that this is the same

scale of error when replacing an unknown real shape of an

ice needle with a conical one. This also allows considering

the cone and the pyramid as equivalent figures and use both,

based on the convenience of estimates.

Centrifugal force leads to elongation of the drop and a

decrease in the area of its contact with the surface of a

solid, reducing the energy of contact with air. In addition,

the axis of the pyramid is tilted by angle ϑ with respect

to the local normal. The geometry of the accompanying

pyramid is shown in Fig. 2.

Let’s write down the change in the total surface energy

due to the work of the centrifugal force

σla(Sa − Sa0) + σls (Sw − Sw0) − σsa(Sw − Sw0)

= m�2R(Yc − Yc0)(sin
2 θ + tanϑc cos θ sin θ).

Here σla , σls and σsa — surface tension coefficients at

the boundaries: liquid−air, liquid−solid, solid−air (indexes:
l — liquid, a — air, s — solid). Then Sa and Sa0 — the

areas of the lateral surface (bordering the air) of the pyramid

in the presence and absence of rotation, Sw and Sw0 —
corresponding the area of the base (in contact with the

surface of the sphere — wall, index w — wall) of the
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Figure 2. Geometry of the accompanying pyramid.

pyramid. Then Yc and Yc0 — the corresponding coordinates

of its center of mass in the perpendicular direction. Finally,

ϑc — the angle of inclination of the trajectory of the

displacement of the center of mass, located at a distance

of a quarter of the height of the pyramid. It is related to ϑ

by the ratio

tanϑ = tanϑc(1− h0/h).

where h0 and h — the height of the pyramid in the absence

and in the presence of rotation. Thus, the first term

describes the increment of the contact surface of a liquid

with air, the second — with a solid, the third — of air with

a solid. Further we will put σla ≡ σ . When writing the

equation, the effect of gravity was neglected. In addition,

it is taken into account that the main part of the cross-

sectional area of the figure is in the boundary layer, so that

the impact of aerodynamic force can be neglected. It is

assumed that h ≪ R, so that the centrifugal force can be

considered constant on the scales of a drop or a companion

body (pyramid).
With the dimensionless variables H = h/a , H0 = h0/a0

(a and a0 — half the length of the side of the square of the

base of the pyramid in the presence and absence of rotation)
this equation has the form

2(1 + H2)1/2 +
[

H2 + (1 + H tanϑ)2
]1/2

+
[

H2 + (1− H tanϑ)2
]1/2 − 4(H/H0)

2/3(1 + H2
0)

1/2

+ 4 cos θσ
[

(H/H0)
2/3 − 1

]

= Aχξ2/3H2/3(H2/3 − H2/3
0 )

× (sin2 θ + H2/3 tanϑ cos θ sin θ),
(2)

where χ = 1/4, A = 4ρlπ
2/3a2

d�
2R/(3σ ).

Here we use the well-known relationship of three surface

tension coefficients σsa = σls + σla cos θσ (θσ — wetting

angle).
The equation (2) takes into account the conditions of

conservation of volume V (and mass) of the drop remaining

on the surface of the rotating body:

V = 4πa3
dξ/3 = 4a2h/3 = 4a2

0h0/3.

The initial height of the pyramid is equal to

h0 = πa3
dξ/a2

0.

The value a is related to the root of the equation (2) by

the formula

a = ad
3
√

ξπ/H.

It is assumed that the front side of the square (the base

of the pyramid) is perpendicular to the plane of the drop.

As the second physical condition, the equilibrium of the

moments of forces relative to the point 0 — the center of the

base of the pyramid of ice freezing to the body is assumed

(Fig. 2):

F�X1Yc = (F�Y + Fσ )1Xc .

Here F�X , F�Y — the tangential and normal components

of the centrifugal force, Fσ — the force of interaction of

the particle with the surface, 1Yc and 1Xc — displacements

of the center of mass along the normal and tangent to the

surface. It is assumed that due to the slope, the point of

application of the force vector Fσ is shifted in the direction

opposite to the slope, and its abscissa is −1Xc . This

displacement leads to a complex redistribution of stresses on

the contact surface of the freezing drop and the substrate.

The normal and tangential components of the resultant

force of this interaction and its point of application are

difficult to determine. The following considerations are

used in this paper. First of all, the tangential component

is of no interest, since it does not contribute to the

balance of moments of forces relative to the center of the

base of the pyramid. According to Young−Dupree law,

the energy of this interaction is a value of the order of

4a2σ (1 + cos θσ ). An estimate of Fσ = aσ (1 + cos θσ ) for

the force is obtained attributing it to a contact line with

a length of 8a . As a result we have the following for

determining the angle ϑ of the slope of the pyramid axis

with dimensionless variables:

tanϑ =
AH1/3 cos θ sin θ

AH1/3 sin2 θ + (1 + cos θσ )/2
. (3)

It can be seen that at the angles θ = 0 and π/2 (at the
braking point and at the equator), there is no axis tilt,

and at θσ = π (absolute non-wettability), the force of

interaction with the surface disappears (the second term

in the denominator).

3. Numerical implementation
and calculation results

Numerical studies have been carried out for the following

set of defining parameters: u∞ = 50m/s, drop radius

ad = 200µm, sphere radius R = 15mm. With this set of
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parameters, the motion of the drops can be considered

rectilinear at a speed of Vd = u∞, since the Stokes number

Stk =
2ρla2

du∞

9µa R
≈ 2 · 104 ≫ 1,

where µa — air viscosity.

The following set of values of water and air pa-

rameters was assumed: µa = 1.3 · 10−5, µl = 10−3 Pa · s;
ρl = 103 kg/m3; σ = 0.07N/m.

The initial value a0 was found when solving the equa-

tion (2) from the condition of equality of the contact areas

of the drop and the accompanying pyramid

πa lbl = 4a2
0,

which leads to the dependence of a0 on the drop fall angle α

and, consequently, the polar angle θ:

a0 =

√
π r l

2 cos1/10 α
.

The initial value H0 turns out to be quite small for

the maximum radius r l of the drop-to-surface contact spot

determined by formula (1). So, H0 ≈ 0.02 for the forward

critical point (θ = 0). Solution of the equation (2) with such

a H0 has a physical meaning (i.e. H = H0 with θ = 0, where

rotation is absent and increases with distance from the

critical point) only in a narrow range of angle variation θσ
(0.9996 ≤ cos θσ ≤ 1).
It needs to be reminded that the formula (1) was obtained

in [3] under the assumption that the kinetic energy of the

falling drop dissipates due to the viscous friction force when

the drop spreads over the surface. Obviously, this process

should also depend on the wetting angle. When evaluating

the work of the friction force, a fitting multiplier equal to
√
6

was used, which was found based on comparison with the

results of [4] for small drops (ad = 10µm).
In this paper, the value of H0 at the anterior critical point

was changed with the change of adjustment multiplier and

the critical value θσ at which the solution of the equation (2)
has a physical sense was determined. Obviously, the

dependence H0(θσ ) should be unambiguous and H0(0) = 0

(Fig. 3).
Fig. 4 shows the results of solving the equation (2) for

different values of the wetting angle θσ at rotation speed

f = 100Hz. The curve 1 corresponds to θσ = 21◦ . At

this value θσ , the frozen drop is retained on the surface

over the entire range of variation of the polar angle θ.

There is no solution of equation (2) for θσ = 24 and 31.5◦

(curves 2 and 3) if θ exceeds some critical value, which

corresponds to the separation of the frozen drop from the

surface. The specified values θσ do not refer to any specific

material of the streamlined sphere.

Figure 5 shows the corresponding dependencies of the

height of the pyramid on θ. The maximum height of the

pyramid is ∼ 1mm, which justifies neglecting the effect of

the aerodynamic force on it when deriving the formula (3),
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Figure 3. Dependence of the initial relative height of the pyramid

at the point of flow deceleration on the wetting angle.
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Figure 4. Dependence of the relative height of the hardened drop

on the polar angle at the values of the wetting angle: 1 — θσ = 21,

2 — 24, 3 — 31.5◦.

since the widest part of the pyramid is located in the

boundary layer in which the air velocity tends to zero as

it approaches the surface.

Finally, Figure 6 illustrates the non-monotonic depen-

dence of the slope angle of the pyramid with respect to

the local normal. It can be seen that the local angle of

inclination increases with an increase of the polar angle

(which determines the drop falling location) due to an

increase of the centrifugal force perpendicular to the axis of

rotation. It decreases after passing through the maximum,
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Figure 5. Dependence of the height of the hardened drop on

the polar angle at the values of the wetting angle: 1 — θσ = 21,

2 — 24, 3 — 31.5◦ .
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Figure 6. The dependence of the angle of inclination of the ice

pyramid on the polar angle at the values of the wetting angle:

1 — θσ = 21, 2 — 24, 3 — 31.5◦ .

because in the direction of the equator, the local normal and

the centrifugal force tend to combine.

Conclusion

A model is proposed for calculating the geometric

parameters of ice needles in the initial stage of ice formation

on the surface of a rotating sphere, based on the use of

the concept of an accompanying pyramid and a number

of simplifying assumptions, in particular, neglecting the

impact of aerodynamic force and gravity. The results of

the numerical study illustrate the main qualitative features

of the phenomenon: the elongation of ice needles under

the action of centrifugal force and their separation at certain

values of angular velocity and polar angle on the surface

of a rotating sphere, the non-monotonic dependence of the

angle of inclination with respect to the local normal.

Funding

The study was supported by the Russian Foundation for

Basic Research, project 19-29-13024.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] L. Li, Y. Liu, H. Hu. Exp. Therm. Fluid Sci., 109, 109879

(2019). DOI: 10.1016/J.EXPTHERMFLUSCI.2019.109879

[2] L. Tian, L. Li, Ha. Hu, Hu. Hu. J. Thermophys. Heat Transf.,

37 (2), 353 (2023). DOI: 10.2514/1.T6667
[3] A.V. Kashevarov, A.L. Stasenko. Tech. Phys., 65 (1), 41 (2020).

DOI: 10.1134/S1063784220010120

[4] P. Berthoumieu. 4th AIAA Atmospheric and Space Environ-

ments Conf., AIAA 2012−3130 (2012),
DOI: 10.2514/6.2012-3130

[5] R. Cimpeanu, D.T. Papageorgiou. Intern. J. Multiphase Flow,

107, 192 (2018). DOI: 10.1016/j.ijmultiphaseflow.2018.06.011

[6] A. Goswami, J.K. Singh. Phys. Chem. Chem. Phys., 23 (29),
15402 (2021). DOI: 10.1039/D1CP02617H

[7] M.E. Perel’man, V.A. Tatarchenko. Phys. Lett. A, 372 (14),
2480 (2008). DOI: 10.1016/j.physleta.2007.11.056

[8] R. Stahlberg, H. Yoo, G. Pollack. Indian J. Phys., 93, 221

(2019). DOI: 10.1007/s12648-018- 1265-6
[9] L.B. Boinovich, A.M. Emelyanenko. Dokl. Phys. Chem.,

459 (2), 198 (2014). DOI: 10.1134/S0012501614120045

Translated by Ego Translating

Technical Physics, 2023, Vol. 68, No. 10


