Investigation of the Cr^{3+} impurity luminescence in proton-irradiated β -Ga₂O₃

 V.Yu. Davydov¹, A.N. Smirnov¹, I.A. Eliseyev¹, Yu.E. Kitaev¹, S.S. Sharofidinov¹, A.A. Lebedev¹, D.Yu. Panov², V.A. Spiridonov², D.A. Bauman², A.E. Romanov^{1,2}, V.V. Kozlovski³

¹ loffe Institute,

194021 St. Petersburg, Russia ² National Research University ITMO, 197101 St. Petersburg, Russia ³ Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia E-mail: valery.davydov@mail.ioffe.ru

Received May 19, 2023 Revised July 18, 2023 Accepted October 30, 2023

> Proton irradiation of β -Ga₂O₃ crystals has been established to lead to a significant increase in the amount of Cr³⁺ ions being active in luminescence. Using angle-resolved luminescence, the features of the spectra of Cr³⁺ ions were studied. The high sensitivity of photoluminescence spectra and the related selection rules to the local symmetry of Cr³⁺ ions in the β -Ga₂O₃ matrix has been found. The results obtained indicate the potential possibility of using β -Ga₂O₃ crystals as optical dosimeters of proton irradiation.

Keywords: β -Ga₂O₃, α -Ga₂O₃, proton irradiation, photoluminescence, symmetry analysis.

DOI: 10.61011/SC.2023.07.57425.5202C

Polytype β -Ga₂O₃ with a band gap width of ~ 4.9 eV possesses electronic and electrophysical properties that are promising for use in UV detectors, high-temperature gas sensors, nanophotonic switches, etc. e. There is quite a considerable amount of research devoted to studying the effects of radiation exposure on β -Ga₂O₃ oxide-based devices (see, for example, the review [1] and references therein). However, many questions related to the influence of radiation exposure on the nature of impurity states and structural defects in this material have not been sufficiently The aim of the present study was to obtain studied. new information on the possibility of using electron and proton irradiation for controlled change of the charge state of impurities in $hbox\beta$ -Ga₂O₃ in order to identify them by optical methods.

Initially undoped and chromium-doped bulk crystals β -Ga₂O₃, grown by the Czochralsky [2] method and epitaxial layers α -Ga₂O₃: Cr, grown on Al₂O₃ (0001) substrate by chloride-hydride epitaxy were studied. Unalloyed β -Ga₂O₃ crystals were irradiated with electrons at energies of 0. 9 MeV doses $2.0 \cdot 10^{16}$ and $5.0 \cdot 10^{16}$ cm⁻² at the electron accelerator RTE-1V and protons with energy 15 MeV dose $1.0 \cdot 10^{16} \text{ cm}^{-2}$ at the isochron cyclotron MGC-20 in SPbPU named after Peter the Great. The vibrational and electronic characteristics of crystals by micro-combination light scattering (μ -RS) and micro-photoluminescence (μ -PL) were measured using a LabRAM HREvo UV-VIS-NIR-Open spectrometer (Horiba, France). $\lambda = 532 \, \text{nm} \, (2.33 \, \text{eV})$ Nd: YAG-laser line was used to excite the μ -RS spectra. Angle-resolved μ -PL spectra over a temperature range

(80-300 K) were measured using a wide range of excitation radiation energies (2.33-5.82 eV).

 μ -QW studies confirmed that bulk unalloyed and Cr of samples Ga₂O₃ samples belong to the β - polytype, and epitaxial layers of Ga₂O₃:Cr/Al₂O₃ — to α -E polytype. No noticeable changes were found in the μ -RS spectra of samples irradiated with electrons or protons compared to the spectra of the original samples. Also, no noticeable changes were found in the μ -PL spectra of the electronirradiated samples. However, the μ -PL spectrum of the proton-irradiated sample β -Ga₂O₃ was significantly different from that of the non-irradiated sample.

The μ -PL spectra of unirradiated, proton-irradiated and chromium-doped samples β -Ga₂O₃, measured at room temperature and T = 80 K are shown in Figure 1. In all spectra, a broad band with a maximum at $\sim 3.25\,eV$ is observed in the UV band, the parameters of which depend weakly on the type of the investigated sample. This feature has been reported in works related to studies of the PL spectra of β -Ga₂O₃, crystals grown by different methods [3-5]. In most cases, this band is decomposed into three components: ultraviolet (UV), blue (BL), and green (GR). The UV component is generally independent of impurities and is attributed to the recombination of free electrons and autolocalized holes. The GR component was attributed to donor-acceptor pair transitions involving deep donors and deep acceptors. As for the GR component, the nature of its origin needs further research.

As can be seen in Figure 1, the spectrum of the protonirradiated β -Ga₂O₃, in addition to the band in the UV,

Figure 1. PL spectra of unirradiated, proton-irradiated and chromium-doped bulk samples β -Ga₂O₃, measured at room temperature and T = 80 K. Spectra in the UV band were obtained using excitation radiation of 4.66 eV, and in the visible band — using excitation radiation of 2.33 eV.

shows a broad band in the red range with a maximum around 1.75 eV (710 nm) and two narrow lines that have energies of 1.782 and 1.801 eV at T = 80 K. This spectrum has a small intensity, but it is completely similar to the μ -PL spectrum of the sample β -Ga₂O₃:Cr, in which the narrow features recorded in the spectrum are attributed ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ to internal transitions Cr³⁺. A broad band with a maximum around 1.75 eV (710 nm), which has significant intensity in the PL spectrum of the sample β -Ga₂O₃:Cr at T = 300 K, is attributed ${}^{4}T_{2g} \rightarrow {}^{4}A_{2g}$ to the internal Cr³⁺ transitions (with the lower indices g omitted in most works) [6–8].

With decreasing temperature, the population of ${}^{4}T_{2g}$ states decreases and the broad band at T = 80 K is practically not observed. In literature, the narrow singularities have been designated as R_1 (1.78 eV) and $R_2(1.80 \text{ eV})$ lines, the temperature behavior of which will be discussed below. Thus, it can be concluded that the proton irradiation of β -Ga₂O₃ results in a change in the charge state of the background impurity Cr²⁺, which is inactive in PL, leading to a significant increase in the number of Cr³⁺ ions active in PL. To the best of our knowledge, there is only one work in the literature where the effect of a strong increase in red PL in samples β -Ga₂O₃: Cr under proton irradiation [9] was found. However, in contrast to our studies, the samples

already doped with Cr were studied in this work, and the PL spectra were recorded only at T = 300 K.

In articles [10,11], the classification of states of the ion Cr^{3+} in the β -Ga₂O₃ is given based on the irreducible representations of the local cubic group O_h . Thus the symmetry of states taking into account the spin-orbit interaction (on the basis of irreducible representations of double groups) is absent at all. In result, correct selection rules for PL spectra cannot be obtained. To determine the selection rules in the PL spectra of the ion Cr^{3+} in the β -Ga₂O₃, the crystal structure (i.e., its spatial symmetry group and the placement of atoms at symmetry positions) and the local symmetry group of the ion Cr³⁺ were set in the present work. The β -phase of crystal Ga₂O₃ that we study belongs to the monoclinic system and its symmetry is described by the space group $C12/m1 = C_{2h}^3$ (No 12) with the symmetry axis 2nd order directed along the translation vector **b** [010] (axis y). The translation vectors **a** (axis x) and **c** (axis z) are directed along the crystallographic directions [100] and [001], respectively. In the β -phase there are two non-equivalent orbits of 4 Ga 4*i* (x O z), atoms having the same local symmetry described by the point group $C_s(m)$. One of the orbitals of the Ga atom has an octahedral environment of oxygen atoms, and the other — tetrahedral. The impurity ions Cr^{3+} occupy an orbital with an octahedral environment [12]. The results of our symmetry analysis are presented in Figure 2, which shows the evolution of the electronic states from the free ion Cr^{3+} (through the intermediate cubic local symmetry O_h) to its position with local symmetry C_s in the β -Ga₂O₃. The same figure shows the PL polarizations of the Cr³⁺ ion allowed by the selection rules both without and with the spin-orbit interaction taken into account. We performed a similar analysis for α -Ga₂O₃, in which the local symmetry of the Cr^{3+} ion is described by the group C_3 .

Figure 3, *a* shows the low-temperature PL spectra of the proton-irradiated β -Ga₂O₃ and epitaxial layer α -Ga₂O₃:Cr in the band of manifestation R_1 and R_2 lines. Since the epitaxial layer α -Ga₂O₃:Cr was grown on an Al₂O₃ substrate, the PL spectrum of the sample also clearly shows lines related to the substrate spectrum. They are labelled $R_1^{\text{Sp}}(1.788 \text{ eV})$ and $R_2^{\text{Sp}}(1.792 \text{ eV})$; the energy distance between them is 3.65 meV ($\sim 30 \text{ cm}^{-1}$). Undoubtedly, these lines are associated with internal $({}^2E_g \rightarrow {}^4A_{2g})$ transitions of Cr³⁺, impurity of which is mostly contained

Cr³⁺ site symmetry

Free ion

Figure 2. Evolution of the electronic states of the Cr^{3+} ion in the β -Ga₂O₃ matrix. The same figure shows the PL polarizations of the ion Cr^{3+} allowed by the selection rules.

Figure 3. Spectra of μ -PL at T = 80 and 300 K for α -Ga₂O₃: Cr/Al₂O₃ and proton-irradiated β -Ga₂O₃ in the manifestation band R_1 and R_2 lines. The spectra were obtained using excitation radiation of 2.33 eV. (The colored version of the figure is available on-line).

in sapphire substrates. In the spectrum of the sample α -Ga₂O₃: Cr/Al₂O₃ another doublet of lines $R_1^{\alpha}(1.781 \text{ eV})$ and R_2^{α} (1.785 eV) is registered, the energy distance between which is 3.65 meV($\sim 30 \text{ cm}^{-1}$). With high probability, these are lines also associated with internal $({}^2E_g \rightarrow {}^4A_{2g})$ transitions in Cr³⁺, but already in the matrix α -Ga₂O₃.

The PL spectrum of the proton-irradiated sample β -Ga₂O₃ is also represented by two lines labelled R_1^{β} (1.782 eV) and R_2^{β} (1.801 eV), but the energy distance between them is 18.5 meV (~ 149 cm^{-1}). It is known that the energy of internal transitions in transition metals, such as Cr^{3+} , depends on the local crystal field formed by the atoms of the nearest neighborhood. In literature there are statements that the increase in the energy distance between the lines $R_{1,2} \beta$ -Ga₂O₃ compared to their distance in Al₂O₃ is the result of a change in the value of the local crystal field. However, the work [13] argues that for Cr^{3+} only the transition energies of ${}^{4}A_{2g} \rightarrow {}^{4}T_{1g}$ and ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$ depend significantly on the magnitude of the local crystal field, while the transition energy of ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ is independent of this parameter. Thus, the explanations proposed in the literature for the increased energy distance between lines $R_{1,2}$ in β -Ga₂O₃ do not seem unambiguous and need further verification.

We also note significant differences in the $R_{1,2}$ line widths recorded in the PL spectra of α -Ga₂O₃:Cr and proton-irradiated β -Ga₂O₃. The narrow lines R_1 and R_2 (their FWHM ~ 0.6 - 0.7 meV at T = 80 K) in Al₂O₃ and α -Ga₂O₃:Cr are typical of PL due to internal transitions in ions. However, for the proton-irradiated β -Ga₂O₃ at T = 80 K, only the line R_1 has a small width (FWHM_{*R*1} \sim 0.8 meV), while the FWHM_{*R*2} \sim 2.7 meV. It should also be noted that the widths of the lines R_1 and R_2 in the spectrum of proton-irradiated β -Ga₂O₃, in contrast to their widths in the spectrum of α -Ga₂O₃:Cr, increase very strongly with increasing temperature. Another difference is the difference in the temperature dependence of the line intensities I_{R1} and I_{R2} in α -Ga₂O₃:Cr and proton-irradiated β -Ga₂O₃. From the spectra shown in Figure 3, a and b, it can be seen that for Al₂O₃ and α -Ga₂O₃:Cr the intensity ratio $k = I_{R1}/I_{R2} > 1$ at both T = 80 K and room temperature. This is consistent with the transition pattern of ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$, where the R_{2} line arises from a transition from an upper, less populated level E_g , to a lower level A_{2g} . However, for the protonirradiated sample β -Ga₂O₃ the condition k > 1 occurs only at T = 80 K, while for T = 300 K the parameter k < 1. Moreover, as follows from our measurements of the angular dependence of the k parameter for the (100) plane of the proton-irradiated sample β -Ga₂O₃, its magnitude at the same temperature depends on the relationship between the crystallographic directions and the polarization vector of the linearly polarized PL.

Summarizing the results obtained, we should note the high sensitivity of PL spectra and selection rules for them to the local symmetry of Cr^{3+} ions in the β -Ga₂O₃ matrix. It is found that proton irradiation of β -Ga₂O₃ results in a change in the charge state of the background impurity Cr^{2+} , which is inactive in PL, leading to a significant increase in the number of ions Cr^{3+} active in PL. The results also indicate that the behavior of the R_1 and R_2 lines observed in the β -Ga₂O₃, spectra is not fully understood, which requires further investigations into the nature of their origin.

Funding

This research was partially supported by the Russian Science Foundation (Project No. 22-12-00003) and the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 75-15-2021-1349).

Conflict of interest

The authors declare that they have no conflict of interest.

References

- N. Manikanthababu, H. Sheoran, P. Siddham, R. Singh. Crystals, 12, 1009 (2022). DOI: 10.3390/cryst12071009
- [2] D.A. Bauman, D.I. Panov, D.A. Zakgeim, V.A. Spiridonov, A.V. Kremleva, A.A. Petrenko, P.N. Brunkov, N.D. Prasolov, A.V. Nashchekin, A.M. Smirnov, M.A. Odnoblyudov, V.E. Bougrov, A.E. Romanov. Phys. Status Solidi A, **218**, 2100335 (2021). DOI: 10.1002/pssa.202100335

- [3] L. Dong, R. Jia, B. Xin, Y. Zhang, J. Vac. Sci. Technol. A, 34, 060602 (2016). DOI: 10.1116/1.4963376
- [4] T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, M. Higashiwaki. J. Appl. Phys., **124**, 075103 (2018). DOI: 10.1063/1.5030612
- [5] T.T. Huynh, L.L.C. Lem, A. Kuramata, M.R. Phillips, C. Ton-That. Phys. Rev. Mater., 2, 105203 (2018).
 DOI: 10.1103/PhysRevMaterials.2.105203
- [6] Y. Tokuda, S. Adachi. J. Appl. Phys., 112, 063522 (2012). Doi.org/10.1063/1.4754517
- [7] A. Luchechko, V. Vasyltsiv, Ya. Zhydachevskyy, M. Kushlyk, S. Ubizskii, A. Suchocki. J. Phys. D: Appl. Phys., 53, 354001 (2020). DOI: 10.1088/1361-6463/ab8c7d
- [8] G. Naresh-Kumar, H. MacIntyre, S. Subashchandran, P.R. Edwards, R.W. Martin, K. Daivasigamani, K. Sasaki, A. Kuramata. Phys. Status Solidi B, 258, 2000465 (2021). DOI: 10.1002/pssb.202000465
- [9] M. Peres, D.M. Esteves, B.M.S. Teixeira, J. Zanoni, L.C. Alves, E. Alves, L.F. Santos, X. Biquard, Z. Jia, W. Mu, J.Rodrigues, N.A. Sobolev, M.R. Correia, T. Monteiro, N. Ben Sedrine, K. Lorenz. Appl. Phys. Lett., **120**, 261904 (2022). DOI: 10.1063/5.0089541
- [10] A. Fiedler, Z. Galazka, K. Irmscher. J. Appl. Phys., 126, 213104 (2019). DOI: 10.1063/1.5125774
- [11] J.E. Stehr, M. Jansson, D.M. Hofmann, J. Kim, S.J. Pearton, W.M. Chen, I.A. Buyanova. Appl. Phys. Lett., **119**, 052101 (2021). DOI: 10.1063/5.0060628
- [12] H.H. Tippins. Phys. Rev., 137, A865 (1965).DOI: 10.1103/PhysRev.137.A865
- [13] R. Sun, Y.K. Ooi, P.T. Dickens, K.G. Lynn, M.A. Scarpulla.
 Appl. Phys. Lett., **117**, 052101 (2020).
 DOI: 10.1063/5.0012967

Translated by Ego Translating

The publication of papers Conference will be continued in No. 08/23