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Two-subband magnetotransport of quasi-2D electron gas in GaAs single quantum well with AlAs/GaAs

superlattice doping has been studied at T = 4.2K in magnetic fields B < 2T . It was demonstrated that application

of negative gate voltage leads to transformation of studied two-subband electron system into the one-subband

system. This transformation is accompanied by appearance of positive magnetoresistance. This behavior has

been described by conventional model of classical positive magnetoresistance that takes into account elastic

intersubband scattering of electrons. Combined analysis of classical positive magnetoresistance and quantum

magneto-intersubband oscillations makes it possible to define the values of transport rates of intrasubband scattering

and quantum rate of intersubband scattering.
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1. Introduction

Two-subband magnetotransport of electrons in GaAs

quantum wells with modulated doping has been investigated

experimentally for more than 40 years [1]. At the initial

stage of these studies, it was found that the filling of the

second subband of dimensional quantization in the GaAs

quantum well leads not only to the appearance of the second

series of Shubnikov–de Haas (SdH) oscillations, but also to

a decrease in the mobility (µ0) of the quasi-two-dimensional

electron gas [2]. In addition, GaAs quantum wells with two

filled subbands of dimensional quantization E1 and E2, were

found to exhibit classical positive magnetoresistance (PMR)
due to the difference of mobilities in the subbands [3,4].
It has also been shown that a new type of quantum

resistance oscillations — magneto-intersubband (MIS) os-

cillations [5,6] arises in two-subband electron systems.

The decrease of mobility µ0 in a single GaAs quantum

well when the second subband is filled, as well as the

occurrence of MIS oscillations, confirmed the fundamental

role of intersubband scattering in two-subband classical

and quantum magnetotransport [7,8]. Studies of two-

subband magnetotransport in double GaAs-quantum wells

have also confirmed the necessity to take into account

intersubband scattering when interpreting classical PMR in

bilayer electron systems [9–11], but the question of the

contribution of intersubband scattering to classical PMR

in single-layer systems is still open. In the present work,

magnetotransport has been investigated in a single-layer

two-subband electron system realized on the basis of a

selectively doped single GaAs quantum well with short-

period AlAs/GaAs superlattice barriers [12–15]. It is found
that in such structures, as in double GaAs-quantum wells,

the contribution of intersubband electron scattering to the

classical PMR cannot be neglected. The obtained experi-

mental data are analyzed within the framework of known

theoretical models of classical and quantum transport in

two-subband electron systems.

2. Magnetoresistance of two-dimensional
systems with two filled subbands

At low temperatures, when the electron gas is degenerate

and elastic scattering on impurities or other inhomogeneities

is the main scattering mechanism, the classical PMR in a

two-subband system is expressed by the relation [9,11]

ρCPMR

ρ0
=

ω2
cνs/ν0 + ν2

r

ω2
c + ν2

r
, (1)

where ρ0 = mν0/e2ns — resistance in the zero magnetic

field, ns = n1 + n2, n1 and n2 — electron densities in the

subbands, ωc = eB/m — cyclotron frequency, B — external

magnetic field, m — electron effective mass. The classical

resistance increases with increasing B , starting at a value ρ0,

and reaches saturation at ωc ≫ νr . The characteristic

relaxation rates νs , νr and ν0 are given by the following

expressions:

νs = (n1/ns)ν
t
11 + (n2/ns)ν

t
22 + ν t

12, (2)

νr = (n2/ns)ν
t
11 + (n1/ns )ν

t
22 + 2ν

q
12 − ν t

12, (3)

ν0 = (ν t
11 + ν

q
12)(ν

t
22 + ν

q
12)/νr − (νq

12 − ν t
12)

2n2
s/4n1n2νr ,

(4)
where ν t

11 and ν t
22 — transport relaxation rates in the first

and second ( j = 1 and 2) subbands E j , and ν t
12 and ν

q
12 —
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transport and quantum (single-particle) relaxation rates at

intersubband scattering.

It is convenient to transform the system of equa-

tions (2)−(4) to the form where in the left-hand side are

the unknown quantities ν t
11, ν

t
22, ν

t
12 and ν

q
12, and in the

right-hand side — the characteristic relaxation rates ν0, νs

and νr known from experiment:

ν
q
12 − ν t

12 = 2(n1n2/n2
s )(νr − νs) ± (n1/ns − n2/ns)R, (5)

ν t
11 + ν t

12 = (n1/ns)(1 + 2n2/ns )νs

− (n2/n2
s )(n1 − n2)νr ± 2(n2/ns)R, (6)

ν t
22 + ν t

12 = (n2/ns)(1 + 2n1/ns )νs

+ (n1/n2
s )(n1 − n2)νr ∓ 2(n1/ns)R, (7)

where R ≡ (2/ns )[νr(νs − ν0)n1n2]
0.5. However, to cal-

culate the four quantities ν t
11, ν

t
22, ν

t
12 and ν

q
12 from the

system of three equations (5)−(7), knowledge of the

parameters ν0, νs and νr obtained from data processing for

classical PMR is not sufficient. One way to overcome

this difficulty — to determine the value of ν t
12 from

the dependence of the amplitude of the MIS oscillations

on 1/B , which is given by the following expression [16–18]:

ρMISO/ρ0 = 2(ν t
12/ν0)exp

[

(−π/ωc)(ν
q
11 + ν

q
22 + 2ν

q
12)

]

× cos(2π112/~ωc), (8)

where ν
q
11 and ν

q
22 — single-particle relaxation rates in

subbands E1 and E2, 112 = E2 − E1 — the value of the

intersubband energy splitting, ν0 — the total transport relax-

ation rate. The exponent in formula (8) is the product of the
Dingle factors for the individual subbands. The formula (8)
is obtained from the expansion in terms of small Dingle fac-

tors up to second order [11]. The normalized amplitude of

MIS oscillations in a zero reverse magnetic field according

to formula (8) will be written as 1ρMISO/ρ0 = 2(ν t
12/ν0).

Determining this value from the Dingle plot for the MIS

oscillations allows us to find out the value of ν t
12.

3. Experimental results and discussion

The initial heterostructure was a 26 nm wide GaAs

quantum well with short-period AlAs/GaAs superlattice

barriers [12,13]. The charge carriers in the quantum well

were provided by Si δ-doping. Single Si δ-doped layers were

located in AlAs/GaAs superlattice barriers on both sides of

the GaAs quantum well at a distance of 29.4 nm from its

boundaries. The heterostructure was grown by molecular-

beam epitaxy on (001) GaAs substrate. The samples

for magnetotransport measurements were Hall bridges of

length L = 250 µm and width W = 50 µm equipped with

top Ti/Au Schottky gates. The samples were fabricated using

optical photolithography and liquid etching. The inset to

Figure 1 shows schematically the geometry of the sample.
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Figure 1. a — experimental dependencies of ρxx/ρ0 on B :

1 — Vg = 0, 2 — Vg = −2V. The inset shows a Hall bridge:

1−6 — ohmic contacts, 7 — Schottky field gate. b — Fourier

spectra of the dependencies of ρxx/ρ0 on 1/B : 1 — Vg = 0,

2 — Vg = −2V. The curves 2 are shifted upwards for clarity.

(The colored version of the figure is available on-line).

Measurements were performed at temperatures

T = 4.2K in magnetic fields B < 2Tesla. The ρxx

and ρxy resistances were measured in linear mode on an

alternating electric current whose frequency was < 1 kHz

and whose amplitude did not exceed 1 µA. The Hall

concentration of electrons nH was calculated from the value

of ρxy in a magnetic field of 0.5 Tesla. The mobility µ0
was calculated from the values of ρ0 and nH. The nH and

µ0, values measured at the bridges before gate sputtering

were 8.15 · 1015 m−2 and 119m2/(B · s), respectively.

The concentrations of charge carriers in the subbands

were calculated from the oscillation period of SdH:

n1 ≈ 6.24 · 1015m−2, n2 ≈ 1.91 · 1015 m−2. The E2 − E1

determined from the electron concentration difference

(n1 − n2) was 112 ≈ 15.3meV.

Figure 1, a shows the dependencies of ρxx/ρ0 on B
for two gate voltages (Vg). For Vg = 0 in the interval

0.1 < B < 0.5 Tl, MIS oscillations are observed, which

coexist with SdH oscillations in stronger magnetic fields.

For Vg = −2V, only one series of SdH oscillations is

observed. Figure 1, b shows the results of the Fourier
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Figure 2. a — experimental dependences of nH, n1, n2 and ns

on Vg . b — experimental dependences of ρxx on Vg for different

magnetic field values B .

analysis of the dependencies of ρxx/ρ0 on 1/B . Three

frequencies appear in the Fourier spectrum for Vg = 0.

Two of them correspond to the frequencies of SdH

oscillations ( f SdH1 ≈ 12.63 T and f SdH2 ≈ 3.8 T), and the

third — MIS oscillations ( f MISO ≈ 8.83 T). The electron

concentrations in the subbands (n j) calculated from the

SchdH oscillation frequencies were: n1 ≈ 6.11 · 1015 m−2,

n2 ≈ 1.84 · 1015 m−2. The E2 − E1 value determined from

the f MISO frequency was: 112 ≈ 15MeV. For Vg = −2V,

only one ShdH oscillation frequency is observed in the

Fourier spectrum, which corresponds to the electron con-

centration of n1 ≈ nH.

Figure 2, a shows the experimental dependences of nH,

n1, n2 and nson the gate voltage Vg . The dependences

nH(Vg) and ns(Vg) have two characteristic intervals. In

the interval Vg from 0 to −1V, there is a weak change

in nH and ns , and in the range from −1 to −2V — a

strong change. The nonlinear ns(Vg) dependence is due

to
”
ejection“ X of electrons from the AlAs layers adjacent

to the top δ-doped layer [14]. When the gate voltage

modulus |Vg | is increased in the range of variation Vg

from 0 to −1V, the amplitude of the MIS oscillations drops

significantly, which is due to the decreased screening of the

random scattering potential of the remote donor impurity

X by electrons [19]. The gate voltage between −1.2 and

−2V does not change the concentration of X -electrons in

AlAs/GaAs superlattice barriers. For this reason, in this

range of Vg , the dependence of ns(Vg) is close to linear [14].

The dependences of ρxx(Vg), shown in Figure 2, b, show

that the magnetic field significantly transforms them. In zero

magnetic field, when |Vg | is increased, a smooth increase in

ρxx is observed due to the decrease in ns and µ0. The

dependence of ρxx(Vg) for B = 0.5Tl differs significantly

from ρxx(Vg) in zero magnetic field only in the range of Vg

from −1.2 to −1.6V. In this range, with increasing |Vg |,
the resistance of ρxx first increases, reaches its maximum

value at Vg = −1.4V, and then decreases. This behavior

of ρxx (Vg) was observed previously in a GaAs double

quantum well and was explained by the manifestation of the

classical PMR [11]. The dependence of ρxx(Vg) for B = 1Tl

qualitatively differs from ρxx(Vg) for B = 0.5Tl only in the

range of Vg from −1.6 to −2V. In this range, oscillations of

SdH are observed in the ρxx(Vg) dependence for B = 1Tl

due to the change of concentration n1 at a fixed magnetic

field value. The significant quantitative difference of ρxx(Vg)
in magnetic fields of 0.5 and 1 Tesla at gate voltages of −0.9

and −1.4V is due to the different PMR values and quantum

oscillation amplitudes for these magnetic field values.
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Figure 3. Experimental dependences of ρxx/ρ0 on B at

T = 4.2K for two different values of Vg and the classical PMR

calculated by the formula (1). a — Vg = 0: ν0 = 23.12GHz,

νs = 24.45GHz, νr = 92GHz. b — Vg = −1.4V: ν0 = 27.9GHz,

νs = 73GHz, νr = 670GHz.
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Figure 3 shows that the theory of classical PMR in

a two-subband system describes well the experimental

dependences only at the initial intervals of ρxx/ρ0 on B .

This behaviour is due to the contribution to PMR of other

classical and quantum mechanisms of electron scattering

in two-dimensional systems [20–22]. It is evident that

the deviation of the experimental dependences from the

calculated ones starts in the magnetic fields in which MIS

oscillations (Figure 3, a) and SdH oscillations (Figure 3, b)
occur. This behavior of ρxx/ρ0 from B indicates that the

additional contribution to the PMR has a quantum [21,22]
character. This assumption is consistent with the results

of [11]. However, in our case, accounting for quantum PMR

is not possible because it requires the values of ν
q
11 and ν

q
22.

Nevertheless, as will be seen later, fitting the calculated

dependencies of ρxx/ρ0 on B at the initial sites gives good

quantitative agreement of the experiment with theory.

Figure 4, a shows the dependences of ν0, νs and νr on

Vg . The values of ν0 were determined from the experimental

values of ρ0, and νs and νr — from fitting the calculated and

experimental dependences of ρxx/ρ0 on B . The increase in

these relaxation rates with increasing |Vg | is primarily due

to an increase in the transport relaxation rate in the second

subband ν t
22, since the magnitude of the Fermi vector in

the second subband kF2 decreases most significantly with

increasing |Vg | compared to the relatively weakly varying

magnitude of kF1. The dependences of ρxx/ρ0 on Vg ,

shown in Figure 4, b, demonstrate good agreement of the

experimental data with the calculated ones. The observed

agreement allows us to consider the fitting of the calculated

and experimental dependences ρxx/ρ0 on B at the initial

parts of the curves as sufficiently correct.

Figure 5 shows the results of solving the system of

equations (2)−(4) in the form of expressions (5)−(7). The
dependences of (νq

12 − ν t
12) and (ν t

11 + ν t
12) on Vg allow

an unambiguous choice of physics-based solutions. As the

upper subband empties, the intersubband scattering intensity

decreases, which corresponds to a decrease in the relaxation

rates ν
q
12 and ν t

12. Therefore, the difference (νq
12 − ν t

12)
should also decrease with increasing |Vg | and in the limit

tend to zero. At the same time the sum of (ν t
11 + ν t

12)
must tend to ν0. We can formally trace such a limit

transition if in (3), (4) and (6) we put ν
q
12 = ν t

12 = 0. Then

νr ≈ ν t
22 and ν0 ≈ ν t

11ν
t
22/νr ≈ ν t

11. The above behavior of

(νq
12 − ν t

12) and (ν t
11 + ν t

12) is observed for the second set

of solutions, which corresponds to the sign
”
−“ at R in

expression (5). Therefore, only this set of solutions we

consider as physically justified for describing the classical

PMR in the investigated single-layer two-subband system.

The experimental dependence of ρxx/ρ0 on B , shown in

Figure 6, a, shows that in the studied system for Vg = −1V,
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dence of ρxx/ρ0 on B . Calculation under formula (1):
ν0 = 25.81GHz, νs = 28.88GHz, νr = 110GHz. b — experi-

mental dependence of 1ρMISO/ρ0 on 1/B . Calculation under

formula 1ρMISO/ρ0 = 2(ν t
12/ν0) exp[(−π/ωc)(ν

q
11 + ν

q
22 + 2ν

q
12)]:

2(ν t
12/ν0) = 0.36, (νq

11 + ν
q
22 + 2ν

q
12) = 686GHz.

in addition to PMR, MIS oscillations are well manifested.

The smoothed dependence of ρsm/ρ0 on B shows that it

also exhibits magnetophononon oscillations [23,24]. In ac-

cordance with expression (8), the dependence of the nor-

malized MIS amplitude of 1ρMISO/ρ0 oscillations on 1/B
on a semi-logarithmic scale is linear. Figure 6, b shows

good agreement between the experimental and calculated

dependences of 1ρMISO/ρ0 on 1/B , which allows us to

determine the value of ν t
12. However, correct processing

of the experimental dependences of 1ρMISO/ρ0 on 1/B to

determine the value of ν t
12 is possible only in a relatively

narrow interval Vg near −1V. In the Vg band preceding

this interval, the experimental dependences are not linear

enough and therefore are not described by the formula (8),
and in the Vg band following this interval, the amplitude of

MIS oscillations is strongly suppressed [25].
The 1ρMISO/ρ0 value found for Vg = −1V in a

zero reverse magnetic field is 0.36. It follows that

ν t
12 ≈ 0.18ν0 ≈ 4.65GHz. By substituting the known

values ν0, νs , νr and ν t
12 into the expressions (5)−(7)

for physically reasonable solutions, we can determine

the transport relaxation rates of electrons in the sub-

bands and the quantum relaxation rate for intersub-

band scattering, as well as the value of the ratio

ν
q
12/ν

t
12 at Vg = −1V: ν t

11 ≈ 8.8GHz, ν t
22 ≈ 87.2GHz,

ν
q
12 ≈ 21.5GHz, ν

q
12/ν

t
12 ≈ 4.6. In addition, the slope of

the Dingle plot for the MIS oscillations (Figure 6, b) gives

us the value of (νq
11 + ν

q
22 + 2ν

q
12) = 686GHz, which allows

us to estimate the value of the ratio

(νq
11 + ν

q
22)/(ν

t
11 + ν t

22) ≈ ν
q
22/ν

t
22 ≈ 6.7.

Such a value of ν
q
22/ν

t
22 indicates that ν

q
22 at Vg = −1V

is mainly determined by electron scattering on the remote

impurity. Then for the quantum relaxation rate, we can

write [26–28]:

ν
q
j j ≈ ν

qR
j j = (π~/2m)n∗

R/(kF j dR), (9)

where ν
qR
j j — quantum relaxation rate on remote ionized

donors in j-th subband, n∗

R — effective concentration of re-

mote ionized donors, kF j = (2πn j)
1/2, dR = (dS + dSQW/2),

dS — spacer thickness, dSQW — single quantum well thick-

ness. The relaxation rate ν
q
22 in the investigated structure

at Vg = −1V does not exceed 686GHz. In this case, n∗

R ,

calculated by formula (9), does not exceed 1015 m−2.

For a relatively dense (n > 1015 m−2) high-mobility 2D

electron gas at low temperatures, the transport relaxation

rate is determined by two main scattering mechanisms: scat-

tering on distant charged impurities and on the background

impurity. Therefore, the transport relaxation rate in the j-th
subband is expressed as

ν t
j j = ν tR

j j + ν tB
j j , (10)

where ν tR
j j — transport relaxation rate on remote ionized

donors, and ν tB
j j — transport relaxation rate on charged

background impurities. The intra-subband transport relax-

ation rate on remote ionized donors in the j-th subband is

given by the following relation [26–28]:

ν tR
j j = (π~/8m)n∗

R/(kF j dR)3. (11)

For a concentration value of n∗

R = 1015 m−2, the cor-

responding value of ν tR
22 , calculated by formula (11),

is 9.8 GHz. The large difference between the ν tR
22 ≈ 9.8GHz

and ν t
22 ≈ 87.2GHz values indicates that ν t

22, unlike ν
q
22, is

not determined by scattering on the random potential of

distant ionized donors alone. When Vg = −1B, the value

of ν t
22/ν

t
11 ≈ 9.9 is comparable to that of (n1/n2)

1.5 ≈ 8.2.

This fact allows us to consider that ν t
11 and ν t

22 are

determined by electron scattering on two types of random

potential — remote dopant impurity and background im-

purity, having the same dependence of transport relaxation

rates on n j .

The intrasubband electron transport relaxation rate for

scattering on charged background impurities with volume

concentration nB can be expressed by the following rela-

tion [26–28]:

ν tB
j j ≈ (m/2π~

3)(e2/2ε0ε)
2nB/k3

F j , (12)
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where ε0 — electrical constant, ε — relative dielectric

constant of the quantum well. At Vg = −1V the value

of ν tB
22 = ν t

22 − ν tR
22 ≈ 77.4GHz. The concentration corre-

sponding to this value nB , calculated by formula (12), is

7 · 1020 m−3. Note that the nB value characterizes the

quality of the structure and, unlike n∗

R , is independent of

the gate voltage.

For the investigated two-subband system at Vg = −1.5V,

the results of solving the system of equations (2)−(4),
represented by the expressions (5)−(7), allow the electron

groups in the first and second subbands to be considered

independent, since for this gate voltage ν t
12 is significantly

smaller than ν t
11 and ν t

22. Expressions (6) and (7) give the

following values for the transport relaxation rates ν t
11 and ν t

22

for Vg = −1.5V: ν t
11 ≈ 25GHz and ν t

22 ≈ 2626GHz. The

obtained values of ν t
11 and ν t

22 are close to the values

of ν0 ≈ 28.6GHz and νr ≈ 2500GHz, respectively, as

they should be for two independent groups of charge

carriers under condition n1 ≫ n2. The magnitude of the

ν t
22/ν

t
11 ≈ 100.5 ratio is approximately the same as the

magnitude of the ratio (n1/n2)
1.5 ≈ 82.8. Thus, it can be

concluded that in the studied system at Vg = −1.5V, as well

as at Vg = −1V, the relaxation rates ν t
11 and ν t

22 are deter-

mined by scattering on two types of random potential —
remote alloying impurity and background impurity. The

transport relaxation rate of ν tB
11 at Vg = −1.5V is 12GHz.

In this case, ν tR
11 = ν tB

11 ≈ 13GHz.

The effective concentration of n∗

R at Vg = −1.5V for

ν tR
11 ≈ 13GHz is 9 · 1015 m−2. The resulting n∗

R at

Vg = −1.5V is about an order of magnitude larger than

the n∗

R at Vg = −1V. This means that when Vg = −1V the

value of n∗

R has not yet reached its maximum value, which

is practically independent of Vg . However, the dependence

of ns(Vg), which is close to linear in the range of Vg

from −1.2 to −2V, allows us to consider that in this

range of gate voltages n∗

R takes its maximum value, which

is 9 · 1015 m−2. The results show that in the interval Vg

from −1.2 to −2V the two-subband electron transport in

the investigated structure is determined by scattering on the

remote dopant impurity with the effective concentration of

charged donors n∗

R ≈ 9 · 1015m−2 and charged background

impurity with the concentration nB ≈ 7 · 1020 m−3.

4. Conclusion

Based on a single GaAs quantum well with symmetric

modulated superlattice doping, a high-mobility electronic

system with two filled subbands E1 and E2 of dimensional

quantization has been realized. The transition from two-

subband to single-subband transport has been studied in

a single-layer two-subband system by varying the magnitude

of the negative voltage Vg on the Schottky gate to such a

quantum well.

The dependence of the total electron concentra-

tion ns = n1 + n2 in a single GaAs-quantum well with

AlAs/GaAs superlattice barriers on the gate voltage ns (Vg)

is found to have two characteristic regions with different

values of the average slope. The observed behavior is

consistent with the results of [14] and is due to the fact

that changing the voltage Vg in the range from 0 to −1.2V

changes not only ns in the single GaAs quantum well, but

also the concentration of X - electrons in the upper barrier

to it, but in the range from −1.2 to −2V changes only ns .

It is also found that when Vg is varied from 0 to −1.2V,

the amplitude of the MIS oscillations decreases. This

behavior is explained by an increase in the effective

concentration of remote ionized donors n∗

R due to a decrease

in the concentration of X - electrons in the upper barrier [19]
and a corresponding increase in the quantum relaxation

rates in the subbands ν
qR
j j .

It is found that in the single-layer two-subband system,

as well as in the bilayer [11] system, the classical PMR

observed when a negative voltage is applied to the Schottky

gate first rises and then falls. This behavior is explained

by the depletion of the upper subband E2 and is consistent

with the theory of classical PMR, which accounts for the

role of intersubband scattering in two-subband magneto-

transport [9,11]. It is shown that the joint analysis of

classical PMR and MMP oscillation amplitude provides

an opportunity to estimate the concentration of charged

background impurities nB and, accordingly, to evaluate the

quality of high-mobility two-subband heterostructures.
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