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1. Introduction

The thermoelectric power factor PF = σ S2 is often

used to characterize thermoelectric properties, where σ is

electrical conductivity, S is the Seebeck coefficient. Cur-

rently, an active search is in progress for massive

(3D) [1–3] (for example, PbTe, Bi2Te3, SnSe, CoSi,

BaPS2) and two-dimensional (2D) [4,5] (for example,

GeP3, SnP3) materials for which the dimensionless pro-

duct ZT ≡ (PF/κ)T > 1, where T is temperature, κ is

thermal conductivity (in English-language literature ZT ,
and sometimes Z = σ S2/κ are called figure of merit; such

terms as thermoelectric efficiency, or Ioffe criteria are used

in the Russian publications). To achieve the same goal,

the theory focuses on the choice of such an electron

dispersion law, which corresponds to the maximum values

of PF and ZT [6–10]. For example, it considers the laws

of dispersion εn(k) ∝ kn (n = 4, 6) where k is a wave

vector (such zones are called
”
pudding-mold type bands“

in English language literature) and combinations of zones

εn(k) with a linear Dirac spectrum. Heterocontacts such

as graphene (Gr)is metal [11], Gris 2D hexagonal boron

nitride(h-BN) [12] and Gr-semiconductor were considered

with the same aim [13]. We considered the problem of

encapsulated graphene (Gr) in [14] and obtained analytical

expressions for the dependences of the thermoelectric

power factor on the chemical potential of the system µ.

As an example, numerical estimates were performed in [14]
for the structure h-BN/Gr/h-BN. It has been shown that

the maximum values of PF are reached when the chemical

potential, remaining inside the band gap h-BN, approaches
its edges. Here we will consider structures where 3D and

2D semiconductors Si, Ge and binary compounds III−V

and II−VI and transition metals act as sheets of single-

sheet graphene, the temperature gradient is directed along

the graphene sheet.

In what follows, we will use the so-called adsorption

approach to the problem of [15], which consists in the

following. Let the encapsulated layer be described by the

Green’s function g(ω), where ω is an energy variable. The

effect of encapsulating layers 1 and 2 is taken into account

by polarization operators (or the actual energy contribution)

61,2(ω) = 31,2(ω) − iŴ1,2(ω),

where 31,2(ω) and Ŵ1,2(ω) represent the the shift and

broadening functions the electronic states of the encapsu-

lated layer under the action of sheets 1 and 2. In this case,

the Green’s function of the encapsulated layer is equal to

G−1(ω) = g−1(ω) − 61(ω) − 62(ω).

31,2(ω) and Ŵ1,2(ω) functions are uniquely determined

by the energy densities of the states (DOS) of the

sheets 1 and 2. Simple models of these densities of states

lead to the fact that the functions 31,2(ω) and (or) their

derivatives d31,2(ω)/dω have divergences, which naturally

manifest themselves in expressions for the characteristics σ ,

S and PF . Here we should focus on those features

that lead to the maximum values of thermoelectric (TE)

characteristics for single-layer graphene (SLG). We briefly

consider the issue of encapsulated bilayer graphene (BLG)

in the Appendix.
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2. General relations

According to the Mott formula the Seebeck coefficient is

equal to

S = −(π2k2
BT/3e)[d ln σ (µ, T = 0)/dµ], (1)

where e is elementary charge, kB is Boltzmann constant.

Thus, the problem of calculating PF is reduced to deter-

mining the dependences of conductivity and its logarithmic

derivative on the position of the chemical potential µ at

zero temperature. We will consider single-layer graphene

located between semiconductor sheets 1 and 2 with band

gaps Eg1,2, the boundaries of which are EC1,2 and EV1,2

(edges of conduction bands and valence bands). Further,

we will assume that µ is located within the resulting band

gap, the boundaries of which E∗
C and E∗

V are determined by

the inequality

E∗
V = max{EV1, EV2} < E∗

C = min{E∗
C1, E∗

V2}.

Interval (E∗
V , E∗

C) is defined because PF of graphene

has maximum values at µ → E∗
V,C precisely within the

boundaries of the band gap [14]. According to [14], at T = 0

the dimensionless static conductivity σ ∗ ≡ σ/(e2/π~),
where ~ is the reduced Planck’s constant has the following

form

σ ∗=σ ∗
1 + σ ∗

2 , σ ∗
1 =

ξ2F
F2 + 4µ̃2γ2

, σ ∗
2 =

µ̃2 + γ2

2µ̃γ
R, (2)

R(µ) = arctan
F
2γµ

+ arctan
µ2 − γ2

2γµ
,

F = ξ2 + γ2 − µ2, µ = µ − 3(µ).

Here 3(µ) = 31(µ) + 32(µ), where 31,2(µ) are SLG level

shift functions caused by interaction with the sheets 1, 2;

ξ =
√

2π
√
3t is cutoff energy for the SLG spectrum; γ is

broadening of SLG levels due to the intrinsic attenuation

of electronic states; the energy of the Dirac point εD is

assumed to be zero. In the same area (E∗
V , E∗

C) derivatives

dσ ∗/dµ = dσ ∗
1 /dµ + dσ ∗

2 /dµ equal

dσ ∗
1 /dµ = − 2ξ2%

%
µC∗

F2 + 4γ2%
%
µ2

(

1− 2
F(F − 2γ2)

F2 + 4γ2µ2

)

,

dσ ∗
2

dµ
=

µ2 − γ2

2γµ2
CR +

µ2 + γ2

2γµ

dR
dµ

, (3)

where
dR
dµ

= −4γ CD, C = 1− d3/dµ,

D =

(

ξ2 + γ2

F2 + 4γ2%
%
µ2

− 1

2(µ2 + γ2)

)

. (4)

In the [14] analyzes the dependencies σ ∗(µ)

L(µ) = d ln σ ∗/dµ ∝ S

and

PF∗(µ) = (σ ∗)−1(dσ ∗/dµ)2 ∝ σ S2

(where the function PF∗(µ) is denoted as Z∗(µ)). The

paper also discusses the extremums of the functions L(µ)
and PF∗(µ) the positions of which ±µL

ext and ±µZ∗

ext are

determined respectively from equations

σ ∗(d2σ ∗/dµ2) = (dσ ∗/dµ)2

and

2(d2σ ∗/dµ2) = (dσ 2/dµ)2.

Here, however, we do not provide the corresponding

cumbersome formulas. It is necessary to set the density

of states of semiconductors (DOSs) of sheets 1 and 2 and

the corresponding shift and broadening functions to study

specific structures.

3. 3D sheets

3.1. Semiconductor sheets

We use the [16] model, according to which the DOS

of the semiconductor ρsc(ω) can be represented as fol-

lows [17]:

ρsc (�)=











AC

√

�− Eg/2, Eg/2 < � ≤ WC + Eg/2,

AV

√

−�− Eg/2, −WV − Eg/2 ≤ � < −Eg/2,

0, |�| ≤ Eg/2, |�| > WC,V +Eg/2.

(5)

Here � = ω−ω0, where ω0 is the energy of the center

of the band gap relative to the Dirac point; AC,V are

coefficients, WC(V ) is the width of the conduction band

(valence band). The parameters AC,V and WC,V are related

by the ratio AC,VW 3/2
C,V = 6 [17]. Further, for simplicity, let’s

put AC = AV = A, WC = WV = W . Then, we obtain for the

shift function

3(�) = f −(�) − f +(�), (6)

where

f ±(�) = 2AV 2r±(�) arctan
(
√

W/r±(�)
)

,

r±(�) =
√

±� + Eg/2

and V is the matrix element of the interaction of the plate

with graphene. Thus,

3max ≡ |3(±Eg/2)| = 2AV 2
√

Eg arctan
√

W/Eg . (7)

The function 3(�) is shown in Figure 1 in [17]. Further,

we will assume that Eg/2W ≪ 1, and assume

√
v = AπV 2 = 6πV 2/W 3/2,

that

f ±(±Eg/2) =
√

vEg,
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f ∓(∓Eg/2) = 0 and 3(∓Eg/2) = ±
√

vEg . It is also easy

to show that d f ±/d� = ± f ±(�)/2r±(�) and

lim
�→�V,C

[d3(�)/d�] = −
√
v lim

�→�V,C

(

1

r−(�)
+

1

r+(�)

)

,

(8)
where �V,C = EV,C−ω0. This value has divergences at

|�| → Eg/2.

The resulting band gap is (EV , EC) and 3(µ) = 23(µ) for
identical sheets (symmetric case). Both situations when the

resulting band gap is equal to (EV1(2), EC1(2)) at Eg1 < Eg2

(Eg2 < Eg1), and situations when these band gaps take

values (EV1, EC2) or (EV2, EC1) are possible in case of sheets

made of different materials (the asymmetric case). In this

case 3(µ) = 31(µ) + 32(µ). Table 1 shows the energy

parameters of bulk semiconductors, and Figure 1 shows the

values EV and EC . The calculation uses data from Table

4.1 provided in [18], the energy of the Dirac point relative

to the vacuum was equated to the graphene work function

equal to 4.5 eV [19]. It follows from Figure 1, firstly, that

EC > εD > EV for most semiconductors and band gaps are

higher than εD only for InAs, InSb, ZnO, CdS and CdSe.

Secondly, for all compounds EV > −1 eV, i. e., the edges of

the valence bands are ∼ 2 eV from the lower Van Hove

singularity, whose energy is equal to −1t ∼ −3 eV [20],
where t is the energy of the electron hopping between the

nearest neighbors in graphene. The edges of the conduction

band EC of all the considered semiconductors (except
ZnO and possibly ZnS and CdS) lie below the upper

Van Hove singularity t . (Strictly speaking, the low-energy

approximation used in [13,14] works at energies significantly
lower than t). Thirdly, the values of the band parameters

vary widely (in eV): from 0.18 (InSb) to 3.66 (ZnS),

Table 1. 3D semiconductors: band gap width Eg , electronic

affinity χ and position of the center of the band gap relative to the

energy of the graphene Dirac point ω0 in eV

Crystal Eg χ ω0

Si 1.11 3.99 −0.05

Ge 0.66 4.14 0.03

AlP 2.45 3.57 −0.30

AlAs 2.15 3.50 −0.08

AlSb 1.63 3.59 0.10

GaP 2.27 3.56 −0.20

GaAs 1.43 3.59 0.20

GaSb 0.70 3.90 0.25

InP 1.34 4.17 −0.34

InAs 0.36 4.89 −0.57

InSb 0.18 4.53 −0.12

ZnO 3.20 4.60 −1.70

ZnS 3.66 3.70 −1.03

ZnSe 2.67 4.00 −0.84

ZnTe 2.25 3.35 0.03

CdS 2.42 4.70 −1.41

CdSe 1.74 4.78 −1.15

CdTe 1.50 4.18 −0.43
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Figure 1. Bulk semiconductors: the energy values of the edges of

the zones EV and EC for Si, Ge and binary compounds III−V

and II−I. The straight line corresponds to the energy of the

graphene Dirac point εD = 0.

EC from 0.10 (GaSb) to 2.86 (ZnS), EV from −1 (AlAs)
to 0.39 (InAs). Such large variations in parameters allow,

in principle, purposefully selecting encapsulating materials.

Note that in the case of native graphene in the limit of weak

coupling with sheets, the best materials for the manufacture

of the latter are semiconductors with values EV or EC , as

close as possible to the Dirac point.

Consider the functions σ ∗(µ),

L(µ) = d lnσ ∗/dµ ∝ −S∗ = −S/(π2k2
BT/3e)

and

PF∗(µ) = (σ ∗)−1(dσ ∗/dµ)2

with |�| → Eg/2 in the regime of weak coupling of sheets

with graphene V 2 ≪ (Eg/2)
2 ≪ ξ2. Note that it is this

very regime (which can be maintained technologically) that

allows preserving the uniqueness of graphene properties,

since the carbon monolayer in the limit of strong bonding

can be considered as a set of non-interacting adatoms.

It is easy to show that the qualitative nature of the

dependencies σ ∗(µ), L(µ) and PF∗(µ) is the same as

in Figure 1 in [14], but the conductivity for all energies

remains finite. Moreover, this character is universal for the

chemical potential located near the Dirac point of graphene.

Using the formula (4) from [14] and the results (6)−(8),
we obtain for the symmetric case at µ → EV,C−ω0

σ ∗
V,C ∝

√

vEg/γ, |LV,C | ∝ 1
/

√

Eg(�V,C − µ),

PF∗
V,C ∝

√

v/Eg

/

γ(�V,C − µ). (9)
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Thus, the values σ ∗
V,C are directly proportional to

√

Eg ,

whereas the values |LV,C | ∝ |S∗
V,C | and PF∗

V,C are inversely

proportional to
√

Eg . Therefore, narrow-band semiconduc-

tors should be used for sheets to obtain the maximum

values of the Seebeck coefficient S and the thermoelectric

power factor PF , whereas wide-band semiconductors are

of interest in the case of conductivity. Therefore, it is rec-

ommended to select intermediate (moderate) values Eg [4].
We also note the papers [7,21,22], which demonstrate that

the maximum value of ZT is achieved in narrow-band bulk

materials.

Expressions (9) can also be obtained for asymmet-

ric structures by replacing EV,C and Eg with E∗
V,C and

E∗
g = E∗

C−E∗
V (see [14] for more details). It is clear that the

appropriate selection of sheets allows purposefully varying

the position of the level µ, at which the maximum TE

characteristics of SLG are reached.

3.2. Metal sheets

Let’s consider bulk transition metals (3DM) as encapsu-

lating slabs, using the results of [23]. DOS is written in the

following form for non-magnetic d-metals

ρM(ω) = ρs (ω) + ρd(ω),

ρs(d)(ω) =

{

Ns(d)/Ws(d), |�s(d)| ≤ Ws(d)/2,

0, |�s(d)| > Ws(d)/2,
(10)

where ρs(d)(ω) is density of states s(d)-zones with a width

of Ws(d), �s(d) = ω−ωs(d), ωs(d) is the energy of the center

0
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Figure 2. Bulk d-metals: energies of the upper Etop and lower

Ebot edges of the d-zone. 3d-metals: 1 — Sc, 2 — Ti, 3 — V,

4 — Cr, 5 — Mn, 6 — Fe, 7 — Co, 8 — Ni, 9 — Cu; 4d-metals:

1 — Y, 2 — Zr, 3 — Nb, 4 — Mo, 5 — Tc, 6 — Ru, 7 — Rh,

8 — Pd, 9 — Ag; 5d-metals: 1 — Lu, 2 — Hf, 3 — Ta, 4 — W,

5 — Re, 6 — Os, 7 —Ir, 8 — Pt, 9 — Au. The straight line

corresponds to the energy of the graphene Dirac point εD = 0.

of the s(d)-zone, Ns = 2, Nd = 10 (Friedel model [24,25]).
Since Ws ≫ Wd (see [25] and the approximation of an

infinitely wide s -zone in the Anderson model [26]), we

neglect the shift of the electronic states of graphene induced

by the s -band, and the broadening of these states is

represented as γs = 2πV 2
s /Ws , where Vs is the matrix

element of the interaction of s -electrons with graphene

electrons. The shift of graphene states caused by the d-band
is equal to

3d(ω) =
γd

π
ln

∣

∣

∣

∣

Wd/2 + �d

Wd/2−�d

∣

∣

∣

∣

, (11)

where the broadening of γd = 10πV 2
d /Wd , and Vd is the ma-

trix element of the interaction of d-electrons with graphene

electrons. The ratio of the parameters γd and γs was

discussed in [27]. Further, we assume that γd ≫ γs ≫ γ .

The total broadening in the area of s -zone is equal to

Ŵs = 2γs + γ for a symmetrical encapsulated structure, it is

equal to Ŵd = 2γd + 2γs + γ in the area of d-zone. It bears
reminding that the broadening of the levels is associated

with their temporal attenuation: τs ,d ∼ ~/Ŵs ,d . From (11)
we have d3(ω)/dω = (γdWd/π)/[(Wd/2)

2−�2
d ]. Using

the formula (4) from [14] for the case when the level

|µd | ≡ |µ−ωd | → Wd/2 and lies outside the d-zone, we

obtain

σ ∗ ∝ (γd/γs ) ln(Wd/|µd −Wd/2|).
|L| ∝ Wd/|µd −Wd/2| ln(Wd/|µd −Wd/2|),

PF∗ ∝ (γd/γs)[W
2
d /(µd −Wd/2)

2] ln(Wd/|µd −Wd/2|).
(12)

The factor γd/γs ≫ 1 should be replaced with 1 if

|µd | is located in the d-zone. It follows that all the

considered thermoelectric characteristics turn to infinity if

µd ≡ µ−ωd → Wd/2.

3DM energy characteristics, including the energies in

the midpoints of d-band ωd obtained from data provided

in [24,25,28], are listed in Table 2, and Figure 2 shows the

upper Etop and the lower Ebot boundaries of these zones.

Figure 2 suggests that (under the condition of low doping

of graphene in the mode of weak coupling with sheets) the

maximum values of TE characteristics can be achieved for

sheets made of Sc, Y, Lu and the last elements of the d-rows.
In this regard, it should be noted that copper and gold are

widely used for the manufacture of contact pads in Van der

Waals heterostructures [29].
The issue of bilayer graphene (BLG) encapsulated with

3d sheets is considered in Appendix.

4. 2D sheets

4.1. Semiconductor sheets

The DOS of graphene-like (GLC) binary semiconductor

structures ANB8−N can be represented as

ρAB(�) =











2|�|
ξ2

,

√

ξ
2
+ 12 ≥ |�| ≥ |1|,

0, |�| < |1|, |�| >
√

ξ
2
+ 12.

(13)

Semiconductors, 2023, Vol. 57, No. 9



Theoretical estimates of the thermoelectric power factor of graphene encapsulated between... 735

Table 2. 3D transition metals: φM work function, width of d-band and position of the center of the band relative to the graphene Dirac

point ωd in eV

3d Sc Ti V Cr Mn Fe Co Ni Cu

4d Y Zr Nb Mo Tc Ru Rh Pd Ag

5d Lu Hf Ta W Re Os Ir Pt Au

3.50 4.10 4.11 4.38 3.35 3.70 4.16 4.60 4.00

φM 3.10 3.84 4.00 4.29 4.70 4.71 4.65 4.73 4.00

3.30 3.53 4.20 4.50 4.95 4.95 5.27 5.32 4.45

5.13 6.08 6.77 6.56 5.60 4.82 4.35 3.78 2.80

Wd 6.59 8.37 9.72 9.98 9.42 8.44 6.89 5.40 3.63

7.81 9.56 11.12 11.44 11.02 10.31 8.71 7.00 5.28

2.23 0.13 −0.74 −1.93 −1.24 −1.76 −1.83 −1.90 −1.50

−ωd 2.76 0.41 −1.27 −3.27 −3.83 −4.29 −3.68 −2.77 −3.31

2.50 2.22 0.49 1.85 2.36 3.67 3.82 2.99 2.09

Here � = ω−ε, where ε = (εa + εb)/2 is the middle of

the gap with width 21 = εa−εb, εa(b) is energy of p-orbital

of the atom A(B), ξ =
√

2π
√
3t, t is the transition energy

between pz -orbitals of the nearest atoms A and B [30]. The

corresponding broadening function is Ŵ(�) = πV
2
ρAB(�),

and the shift function is

3(�) =
2V

2

ξ
2

� ln

∣

∣

∣

∣

�
2 − 12

�
2 − 12 − ξ2

∣

∣

∣

∣

, (14)

where V is matrix element of the GLCis graphene inter-

action. As shown in [14], the maximum values of static

conductivity and thermoelectric characteristics are achieved

under the condition µ2 ≡ (µ−ε)2 → 12. We obtain the

following for symmetric structures

σ ∗
±1 ∝ 31/γ, |L±1| ∝ C1/31, PF∗

±1 ∝ C2
1/γ31, (15)

where

31 ≈ (4V
2
1/ξ

2
) ln[ξ

2
/(12 − µ2)],

C1 ≈ 4V
2
12/ξ

2
(12 − µ2),

which assumes that the chemical potential is located inside

the GLC gap. It should be noted that the general dependen-

cies σ ∗(µ), L(µ) and PF∗(µ) are analyzed in [14] and the

model symmetric structure h-BN/Gr/h-BN is considered in

detail, for which ε = 0, since the Gr h-BN work functions

coincide. Turning to other 2D ANB8−N compounds, it

is necessary firstly to note the most well studied two-

dimensional silicon carbide and aluminum and gallium

nitrides, information about which is contained respectively

in [31,32]. Data on the width of the gaps (band gaps)
are provided in these papers, but, unfortunately, there is

no information about electronic affinity, which prevents

from estimating ε values. Therefore, here we will consider

2D transition metal dichalcagenides (TMD), studied much

more thoroughly than 2D ANB8−N (see, for example,

reviews [33,34]). Table 3 presents the data obtained by

numerical calculations from the first principles [35]. The

maximum effects of increasing thermoelectric character-

istics for undoped SLG, weakly bound to the sheets,

will be observed for MoS2 when the chemical potential

approaches the bottom of the conduction band and for

MoTe2 and WTe2 — to the ceilings of the valence bands.

Based on the results obtained using the strong

coupling approximation [36–38] and k · p-method [39],
for rough estimates, we represent TMD DOS as

ρ(�) = ρ = const at |�| ≥ Eg/2 and ρ(�) = 0 at

|�| < Eg/2 (Haldane−Anderson model [40]). Then the

shift function

3(�) = ρV
2
ln |(�− Eg/2)/(� + Eg/2)|

and

d3(�)/d� = ρV
2
Eg/[�

2 − (Eg/2)
2].

We obtain the following if µ2 ≡ (µ−ε)2 → (Eg/2)
2 and µ

remain in the TMD band gap in the symmetric structure

σ ∗ ∝ ρV
2
ln[Eg/(Eg/2− |µ|)]/γ,

|L| ∝ Eg/[(Eg/2)
2 − µ2] ln[Eg/(Eg/2− |µ|)],

PF∗ ∝ ρV
2
E2

g/γ[(Eg/2)
2 − µ2]2 ln[Eg/(Eg/2− |µ|)].

(16)
If µ is outside the TMD band gap, then in expressions (16)
it is necessary to change the sign of the differences

(Eg/2− |µ|) and [(Eg/2)
2−µ2], and γ replace with γ + 2Ŵ

(where Ŵ = πρV
2
is broadening of graphene levels due to

interaction with the TDM plate) and Ŵ ≫ γ . Thus, MoS2
appears to be the most promising sheet material (from
the considered TDM series).

4.2. Metal sheets

The intensive search for new materials, which began

immediately after the start of graphene studies, led to the

publication of articles on 2D metals (2DM) [41–44], in

which various variants of DFT (density functional theory)

Semiconductors, 2023, Vol. 57, No. 9
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Figure 3. Two-dimensional d-metals: energies of the midpoint Ed (light circles), upperEtop and lower Ebot edges (dark squares) d-zones.
a — 3d-metals: 1 — Sc, 2 — Ti, 3 — V, 4 — Cr, 5 — Mn, 6 — Fe, 7 — Co, 8 — Ni, 9 — Cu; b — 4d-metals: 1 — Y, 2 — Zr,

3 — Nb, 4 — Mo, 5 — Tc, 6 — Ru, 7 — Rh, 8 — Pd, 9 — Ag; c — 5d-metals: 1 — Lu, 2 — Hf, 3 — Ta, 4 — W, 5 — Re, 6 — Os,

7 — Ir, 8 — Pt, 9 — Au. The straight line corresponds to the energy of the graphene Dirac point εD = 0.

were used for calculations. Unfortunately, there is no data

either on the widths of the d-zones Wd , or on the transition
metal work functions in [41–44]. It was demonstrated,
however, that the 2DM constant lattices are almost identical

to the 3DM constant lattices. It follows that the values of
the transition energies t3DM and t2DM are also close. Since

Wd ∝ z in the strong coupling approximation, where z is
the number of nearest neighbors, it is possible to write

Wd(2DM) ≈ ηWd(3DM), where η = z 2DM/z 3DM < 1. It
is this circumstance that was used in [45] for the model
description of the zone characteristics of the transition 2DM.

As for the 2DM work functions, they were equated to

Table 3. 2D semiconductor transition metal dichalcagenides:

band gap Eg , electronic affinity χ and position of the center of

the band gap ε and its edges EC and BV relative to the energy of

the graphene Dirac point in eV

TMD Eg χ ε EC EV

MoS2 1.59 4.28 −0.58 0.22 −1.37

MoSe2 1.33 3.91 −0.08 0.59 −0.74

MoTe2 0.94 3.81 0.22 0.69 −0.25

WS2 1.55 3.93 −0.21 0.57 −1.08

WSe2 1.25 3.61 0.26 0.89 −0.36

WTe2 0.74 3.67 0.46 0.83 0.09
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the 3DM work functions in [45]. It is appropriate to

emphasize here that, according to the handbook [28], even
for well-studied refractory metals, the spread of values

of φM is very significant. The values of the midpoints Ed and

edges Etop and Ebot of the 2DM d-zones obtained in this way

are shown in Figure 3. For undoped graphene in the mode

of weak bond with sheets, the most promising materials

for thermoelectric applications are the finite elements of the

d-rows, the edges of the d-zones of which are close to the

Dirac point, and the initial elements for which the bottom

of the d-zone is located near εD .

It is natural to use the same Friedel model to describe

2DM DOS as for 3DM in section 3.2. Therefore,

the extreme values of the functions σ ∗, |L| and PF∗

are described by expressions (12). It should be noted

that Wd(2DM) < Wd(3DM), whereas the ratios (γd/γs )
for 3DM and 2DM, according to our estimates, are

approximately equal.

The question of BLG encapsulated with 2D sheets is

discussed in Appendix.

5. Conclusion

The dependence of the static conductivity σ , the Seebeck

coefficient S and the thermoelectric power factor PF = σ S2

of graphene on the nature and dimension of the sheets of

the encapsulated structure and the position of the chemical

potential µ is investigated in this paper. 3D and 2D

semiconductors (ANB8−N and TMD) and transition metals

are considered as the materials of the sheets. Graphene was

considered in a low-energy approximation, simple models

were used to describe the densities of the states of the

sheets.

It is shown for 3D semiconductor slabs that the maximum

values of S and σ S2 are achieved when µ, being in the

area of overlap of the band gaps of sheets 1 and 2,

i.e. in the interval E∗
g = E∗

C−E∗
V , tends to E∗

V or E∗
C .

In this case, σ takes the maximum finite value propor-

tional to (E∗
g )1/2, whereas |S|, PF → ∞ as (E∗

g δV,C)−1/2

and (E∗
g δV,C)−1/2δ

−1/2
V,C , where δV,C = |E∗

V,C−µ|. It is shown

for 2D semiconductor TMDs that in a symmetric structure,

when the chemical potential is found inside the band gap

Eg , we have

σ ∗ ∝ ln(Eg/δ), |L| ∝ (Eg/w) ln−1(Eg/δ)

and

PF∗ ∝ (Eg/w)2 ln−1(Eg/δ),

where δ = Eg/2− |µ| and w = (Eg/2)
2−µ2. Since the

logarithm is a weakly varying function, the similarity of the

results for 3D and 2D sheets is obvious. It is interesting

to note that it is possible to change the width of the

resulting band gap by placing graphene encapsulated with

2D semiconductor sheets in a vertical electrostatic field.

For a symmetrical structure, for example, we have a

constriction Eg of the form E ′
g = Eg−eFl, where F is field

strength, l is distance between 2D sheets. The value can

be either reduced or increased in the case of an asymmetric

structure. In this case, the Dirac point experiences a shift of

1εD = eFl/2. The positions of the extremes σ, S and PF
can be shifted in this way.

The maximum values of the considered characteristics for

volumetric and two-dimensional sheets made of d-metals

are achieved for the chemical potential located near the

boundaries of the d-zone. In this case we have

σ ∗ ∝ ln(Wd/δd), |L| ∝ (Wd/δd) ln
−1(Wd/δd)

and

PF∗ ∝ (Wd/δd)
2 ln−1(Wd/δd),

where δd = |µd−Wd/2|. Thus, the difference between 3D

and 2D sheets is reduced to differences in the widths of

d-zones: Wd(2DM) < Wd(3DM). It should be emphasized

that the divergences of the functions σ (µ), S(µ) and PF(µ)
considered by us are not related to the topological features

of the encapsulated structures, but to the coarseness of

the DOS models adopted for the sheets. The divergences

turn into extremes of finite height when more complex

models are used. The same effect will take into account

not only the shift of the electronic states of graphene

induced by the sheets, which is considered in this paper, but

also their broadening. We also emphasize that the results

obtained here for SLG are also valid for gapless silicene,

germanene and stanene and, under certain conditions,

for BLG (see Appendix).
The presence of a substrate (as well as sheets) can cause

the appearance of relatively narrow slits (on the order

of tenths of eV) in the electronic spectrum of graphene

in the vicinity of the Dirac point [46,47]. It is shown

in [48] that when the chemical potential overlaps with the

boundaries of the gap induced by the sheets, extremes of

these characteristics will be observed.

In conclusion, it should be noted that shortcomings of

Mott’s formula are often noted in the theoretical literature

(see, for example, [48,49] and the references given there).
Nevertheless, almost all experimental results are discussed

on the basis of this formula. Moreover, the Mott formula

is also used in calculations [1–13], including for the study

of TE temperature dependencies. Since in this paper we

use the Drude model for graphene conductivity (exclud-
ing electron-electron and electron-phonon interactions) and

strive only for qualitative (at best, semi-quantitative) results,

we believe that the use of the Mott formula in describing a

rather complex structure of encapsulated graphene is fully

justified.

Appendix

Here we will consider the thermoelectric properties of

encapsulated bilayer graphene, or BLG. The electronic

spectrum of free BLG has the following form [50,51]

ε±±(k) = ±t⊥/2±
√

(t⊥/2)2 + t2 f 2(k), (5.1)
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where

f (k)=

√

3 + 2 cos(ky a
√
3)+4 cos(ky a

√
3/2) cos(3kx a/2),

t and t⊥ are electron jump energies between the nearest car-

bon atoms in the monolayer (located at a distance of a from

each other) and the nearest atoms in the upper and lower

layers of BLG, respectively (t⊥/t ∼ 0.1) k = (kx , ky ) is the
wave vector of an electron in a monolayer lying in the

plane (x , y), the energy of the Dirac point εD is taken

as zero, the subscripts correspond to the signs before

the first term on the right side of the expression (p.1),
superscripts correspond to signs before the radical. It is

easy to see that the expression ε±±(k) ∓ t⊥/2 for four BLG

zones exactly coincides with the law of dispersion for two

free GLC zones of the form E±(k)−ε =
√

12 + t2 f 2(k),
where ε = (εa + εb)/2, 1 = (εa−εb)/2 and εa(b) are the

energies of the p-orbitals of atoms A(B) [52]. In the low-

energy approximation, the corresponding DOS is equal to

ρ±
±(�±) =







2|�±|
ξ2

, R ≥ |�±| ≥ t⊥/2,

0, |�±| > t⊥/2, |�±| > R,
(5.2)

where R =
√

ξ2 + t2⊥/4. Since t ∼ 3 eV, t⊥ ∼ 0.4 eV,

then at |ω| ≫ t⊥/2 DOS BLG (p.2) switches to dou-

ble DOS SLG, where ρSLG(ω) = 2|ω|/ξ2 at |ω| ≤ ξ

and ρSLG(ω) > 0 at |ω| > ξ . It follows that for |E∗
V |,

|E∗
C | ≫ t⊥/2 and µ → E∗

V , E∗
C , all conclusions of clause

3.1 made for SLG with 3d sheets are valid for BLG.

Similarly, for |1| ≫ t⊥/2 and µ → 1, the conclusions of

clauses 3.2 for SLG with 2d sheets correspond to the

present case. Further, since Wd ≫ t⊥ (for both 3d and 2d),
then at |µd | → Wd/2 all the conclusions of clauses 3.2

and 4.2 can be attributed to BLG as well. Thus, the

expressions (9), (12), (15) and (16) are also valid for

BLG if the characteristics of sheet DOS occur at energies

whose values are much greater than t⊥/2. In cases where

the DOS characteristics of the encapsulating layers have

energies of the order t⊥/2, it is necessary to calculate the

static conductivity (for example, according to the scheme of

work [13,14]), followed by the Seebeck coefficient and the

thermoelectric power factor BLG.

Encapsulated BLG (as well as encapsulated SLG) can be

considered as an element of a superlattice, where the layers

of BLG (SLG) alternate with the sheets. In this regard, we

note that the interest in BLG as an element of superlattices

has a ten-year history [53–59]. At the same time, it is logical

to use the scheme of operation [60], which is close to the

scheme used in this paper.
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