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Multiphoton Franz–Keldysh effect in an armchair graphene nanoribbon
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We investigate the electron state in an armchair graphene nanoribbon exposed to the time-periodic strong electric

field of intense light wave and constant in time weak electric field both polarized to the ribbon axis. The Dirac

approach is taken for the investigation of the electron transitions between the size quantized electron and hole

subbands. It is shown that the probability of an intersubband multiphoton transition, calculated in the resonant

approximation, oscillates in time with the Rabi frequency, which in turn depends on the ribbon parameters and

strong periodic electric field magnitude. The oscillations’ magnitude is modified significantly by the weak electric

field both, below and above the frequency threshold (Franz–Keldysh effect).
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The considered problem goes back to the middle of

the last century when Schwinger predicted the decay of

the quantum-electrodynamic (QED) vacuum with the birth

of an electron-positron pair in a constant electric field

F ≥ F (v)
C , exceeding the critical vacuum breakdown field

F (v)
C ∼ 1018 V/m. Some approximation to F (v)

C values has

already been made in modern times by the use of an

alternating electric field [1].
At present, the graphene layer ribbon, which was recently

obtained experimentally, plays an important role as a model

for studying in vitro the problem of the interaction of

vacuum QED with the electromagnetic field. The basis of

such model is the relativistic dispersion law common for the

tape and vacuum. Along with this, for a graphene ribbon,

for example, with a width of d = 2 nm, the critical constant

field turns out to be only F (g)
c = 2 · 108 V/m. We further

study intersubband Rabi oscillations in a graphene crescent

ribbon in an electric field F(t) = F0 cosωt + F1, which is a

superposition of a strong electric field of a light wave with

amplitude F0 and frequency ω and a weak constant field

F1 ≪ F0. The focus is on the effect of the constant field F1

on the frequency spectrum of Rabi oscillations (Franz–
Keldysh effect) [2]. Since its discovery, this effect has

been intensively studied in bulk semiconductors, including

those involving excitons, in polymers and perovskites, and

subsequently in low-dimensional semiconductor structures.

A large number of works are devoted to the Franz–Keldysh
effect in quantum wells, filaments, dots and superlattices, in

graphene layer and ribbon (see works [3,4]). The combined

effect in the presence of DC and AC electric field in

graphene ribbon has not been presented in the literature

to date. Since the problem of the electronic states in a

graphene crescent ribbon in a time-varying strong electric

field is sufficiently detailed in the work [5], further, we will

follow only the general procedure for its solution. A tape

of width d is placed in the plane x − y , and the electric

field is assumed to be polarized along the y -axis of the

tape. The energy spectrum of a free electron in a graphene

ribbon with semiconductor dispersion law is a sequence of

one-dimensional subbands [5]:

±EN(k) =
(

ε2N + ~
2v2Fk2

)1/2
;
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∣
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∣
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∣

∣
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π~vF

d
; N = 0, ±1, ±2, · · · , (1)

where εN and ~k — the energy of dimensional quantized

transverse x -motion of the electron and its longitudinal

momentum, vF = 106 m/c — the Fermi velocity of the

electron in graphene. In the Dirac model, the wave function

of the longitudinal motion of an electron in A and B

sublattices of graphene
⇀

u(uA(y, t), uB(y, t)) in an electric

field F(t) satisfies the equation [5]

[(

i~
∂

∂t
− eF(t)y

)

I + εNσx − i~vF
∂

∂y
σy

]

⇀

u(y, t) = 0, (2)

in which I and
⇀

σ — the unit matrix and the Pauli

matrices. Let us proceed to the k representation with

the function
⇀

η (k, t) = [η1(k, t), η2(k, t)] together with the

Foldy-Wutheisen transformation using the unitary operator

U+, whose explicit form is given in [5]:

⇀

u(y, t) =
1√
2π

+∞
∫

−∞

eiq(k,t)yU+(k, t)
⇀

η (k, t)dk, (3)

where

η1,2(k, t) = exp

{

±2i

t
∫

0

�N(kτ )dτ

}

g1,2(k, t),
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�2
N(k, t) = ω2

N + v2Fq2(k, t);

q(k, t) =
e
~

t
∫

0

F(τ )dτ + k ; ωN =
εN

~
.

Substituting the function
⇀

u(y, t) (3) into equation (2), we
obtain a system of equations for the coefficients g1,2(k, t):

i ġ1,2(k, t) = −RN(k, t) exp

{

± 2i

t
∫

0

�N(k, τ )dτ

}

g2,1(k, t);

RN(k, t)=
ωNvF

2~�2
N

eF(t). (4)

Further consideration is convenient using the coordinate

function

⇀

ψ(y, t) =
1√
2π

+∞
∫

−∞

eiq(k,t)y ⇀

η (k, t)dk. (5)

If in equations (4), we neglect the action of the intersubband

transition operator RN , then the solutions of these equa-

tions a1,2(k), together with formulas (3) and (5), define

the intraband wave function
⇀

ψ(0)[ψ
(0)
1 , ψ

(0)
2 ]. Due to the

periodicity of the electric field,

F(t) = F
(

t +
2π

ω

)

the intraband function must satisfy the condition

⇀

ψ(0)

(

y, t +
2π

ω

)

= exp

{

−iεN
2π

ω

}

⇀

ψ(0)(y, t)

with quasi-energy εN . This condition leads to coefficients

a1,2(k) = C exp

{

− i
eF1

[

−εNk ±
(

1Nk +
~
2

2mN

k3

3

)]}

,

C =

[

~

2πeF1

√

2(|εN | − 1N

m

]1/4

, (6)

where

~
2

2mN
=

sNE
(
√

1− s2N

)

~
2v2F

πεN
; 1N =

2εNE
(
√

1− s2N

)

πsN
;

s2N = (1− γ−2
N )−1; γN =

ωεN

evFF0

.

In this formula, mN(γN) and 1N(γN) — the effective mass

and extremum of the N-th subband taking into account the

field effect F0, γN — the Keldysh parameter [1], C — the

normalization factor determined by the limiting transition of

the results obtained hereafter to the case F1 = 0 [5].
The weakness of the constant electric field F1 ≪ F0 allows

us to neglect its influence on the frequencies �N and RN

and to isolate the quasi-energy of the transition in the

exponential factor of equation (4)

ε̃N(k) =
~ω

π

+ π
ω

∫

− π
ω

�N(k, t)dt

exp

{

2i

t
∫

0

�N(k, τ )dτ

}

= exp

{

i
~
ε̃N(k)t

}

SN(k, t);

SN(k, t) = SN(k, t + T );

SN(k, t)RN(k, t) =

+∞
∑

l=−∞

e−ilωtAl(k, ω);

Al(k, ω) =
ω

2π

−π
ω

∫

−π
ω

SN(k, t)RN(k, t)eilωt dt.

Then, in solving the system of equations (4), following the

results of [5], the resonance approximation

ωl ≪ ω
(

ωl =
ε̃N

~
− lω, l = 1, 2, . . .

)

,

with initial conditions g1,2(k, 0) = a1,2(k), in which the

functions a1(k) ≪ a2(k) are defined by equations (6)
for the initial state in the valence band (εN < 0), and

ḡ1,2(k, t) — the period-averaged 2π
ω

values of the functions

g1,2(k, t) near the value t . As a result, we obtain

ḡ1(k, t) = e
iωl t
2

×
[

i

(

Ala2(k) − ωl

2
a1(k)

)

sinŴlt
Ŵl

+ a1 cosŴlt

]

;

Ŵ2l =

(

ωl

2

)2

+ A2
l ;

ḡ2(k, t) = e−
iωl t
2

×
[

i

(

A∗
l a1(k) +

ωl

2
a2(k)

)

sinŴlt
Ŵl

+ a2 cosŴlt

]

(7)

Al(ω, k) =
ω

2π

+ π
ω

∫

− π
ω

exp

{

−iεN(k)
t
~

+ 2i

t
∫

0

�N(kτ )dτ

}

× RN(k, t)eilωt dt.

In further we will use the relation ε̃N = 2εN , following

from the explicit form of the quasi-energy transition

ε̃N [5] and from the formula (6) for the weak electric

field F1. The transition coefficient from the valence subband

(εN = −|εN | < 0) to the conduction subband (εN > 0) can

be calculated as

c(εN, t) =

+∞
∫

−∞

~ψεN (y, t)~ψ(0)∗
εN (y, t)dy, (8)
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where ~ψεN — two-subband and ~ψ
(0)
εN — intra-subband

functions defined by formula (5), in which the coeffi-

cients η1,2(k, t) (3) should be taken with the solutions

ḡ1,2(k, t) (7) and a1,2(k) (6) (εN > 0, a1 ≫ a2) for the

functions ~ψεN and ~ψ
(0)∗
εN , respectively. Leaving in formula (8)

only the product of a2a∗
1 ”

of large“ coefficients a2 in func-

tion ~ψεN and a∗
1 in function ~ψ

(0)∗
εN , after simple calculations

we obtain

c(εN , t) = ie
iωlt
2 Al(ω, k)2

√
π

× sinŴlt
Ŵl

C2

(

2µNGN

~2

)1/2

Ai

(−βN

GN

)

, (9)

where

βN = l~ω − 21N + ~ωl, GN =

(

~
2e2F2

1

2µN

)1/3

,

µN = mN
2

— the reduced mass of the zones, Ai
(

−βN

GN

)

—
the Airy function. In weak electric field we can consider

Al(ω, k) ≈ Al(ω, 0) [5], where

Al(ω, 0) =
ω

3
exp

{

− l
sN

[

K(sN) − E(sN)
]

}

sin2
lπ
2
,

l = 1, 3, 5 . . . , (10)

and K(sN) and E(sN) — complete elliptic integrals of the

first and second kind.

Under the condition of exact resonance ωl = 0,

Ŵl = Al, βN = β0N = l~ω − 21N , the differential probabil-

ity of the resolved odd-photon intersubband N-transition

wN l(t) = |c(εN , t)|2 takes the form of Rabi oscillations

wNl(ω, F1; t) = PNl(ω, F1) sin
2(|Al(ω, 0)|t) (11)

at frequency

�R
Nl(ω, F0) = 2|Al(ω, 0)|

and amplitude

PNl(ω, F1) = 2

(

β0N

GN

)1/2

Ai2
(

−β0N

GN

)

.

The Rabi frequency �R
Nl(ω, F0) increases with increasing

electric field amplitude F0 and ribbon width d [5]. The

constant electric field F1 significantly affects the oscillation

amplitude of PNl(ω, F1). Above the transition edge

β0N > 0, the amplitude becomes an oscillating function of

displacement β0N with period 2.78GN , while below the

edge β0N < 0, the transition probability ∼ PNl decreases

as exp
{

− 4
3

(

β0N
GN

)3/2}

. In the absence of a constant

field F1, the amplitude of PNl(ω, 0) above and below

the edge of β0N = 0 becomes equal to PNl = 1 and

PNl = 0 [5]. In the field F1, the effective edge of the

transition shifts to the long-wavelength side by an amount of

1β
(−)
0N = −1.60GN , and the main oscillation peak shifts to

the short-wavelength band by a distance of 1β
(+)
0N = 1.02GN .

In the multiphoton limit γN ≫ 1 energy GN ∼ (F2
1 d)1/3.

Estimates made for the main intersubband transition N = 0

in a ribbon of width d = 2 nm under the influence of

micrometre band radiation with field F0 = 360 kV/cm and

frequency ω = 3.3 · 1014 c−1 (λ = 5.7µm, l = 3, γ0 = 3),
give for the Rabi frequency �R

Nl = 2.54 · 1012 c−1. In field

F1 = 40 kV/cm characteristic energy GN = 12.5MeV. In [6]
work, the relaxation time for electron scattering on τph
phonons in a graphene ribbon over a wide range of widths

and at different temperatures was calculated. The case

discussed above corresponds at temperature T = 30K to

time τph = 1.03 · 10−11 s. The parameter determining the

influence of the phonon mechanism of suppression of

Rabi oscillations is found to be equal to �R
Nlτph ≈ 26 and

indicates that Rabi oscillations in the crescent ribbon of

graphene at relatively low temperatures are quite observable

under laboratory conditions. Of course, in addition to scat-

tering on phonons, one should also keep in mind scattering

on defects, the main ones being charged impurities, chaotic

voltages, and resonant scatterers. Their influence can be

effectively reduced both by lowering the temperature and

by rapidly advancing technology to fabricate graphene-based

structures [7].
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