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Magnetic minibands in superlattices based on the semi-Dirac crystals
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Semi-Dirac crystals with a weak periodic modulation of the energy gap has been considered. The formation of

minibands in such crystals has been studied when the latter are placed in a quantizing magnetic field. The width of

the formed magnetic minibands has been shown to depend not only on the magnetic field intensity, but also on the

band gap of the initial sample in contrast to gap graphene. The effect of this feature on the magnetoconductivity of

studied material has been investigated.
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Recently, in the field of physics of low-dimensional

structures, researchers have paid special attention to the

study of electronic properties of 2D crystals belonging to the

group of so-called Dirac [1,2] materials. Transport effects

in such materials are more robust to temperature decay

compared to 2D electron gas with a standard parabolic

spectrum [3,4]. An example of such effects are oscillations

of the conductivity of a crystal with a superlattice (SL) in

a magnetic field when the strength of the latter changes

(Weiss oscillations). In [3,4], Weiss oscillations have been

studied for ideal graphene, in which the SL is formed

due to an electrostatic potential periodic along the spatial

axis. However, such a potential due to the semi-metallic

type of graphene conductivity will lead to redistribution

of free charge carriers across the graphene surface and,

consequently, to its distortion. This circumstance creates

the necessity to search for alternative ways to create in

Dirac crystals additional SL potentials [5–7]. One of

the ways is to form a spatially modulated energy gap in

the zone structure of graphene [5]. In [6,7], so-called

semi-Dirac crystals have been proposed. Such materials

have been obtained relatively recently and represent 2D

structures whose effective mass tensor of charge carriers

is significantly anisotropic. In one direction, the electrons

have a relativistic-type dispersion, and in the transverse

direction — a quadratic dispersion [8,9]. An example of

such a material is phosphorene, whose conductivity has a

strong directional dependence [8].

Let us associate the xy plane with the semi-Dirac crystal

and place it in a uniform magnetic field whose intensity

vector H is perpendicular to xy . Let us write the model

Hamiltonian for charge carriers with magnetic field in the

form [10]

ĤSD = υFpx σ̂x +

(

1

2m

(

py +
~x
λ2

)2

+ 1

)

σ̂y , (1)

where σ̂x ,y,z — Pauli matrices, m — effective mass of the

carrier in the direction Oy , 1 — half-width of the energy

slit (1 > 0), λ =
√

c~/eH . The energy eigenvalue equation

ĤSDψn = εnψn is solved under the condition that the terms

containing the small dimensionless parameters ~
2/m1λ2

and ~/mυFλ ≪ 1 as multipliers can be neglected. This is

justified if the magnetic field strengths are such that the

period of the SLd is not much larger than the minimum

value of the cyclotron radius (λmin/d > 0.1). In addition,

at the standard value of the SL period d = 10−5 cm,

the parameters m and 1 should satisfy the inequalities

m ≫ 10−29 g, 1 ≫ 5meV, which is quite consistent with

the real [8,11] materials. In result, the problem can be

reduced to the harmonic oscillator problem and found for

energy:

εn =

√

12 +
~2υ2

F

32
(2n + 1) −

(

~2υ2
F

2134

)2

. (2)

The following notations are introduced here: 3 = λ/κ,

κ4 = 1/mυ2
F . The corresponding eigenspinors have the form

ψn,py =
1

√
23

(

−i8n

(

x − x+

3

)

8n

(

x − x−

3

))T

, (3)

where 8n(ξ) — harmonic oscillator functions, x± —
cyclotron centers equal to

x± = −
pyλ

2

~
∓

~υF

21
. (4)

From (2) and (3) it can be seen that, in contrast to

graphene [3,4], the cyclotron radius for the semi-Dirac

electron, equal to 3, depends on the parameter 1, and the

position of its Larmor center is determined by the pseudo

spin.
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The dependence of the magnetic conductivity of a semi-Dirac crystal on the inverse magnetic field strength:a — calculation by formula (7);
b — comparison of the graph (solid line) plotted by formula (7) and the graph (dashed line) plotted by approximate formula (8).
d = 10−5 cm, n0 = 2 · 1011 cm−2, T = 4K, H0 corresponds to a magnetic induction of 0.06 Tesla.

We now consider that the energy slit has a spatial periodic

modulation:

1g = 1− 10 cos(2πx/d),

and 10 ≪ 1. As is known, the SL potential leads to the

removal of degeneracy by py for Landau levels whose

broadening forms magnetic mini-zones. Let us substitute

1 → 1g in the Hamiltonian (1). The calculations performed

in the first strand of perturbation theory lead to the

following expression for the law of dispersion in the mini-

zone:

εn,py = εn − 10gn cos

(

2πpyλ
2

~d

)

. (5)

Here εn — the n-energy of the Landau go level in the

absence of slit modulation, equal to (2),

gn = e−
α2+β2

4 Ln

(

α2 + β2

2

)

, (6)

Ln(ξ) — Laguerre polynomials, α = 2π3/d, β = ~υF/13.

As can be seen from formula (6), the parameter 1 is

contained in the function argument gn. Consequently,

for SLs based on a semi-Dirac crystal (in contrast to the

Dirac [3,4]), the width of the magnetic mini-zone, equal to

210gn, depends, among other things, on the width of the

band gap 21.

In the frames of the constant relaxation time approxima-

tion τ , the magnetic conductivity of the semi-Dirac crystal

in the direction Oy is equal to

σyy =
πσ0 mυ2

F λ
2

4kTd2

∞
∑

n=0

g2
n ch

−2

(

εn − εF

2kT

)

, (7)

where σ0 = e2τ 12
0/~

2mυ2
F, εF — Fermi energy, T —

temperature. Figure, a shows a plot of the dependence of

conductivity (7) on the inverse magnetic field strength plot-

ted for surface concentration n0 = 2 · 1011 cm−2, 1 = 0.1

eV and T = 4K. In the case of low temperatures (kT ≪ εF)
and weak magnetic fields such that a large number of

Landau levels (n ≪ 1) appear below the Fermi level, the

following formula is valid:

σyy =
σ0 mυ2

F

ε0κγw

λ3

d3

(

1 + QT

(

2πkT
ε0κ
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)
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2εF

ε0κ
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))

,

(8)
where

ε0 = ~υF/d, w =
√

α2 + β2,

γ =
√

1− (1 + β2)12/ε2F, QT (ξ) = ξ sh−1 ξ.

A comparison of the Weiss oscillations constructed by

the formulas (7) and (8) is shown in the figure, b, from

which we can see the asymptotic convergence of the plots

with decreasing magnetic field strength. According (8),
for semidirac crystals, the periodicity of the conductivity

oscillations in terms of the magnitude H−1 is preserved

only under the condition β ≪ α. In this case, the Weiss

oscillation period is equal to δ(H−1) = ed11/2/2cεFγm1/2.

In conclusion, we will point out the difference in the

structures of the eigenstates of the electrons of the semidirac

crystal and the slit modification of graphene. As can be

seen from (3) and (4), the magnitude of the cyclotron

radius for the semi-Dirac electron depends on the half-width

of the band gap 1, and its Larmor center is determined

by the pseudospin. As a consequence, the width of the

magnetic mini-zone, according to (6), also depends on

the parameter 1. Such a feature is absent in graphene

SL [3,4]. This leads to a more complex dependence of the

magnetic mini-zone width on the magnetic field strength,

which in turn is reflected in the character of the periodicity

of the Weiss oscillations in the inverse magnetic field. The

latter can be considered periodic by inverse intensity H−1

only for relatively weak fields, whose band is given by the

inequality β ≪ α. The period of the Weiss oscillations at

this δ(H−1) ∝
√
1/m. This fact makes it possible to use the

Weiss oscillations as a basis for the experimental method

of measuring the parameters of the zone structure of semi–
Dirac crystals.
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