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Introduction

The classical model of an impact with a separation plays

an important role in the studies of cavitation in a liquid

caused by the impact of a floating body [1]. Being of

great independent interest for analytical research, this model

provides the initial conditions for solving a more complex

dynamic cavitation problem. The study of problems of such

a plan was carried out earlier at small times on the basis

of the first two terms of the asymptotics [2,3]. At the same

time, the dynamics of the separation points of the internal

free boundary of the liquid (the boundaries of the cavity)
was taken into account. The position of the separation

points at each moment of time was determined from the

Kutta-Joukowski condition. It was shown that there is a

linear dependence of the angular coordinates of these points

on time in the subject asymptotic approximation. Finding

the following terms of the asymptotics is associated with

serious technical difficulties, which are explained by the

need to use a special variable substitution that transfers

information about the dynamics of separation points into

the equation and boundary conditions of the problem. For

this reason, the question remains open about the possibility

of finding the following terms of the asymptotic expansion

in degrees of small time based on the Kutta-Joukowski

condition. In this paper, it is proposed to study this issue

under the additional assumption that the points of separation

of the internal free boundary of the liquid remain stationary

after impact, at least for some small period of time. This

assumption allows analyzing a larger number of terms of

the asymptotics in a short time, since a direct asymptotic

method is used in this case without special replacement of

variables. However, at the same time, it is necessary to

impose serious restrictions on the choice of characteristic

physical quantities. In this paper, it is shown that when

the cylinder moves along the gravity vector, it is possible

to specify such a law of artificial gas supply into the cavity,

in which the solution of the problem is represented as a

power-law asymptotic expansion in a short time (taking
into account the first three terms) satisfying the Kutta-

Joukowski condition. In the general case (without the

assumption made about the immobility of the separation

points), it is necessary to take into account the dynamics of

the separation points and take into account the possibility

of changing the structure of the asymptotics itself for its

younger members, starting with the third one. It is expected

that similar conclusions can be drawn for a number of

similar tasks (for example, when studying rapid acceleration

or rapid braking of a body in a liquid). It should be noted

that, in addition to the Kutta-Joukowski condition, another

important physical condition must also be fulfilled — the

positivity of pressure on the wetted surface of the body. If

both of these conditions are met, then the solution of the

problem built on small times is correct and fully corresponds

to the given physical situation. The pressure condition

is checked after solving the problem and, in the case of

artificial cavitation (when the pressure in the cavity is of

the order of atmospheric and higher), as a rule, is always

fulfilled [3].

The general principles of cavitation flows in the inter-

action of solids with a liquid are described in various

monographs and articles (see, for example, [4,5]). A review

of works on similar problems of penetration of bodies into

a liquid, taking into account the phenomenon of separation

of liquid particles from their surfaces, is given in [6]. Some

results obtained in the study of the underwater launch of

rockets by cavitation method are given in [7]. The problems

of wave generation in case of a separation-free impact and
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acceleration of a floating circular cylinder have been studied

at short times in [8,9]. Recent studies in this field are

presented in [10]. Modern studies are also conducted on the

classical model of a separation-free impact, which indicates

a great interest in the impact topic [11–14].

1. General problem formulation

The plane problem of a vertical and a separation of

a circular cylinder under the free surface of an ideal

incompressible heavy liquid is considered [1]. It is assumed

that after impact, the cylinder moves deep into the liquid

at a constant speed. An attached cavity is formed behind

the cylinder, the shape of which depends on the physical

and geometric parameters of the problem. It is necessary

to study the dynamics of the cavity at short times with the

additional assumption that the points of separation of the

internal free boundary of the liquid remain stationary after

impact at some initial stage of the cylinder movement.

The mathematical formulation of the problem, written

in dimensionless variables in a movable coordinate system

associated with a cylinder, has the form (Fig. 1–4):

18 = 0, r ∈ �(t), (1)

Figure 1. The shape of the cavern at t = 0.1.

Figure 2. The shape of the cavern at t = 0.2; the stroke shows

solutions for the boundary layer.

Figure 3. The shape of the cavity at t = 0.3; the stroke shows

solutions for the boundary layer.

Figure 4. Cavity shape at t = 0.4.

∂8

∂n
= −ny , r ∈ S11, (2)

∂8

∂t
+

∂8

∂y
+ 0.5(∇8)2 + Fr−2(y − t − H) − 0.5χ = 0,

r ∈ S12(t), (3)

∂8

∂r
+ sin θ =

∂η

∂θ
θ̇(t) +

∂η

∂t
, r ∈ S12(t), (4)

∂8

∂t
+

∂8

∂y
+ 0.5(∇8)2 + Fr−2ξ(x , t) = 0,

r ∈ S2(t), (5)

∂8

∂y
=

∂ξ

∂x
∂8

∂x
+

∂ξ

∂t
, r ∈ S2(t), (6)

∂8

∂y
= 0, y = −Hb + t;

∂8

∂x
= 0, x = ±HR, (7)

8(x , y, 0) = 80(x , y), ξ(x , 0) = 0, η(θ, 0) = 0. (8)

The potential of the velocities 80(x , y) acquired by

the liquid particles at the moment immediately following

the impact and the initial separation zone are based on

the solution of the classical model of an impact with a

separation [1]:
180 = 0, r ∈ �(0), (9)

∂80

∂n
= −ny , 80 ≤ 0, r ∈ S11, (10)

∂80

∂n
≥ −ny , 80 = 0, r ∈ S12(0), (11)

80 = 0, y = H, (12)

∂80

∂y
= 0, y = −Hb;

∂80

∂x
= 0, x = ±HR. (13)

Due to the unknown separation zone S12(0), the prob-

lem (9)−(13) is nonlinear and belongs to the class of

problems with free boundaries. According to [15], its

solution exists and is unique. Let’s pay attention to the

inequalities that are formulated in the contact and separation

zones (formulas (10) and (11)). These inequalities are quite
equivalent to the Kutta-Joukowski condition at the points of

separation. The inequality in the formula (10) means that

the impulsive pressure pτ = −ρ80 must be non-negative

everywhere on the wetted surface of the body (in the

contact zone). The inequality in the formula (11) prohibits
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liquid particles from entering the solid body, although it

does not prevent their separation from the solid surface.

These inequalities are convenient to use when solving the

problem of impact with separation by direct numerical

methods. The Kutta-Joukowski condition turns out to be

effective in constructing analytical solutions.

Note an important property of the regularity of the

solution of the problem (9)−(13), which consists in the

fact that the function 80 in the vicinity of the point of

separation of boundary conditions behaves as r1.5, where

r — radius is the vector of the corresponding point (in
the usual mixed problem of potential theory, the exponent

is 0.5). This property ensures that the Kutta-Joukowski

condition is fulfilled at the initial moment of time.

Dimensionless variables are introduced using equalities

t′ =
a
V0

t, x ′ = ax , y ′ = ay, 8′ = aV08, p′ = ρV 2
0 p,

where dimensional quantities are marked with strokes.

The fixed X, Y coordinates are related to the movable x ,
y ratios: X = x , Y = y + h(t), where h(t) is the law of

motion of the cylinder. It is assumed that the axis y is

directed against the gravity vector, the origin is in the center

of the cylinder. The fluid flow pattern is symmetric with

respect to the axis y .
The main characteristic quantities in the problem are

the Froude number Fr and the dimensionless pressure

difference χ :

Fr =
V0√
ga

, χ = 2
pa − pc

ρV 2
0

,

where pa — atmospheric pressure; pc — pressure in the

cavity (with artificial cavitation, dependence on coordinates

and time is allowed); g — acceleration of gravity; ρ —
liquid density; V0 — speed acquired by the cylinder as a

result of impact, a — cylinder radius.

The following designations are also used in this paper:

8 — the velocity potential of the absolute motion of the

fluid, recorded relative to the moving coordinate system;

�(t) — the fluid flow region; S11 — the part of the cylinder

surface on which there is no separation of liquid particles;

S12(t) — internal free boundary (cavity boundary); S2(t) —
external free surface of the liquid (y = H — its undisturbed

level); θs , π − θs — angular coordinates of separation

points; V0 = (0,−V0) — the velocity vector of the cylinder

(V0 > 0), h(t) = −t — its dimensionless law of motion;

y − Hb — the bottom of the pool; x = ±Hr — symmetrical

side walls; r — radius vector with coordinates (x , y);
r, θ — cylindrical coordinates (x = R cos θ, y = R sin θ).
Dynamic and kinematic conditions are formulated on

previously unknown free boundaries. Dynamic conditions

are written on the basis of the Cauchy-Lagrange integral in

a moving coordinate system. It is assumed that atmospheric

pressure acts on the outer free boundary (p = pa), and the

pressure distribution on the inner free boundary depends on

the method of artificial gas supply to the cavity (p = pc).

The kinematic condition is that liquid particles never leave

the free boundary. The forms of the internal and external

free boundaries are determined using the equalities:

R = 1 + η(θ, t); y = H + ξ(x , t) + t.

The kinematic equations (4), (6) are obtained by dif-

ferentiating these equalities in time along the trajectory of

motion of a liquid particle located on an internal or external

free boundary. Polar coordinates R, θ are used to derive

the kinematic equation of the internal free boundary of the

fluid.

The Kutta-Joukowski condition is set at the points of

intersection of the inner free boundary with the cylinder

surface (at the points of separation) meaning that the

velocity of the liquid at these points should be finite.

2. Asymptotics of solving the problem
at small times

First of all, it should be noted that the points of separation

of the internal free boundary of the liquid can be kept

stationary after impact, mainly due to artificial cavitation.

It is assumed that the pressure of the gas entering the cavity

from the side of the body has a linear dependence on time.

As a result, χ is represented in the form

χ = χ0 + χ1t + f (θ)t, f (θ) = χ2 f 1(θ) + χ3 f 2(θ),

where χ0, χ1, χ2, χ3 are assumed to be constant values.

The functions f 1(θ) and f 2(θ) are even relative to the

point 0.5π, and their derivatives have root and logarithmic

singularities at the separation point, respectively (in this

case, the coefficients χ1, χ2, χ3 can be chosen in such a

way that the third asymptotic approximation satisfies the

Kutta-Joukowski condition).
The terms

”
root singularity“ and

”
logarithmic singu-

larity“ in derivatives mean that the asymptotic formulas

(θ → θs + 0) are valid in a small neighborhood of the

separation point:

f ′

1(θ) ∼ const · (θ − θs )
−0.5, f ′

2(θ) ∼ const · ln(θ − θs ).

Next, we proceed to the solution of the main problem,

which consists in constructing a regular asymptotic expan-

sion of the velocity potential by degrees of small time

with a special choice of these coefficients, as well as the

Froude number. Such a choice of parameters justifies the

assumption of the immobility of the separation points.

Here and further, the term
”
regular function“ means that

the first derivatives of this function should be continuous at

the separation points.

The solution of the problem (1)−(13) will be sought in

the form of the following asymptotic expansions:

8 = 80 + t81 + t282 + · · · , (14)

η(θ, t) = tη0(θ) + t2η1(θ) + t3η2(θ) + · · · , (15)
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ξ(x , t) = tξ0(x) + t2ξ1(x) + t3ξ2(x) + · · · , (16)

where the ellipsis denotes members of a higher order of

smallness by t .
Substituting the decompositions (14)−(16) in the equa-

tion and boundary conditions of the problem (1)−(13),
transferring the boundary conditions from the disturbed

sections of the boundary of the region �(t) to the

initially undisturbed level using the Taylor formula and then

equating the coefficients with the same powers t, we arrive

to mixed boundary value problems of potential theory in the

initially undisturbed domain to define the functions 81 and

82 �(0). The solutions of the latter problems are presented

in the form:

81 = 0.5χ0u + v, 82 = 0.25χ1u + w,

where the functions u, v, w are harmonic in the do-

main �(0). These functions satisfy the condition that

the normal derivative is equal to zero on the wetted

surface of the body (r = 1, −π − θs < θ < θs ) and on

the side walls (x = ±HR). The boundary conditions

of the first kind are met for them in the separation

zone (r = 1, θs < θ < π − θs ) and on the outer boundary

(y = H) (formulas (17), (18) corresponds to the separation

zone):

u = 1, v = Fr−2(H − sin θ) − ∂80

∂r
sin θ − 0.5

(∂80

∂r

)2

,

(17)

w = −∂81

∂r
η0(θ) + 0.5

∂80

∂r
[η20(θ) + cos2 θ]

− 0.5Fr−2[η0(θ) sin θ − 1− cos2 θ] + 0.25 f (θ), (18)

u = 0. v = −∂80

∂y
− 0.5

(∂80

∂y

)2

,

w = −0.5Fr−2 ∂80

∂y
− ∂81

∂y
− ∂80

∂y
∂81

∂y
, y = H.

In addition, the following ratios are valid at the bottom:

∂u
∂y

= 0,
∂v

∂y
=

∂280

∂x2
,

∂w

∂y
= 0.5

∂380

∂y∂x2
+

∂281

∂x2
, y = −Hb.

The value η0(θ) in the formula (18), as well as other

decomposition coefficients (15) are represented as:

η0(θ) = a1 + sin θ, 2η1(θ) = a4 − a1η0(θ) − η′0(θ) cos θ,

3η2(θ) =a6 + (1.5a2
1 + a2

2)η0(θ) − a4(1.5a1 + sin θ)

+ a2 cos θ(5.5a1 + 3 sin θ + Fr−2)

+ a1(3 cos
2 θ − Fr−2 sin θ) + 0.5a3(η

2
0(θ)

+ cos2(θ)) − 0.5a5 cos θ + Fr−2 cos 2θ.

The coefficients of the asymptotic formula (16) are

determined by the equalities

ξ0(x) = b1, 2ξ1(x) = b4,

3ξ2(x) = (b1 + 1)(0.5b3(b1 + 1) + b2
2) + b5.

The following notation is used in the last formulas:

a1 =
∂80

∂r
, a2 =

∂280

∂r∂θ
, a3 =

∂380

∂r∂θ2
,

a4 =
∂81

∂r
, a5 =

∂281

∂r∂θ
, a6 =

∂82

∂r
,

b1 =
∂80

∂y
, b2 =

∂280

∂x∂y
, b3 =

∂380

∂y∂x2
,

b4 =
∂81

∂y
, b5 =

∂82

∂y
,

where derivatives by r and θ are calculated at r = 1, and

differentiations by x and y are carried out at y = H .

Further discussion is based on the statement that the

derivatives of the functions u, v, w at the angular coordinate

θ at θ → θs − 0 (r = 1) have root features. This allows

selecting the coefficients χ0 and χ1 in such a way that the

functions 81 and 82 are regular at the separation points

(coefficients are calculated with growing terms). Drawing

an analogy with the papers [2,3], in which the regularity of

the velocity potential was ensured by choosing the position

of the separation points (with fixed physical parameters of

the problem), we come to the following expressions for the

coefficients χ0 and χ1:

χ0 = −
2d2

d1

, χ1 = −
4d3

d1

, (19)

d1 = lim
θ→θs−0

∂u
∂θ

√

θs − θ,

d2 = lim
θ→θs−0

∂v

∂θ

√

θs − θ,

d3 = lim
θ→θs−0

∂w

∂θ

√

θs − θ.

It is important to note that for the validity of the last

formulas, it is necessary to require that the boundary

functions in (17), (18) be regular at the separation points

(i.e. derivatives of these functions by θ must be continuous

at the specified points). The singularity of the corresponding

derivative in θ at θ → θs − 0 may not be a root singularity

in case of violation of this condition, and the reasoning

leading to formulas (19) may be incorrect. This situation

is most easily explained by the example of a mixed problem

for a half-plane, where there is an exact solution. It can

be obtained using the Keldysh-Sedov formula or based on

the method of paired integral equations. The analysis of this

solution shows that if the derivative of the boundary function

in the condition of the first kind has a root singularity, then

the singularity of the corresponding derivative of the velocity
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potential is stronger than the root one (the coefficient for

the root singularity has the form of a divergent integral).
Another logarithmic multiplier is introduced in this case. We

will also provide physical considerations that indicate the

need for such regularity. Since the internal free boundary

approaches the separation point tangentially (this follows

from solution (21) for the boundary layer), it can be

assumed that in the small neighborhood of this point,

liquid particles located on the free boundary actually lie

on the arc of the circle (i.e., on the boundary of the

body). It follows from this that violation of the regularity

condition of boundary functions formulated above means

unlimited velocities of liquid particles located on the inner

free boundary near the separation point.

The boundary condition for the function v in (17) auto-

matically satisfies the formulated requirement. In fact, the

derivative of the function v by θ (r = 1, θs < θ < π − θs )
has the form

∂v

∂θ
= − ∂280

∂r∂θ
η0(θ) −

∂80

∂r
cos θ − Fr−2 cos θ.

The first term in this expression has no singularity at the

point of separation, since, due to the regularity of solving

the classical problem of a blow with separation, the function

η0(θ) at θ → θs + 0 behaves like const · (θ − θs )
0.5, and

the second derivative of the function 80 by r and θ as

const · (θ − θs )
−0.5. The second term also contains no

singularity due to the continuity of the first derivatives of

the function 80 at this point. Thus, the regularity of the

function 81 is ensured only by a special choice of the

coefficient χ0 (formula (19)). At the same time, χ0 depends

on the Froude number, which at this stage (taking into

account only the first two terms of the asymptotics) can

be chosen arbitrarily.

Now let’s analyze the boundary condition for the func-

tion w (formula (18)). Unlike (17), its regularity is

no longer obtained automatically. This function will be

continuous at the point of separation, and its derivative

by θ in general will have root and logarithmic singularities

there. An expression in which all the terms containing these

features are collected is provided below:

∂280

∂r∂θ

[

−2
∂80

∂r
sin θ −

(

∂80

∂r

)2

− 1 + Fr−2 sin θ

]

− 0.5χ2 f ′

1(θ),

2
∂281

∂r∂θ
η0(θ) + 2

∂280

∂r∂θ
∂81

∂r
− 0.5χ3 f ′

2(θ).

The presence of a root singularity in the first formula

follows from the properties of the solution of the classical

model of an impact with a separation. Therefore, we will

focus on the explanation of the logarithmic singularity in the

second formula. Let’s find out how the normal derivative of

the function 81 behaves near the separation point. Since this

problem is local, it can be explained by a specially selected

example that has an analytical solution. Consider a mixed

boundary value problem of potential theory in a half-plane

with an ejected semicircle, where there are two symmetric

points of separation of the boundary conditions of the first

and second kind on the arc of the circle (the boundary

functions here are the same as for 81). This problem is

reduced to a mixed boundary value problem in a half-plane

using a conformal mapping for which an exact analytical

solution is constructed. The analysis of this solution shows

that the normal derivative of the function 81 near the point

of separation of the boundary conditions (from the side of

the domain of setting the condition of the first kind) has

the following representation: first comes the root feature

(which is occupied in the main problem by choosing the

parameter χ0), and then the first small term having the

form const(θ − θs )
0.5 ln(θ − θs ). Based on the reasoning

carried out, it can be argued that the first two terms in the

last formula have purely logarithmic features.

Now the coefficients χ2, χ3 can be chosen in such

a way that the boundary function (18) is continuously

differentiable at the separation points. As a result, all the

terms of the asymptotic expansion of the velocity potential

will satisfy the Kutta-Joukowski condition.

The case of χ2 = 0, χ3 = 0 is considered separately

(the simplest law of artificial cavitation). Here, the root

singularity in the expression for the derivative of the

boundary function can be eliminated by a special choice of

the Froude number. To do this, it is necessary to require

that the expression in square brackets tends to zero at

θ → θs + 0. As a result, we arrive at the following equality:

Fr2 =
sin θs

cos2 θs
. (20)

At the same time, a weak logarithmic feature remains.

However, the solution obtained for the third approximation

can be successfully used as an approximation. In this regard,

we note that the logarithmic multiplier in the expression

for the normal derivative of the function 81 cannot be

detected numerically. At the same time, the ratio of this

normal derivative to the square root behaves relatively

stable (with an error of only a few percent) in the range

θ − θs = 0.005−0.1. This can only be explained by the

presence of a very small coefficient before the logarithm

(a coefficient of the order of one would be immediately

noticeable). It is not possible to carry out numerical

calculations in a smaller neighborhood of the separation

point. Note also that the derivative of the boundary function

containing a logarithmic singularity can be smoothed in a

small neighborhood of the separation point. Such smoothing

can be justified by a slight change in the law of artificial

cavitation. As a result, the third approximation will strictly

satisfy the Kutta-Joukowski condition. At the same time,

the difference between strict and approximate solutions will

be practically invisible.

Now let’s focus on determining the shape of the internal

free boundary of the liquid. Analysis of the asymptotic

formula (15) shows that the coefficients η0(θ), η1(θ), η2(θ)

Technical Physics, 2023, Vol. 68, No. 10
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behave as follows near the separation point:

η0(θ) ∼ β(θ − θs )
0.5,

η1(θ) ∼ −0.25β cos θs (θ − θs )
−0.5,

η2(θ) ∼ −24−1β cos2 θs (θ − θs )
−1.5,

where β is determined numerically based on the first of

these equalities.

Thus, the decomposition (15) is not applicable near the

separation point. These features can be smoothed out at

short times using a special solution for the boundary layer,

which is constructed by analogy with [2,3] (i.e., such a

solution that is effective near the separation point). Its final
form is provided below:

η(θ, t) = βt1.5F(τ ) + · · · , τ =
θ − θs

t
, (21)

F(τ ) =
2

3 cos θs
τ 1.5, 0 < τ < cos θs ,

F(τ ) =
2

3 cos θs

[

τ 1.5 − (τ − cos θs )
1.5

]

, cos θs < τ < ∞.

A slight difference from the works [2,3] consists in

the fact that for τ → ∞, the alignment with the external

decomposition is based on the first three (and not two)
terms of the asymptotics. In addition, the methods of

boundary layer theory are applied here to the original, and

not to the transformed problem.

3. Numerical implementation and
analysis of results

For the numerical solution of the classical problem of

impact with separation, a special iterative method is used

to sequentially refine the zones of separation and contact of

liquid particles unknown in advance [2,3]. According to this

method, the nonlinear problem (9)−(13) is reduced to the

sequential solution of linear boundary value problems (with

fixed points of the boundary conditions section), which are

solved numerically by the finite element method, using the

package FreeFem++ [16]. Linear boundary value problems

arising for functions u, v, w are also solved using this

package.

When considering specific numerical examples, the fol-

lowing geometric parameters of the problem were fixed:

H = 1.2, Hb = 5, HR = 5, and the coefficients χ2, χ3 were

assumed to be zero (the simplest law of artificial cavitation

is considered). For the angular coordinate of the separation

point, as well as the Froude number and coefficients χ0
and χ, the following approximate values were obtained:

θs = 0.584, Fr = 0.89, χ0 = −2.99, χ1 = −9.81.

Figure 1−4 shows the dynamics of the cavity at time

points t = 0.1, 0.2, 0.3, 0.4. Fig. 2 demonstrates a good

agreement of solutions for the boundary layer with external

decomposition in almost the entire range of variation of the

angular coordinate θ. This makes it possible to describe

Figure 5. The shape of the cavity at t = 0.3; the stroke shows

the solutions obtained by the formula (21) at β = 2.0.

the shape of the cavern at small times (0 < t < 0.2) using

simple analytical formulas. Note that the constructed

solution for the boundary layer does not depend on the

values Fr and χ . Consequently, the good agreement noted

above suggests that the physical parameters begin to affect

the shape of the internal free boundary of the liquid only at

t > 0.2. Note also that the difference between the forms of

free boundaries obtained on the basis of two and three terms

of the asymptotics becomes noticeable for times greater than

t = 0.3. This is the basis for the application of the proposed

method in the specified time range.

Let us pay attention to the following interesting fact

obtained by numerical experiments. The coefficient β in

the formula (21) can be chosen in such a way that for

t = 0.3, 0.4, the boundary layer solution approximates the

external decomposition very well over the entire range of

the angular coordinate θ. Figure 5 shows the alignment of

these decompositions at t = 0.3 (β = 2.0, cf. with Figure 3).

It is important to note that the numerical value found

for the value χ0 can be verified in another way. To this

end, we will consider a similar problem taking into account

the dynamics of separation points. Previously, the following

asymptotic formula was obtained for the angular coordinate

of the separation point [3]:

θs = θs0 + c1t.

If the value χ0 is found correctly, then the coefficient c1,

determined from the regularity condition, should go to zero

(due to the assumption of the immobility of the separation

point). Numerical calculations carried out using the method

proposed in [2,3] show that the coefficient c1 ≈ 0.002.

Given the small error given by the numerical program, we

can assume that c1 = 0. Similar checks were performed for

various other values Fr and χ0 = χ0(Fr): χ0(0.5) = −7.10;

χ0(1) = −2.38; χ0(5) = −0.87; χ0(10) = −0.82. It should

be noted that it is necessary to fix the Froude number and

determine χ0 using the formula (19) to obtain the functional

dependence χ0(Fr).

An alternative another way to find the coefficient χ0 can

be provided (19):

χ0 = −2d5

d4

, d4 = lim
θ→θs +0

∂u
∂r

√

θ − θs ,
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d5 = lim
θ→θs +0

∂v

∂r

√

θ − θs , r = 1. (22)

χ0 is determined in it from the continuity condition of the

normal derivative of the function 81 for r = 1, θ = θs .

In other words, the coefficient is calculated for the root

feature of this derivative at r = 1, θ → θs + 0. Numerical

calculations have shown a good agreement of the approx-

imate values of this coefficient obtained in two different

ways (according to formulas (19) and (22)). Similarly, the

coefficient χ1 can be determined.

Finally, it should be noted that for an arbitrary Froude

number, the following functions can be selected as f 1(θ),
f 2(θ) (the derivative of r is taken for r = 1):

f 1(θ) = η0(θ), f 2(θ) =
∂81

∂r
η0(θ).

In this case, the coefficients χ2 and χ3 will have the form

χ2 = 2Fr−2 sin θs − 2 cos2 θs , χ3 = 4.

Conclusion

The planar problem of the impact with a separation of

a circular cylinder and its subsequent movement deep into

the liquid at a constant velocity is investigated. It is assumed

that after impact, the separation points of the internal free

boundary of the liquid remain stationary, at least for some

small period of time. It is shown that the solution of such

a problem can be constructed in the form of a power-law

asymptotic expansion over a short time (taking into account

the first three terms of the asymptotics) only with a special

choice of characteristic physical quantities (Froude number

and pressure in the cavity). An asymptotic analysis of the

problem is carried out taking into account the solutions

for the boundary layer at the separation points. Concrete

examples with numerical solutions are considered.
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