09

Генерация терагерцевых волн в резонаторе, содержащем асимметричный гиперболический метаматериал

© О.Н. Козина,¹ Л.А. Мельников²

¹Саратовский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, 410019 Саратов, Россия
 ²Саратовский государственный технический университет им. Ю.А. Гагарина, 410054 Саратов, Россия
 e-mail: kozinaolga@yandex.ru

Поступило в Редакцию 22 января 2024 г. В окончательной редакции 22 января 2024 г. Принято к публикации 22 января 2024 г.

> Теоретически исследованы распространение и генерация терагерцевого излучения в резонаторе, содержащем асимметричный гиперболический метаматериал, представляеющий собой наноразмерную структуру, составленную из периодически упорядоченных слоев полупроводника и инвертированного графена. Расчет характеристик излучения в резонаторе проведен на основании метода матриц передачи. Преобразование электромагнитного поля в гиперболическом метаматериале описан посредством матрицы Берремана. Периодический гиперболический метаматериал рассмотрен как гомогенизированная среда с эффективными параметрами, в связи с малостью его периода. Гомогенизация проведена посредством метода Максвелла–Гарнетта. Определены условия для эффективной генерации терагерцевого (THz) излучения и диапазон частот, в котором прогнозируется THz-генерация. Определен диапазон значений угла наклона оптической оси гиперболического метаматериала, для которых выполняется условие генерации и влияние вариаций значений данного угла на изменение частоты генерации. Проведена оценка допустимых значений периода асимметричного гиперболического метаматериала. Исследован эффект насыщения усиления графена и прогнозируемая мощность THz-излучения.

Ключевые слова: графен, наноразмерная структура, частота генерации, насыщение усиления.

DOI: 10.61011/JTF.2024.03.57386.14-24

Введение

Приборы, позволяющие работать в терагерцевых (THz) частотах, перспективны для широкого спектра приложений — от систем безопасности и неинвазивного лечения до спектроскопии во временной области [1,2]. Несмотря на успехи исследований в данной области частот, проблема создания компактного и эффективного источника когерентного ТНz-излучения (ТНz-лазер) не решена. С целью создания устройств, позволяющих генерировать и обрабатывать излучение в ТНz-диапазоне частот, исследуются различные типы композитных структур и их элементов, в том числе метаматериалы [2-4]. Известно, что метаматериалы являются искусственно созданными периодическими структурами, которые обладают определенными, заранее заданными, свойствами в зависимости от составляющих их материалов и конфигурации [3-5]. Среди большого числа метаматериалов, исследуемых с целью создания оптического и THz-излучения, наиболее перспективным представляется гиперболический метаматериал (ГММ), который является частным случаем так называемых гиперболических сред (ΓC) [6–7].

Гиперболическая среда является анизотропной средой и получила свое название вследствие незамкнутого типа дисперсионных зависимостей в пространстве волновых векторов, имеющего в сечении вид гиперболы, в отличие от эллипса для обычной среды [6]. Вдоль асимптот этих гипербол наблюдается распространение большого числа медленных волн с большими значениями компонент волнового вектора, что означает большую плотность фотонных состояний внутри ГС и ведет к усилению взаимодействия излучения с веществом [5–8]. Указанное свойство позволяет рассматривать среды и метаматериалы, обладающие гиперболическим типом дисперсии, как уникальные объекты и мотивирует исследования по их применению для разработки фотонных устройств следующего поколения. Известно лишь небольшое число материалов, обладающих гиперболическим типом дисперсии, например, плазма в сильном электромагнитном поле [6], графит или нитрид бора при определенных, трудно достижимых, условиях [9]. Таким образом, конструирование и исследование метаматериалов, поддерживающих гиперболический тип дисперсии, является актуальной задачей.

Перспективным типом гиперболического метаматериала для усиления оптического и THz-излучения является многослойная планарная структура, состоящая из периодически упорядоченных слоев графена в матрицах различного типа [8]. Мы исследуем ГММ, составленный из нанометровых слоев полупроводника и инвертированного графена [5]. Использование графена для создания ГММ основано на его способности поддерживать распространение плазмонов [10,11]. В данном случае графен используется как составляющий компонент метаматериала.

В настоящей работе рассматривается особый тип ГММ — асимметричный гиперболический метаматериал (АГММ) [5,12,13]. Асимметрия проявляется как различие в свойствах прямой и обратной волн, при этом поперечная компонента волнового вектора остается фиксированной. Физически асимметрия реализована посредством наклона слоев графена относительно внешних границ ГС [5]. При падении на АГММ плоской волны с минимальным ее отражением от внешних границ образца внутри структуры создается большая плотность фотонных состояний, которая приводит к высокой скорости спонтанного излучения. Важно, что за счет указанной асимметрии фотоны с высокой плотностью состояний, возбуждаемые в АГММ, могут иметь идеальную связь с фотонами в свободном пространстве, что позволяет создать условия для вывода оптического излучения, накопленного в гиперболической среде, во внешнее пространство. Такой АГММ обладает значительным усилением в THz-диапазоне частот [5]. Теоретически показана возможность генерации THz-волны в одномодовом режиме в резонаторе, содержащем данный АГММ [13].

В настоящей работе исследуются характеристики распространения THz-излучения в резонаторе, содержащем АГММ. Определяется диапазон частот, в котором поддерживаются условия для эффективной генерации THz-излучения, а также влияние геометрических параметров АГММ на прогнозируемую частоту ТНz-генерации. С этой целью в настоящей работе исследуются собственные значения матрицы передачи полного обхода резонатора для прямой и обратной волн. Мнимая часть собственных значений соответствует ненасыщенному усилению. Действительная часть определяет частоту лазерных осцилляций. Исследуется эффект насыщения усиления в графене и оценивается прогнозируемая мощность ТНz-излучения. Для расчета выходной мощности лазера определяются интенсивность насыщения лазерного перехода, ненасыщенный коэффициент усиления, потери и пропускание выходного зеркала. Для оценки интенсивности насыщения исследована зависимость химического потенциала графена от напряженности поперечного к листам графена электрического поля. Изменение химического потенциала (энергии Ферми) влечет за собой изменение усиления за счет межзонной инверсии населенностей. Представлена численная оценка интенсивности насыщения графена и ожидаемого значения мощности ТНz-излучения.

Важным аспектом в изучении данных структур является оценка пределов вариации значений геометрических параметров АГММ, при которых выполняются условия ТНz-генерации. В связи с малостью размеров структуры это имеет большое значение при создании реального образца. Для всесторонней оценки возможности поддерживания режима эффективной THz-генерации исследуется влияние изменения угла наклона оптической оси по отношению к внешним границам АГММ. В настоящей работе определен диапазон возможных отклонений значений угла наклона оптической оси АГММ от оптимального и влияние этого отклонения на изменение частоты генерации. Проведена оценка предельно допустимых значений периода АГММ с целью определения диапазона частот THz-генерации. Показано, что исследуемая структура уникальна с точки зрения вариативности ее параметров для достижения генерации волны в THz-диапазоне частот. Полученные результаты имеют большое значение как для построения строгой теории ТНz-генерации с учетом эффекта насыщения усиления, так и для практической реализации THz-генерации в структурах и метаматериалах на основе графена.

Модель и характеристики резонатора и ГММ

В настоящей работе рассматривается резонатор с отражающими стенками, в котором расположен асимметричный гиперболический материал (АГММ). Резонатор (рис. 1) состоит из изотропных областей, обозначенных цифрами l и 2 (длиной l_1 и l_2), характеризующихся потерями (общая ширина изотропной области $l = l_1 + l_2$), и АГММ толщиной h (область обозначенная цифрой 3). Полный обход резонатора характеризуется длиной одно-

Рис. 1. Схематическое представление сложного резонатора, содержащего АГММ. Косые красные плоскости внутри АГММ (область 3) символизируют слои графена. O — оптическая ось, θ — угол между оптической осью и осью z (угол наклона оптической оси), N — линия узлов, φ — угол между осью x и линией узлов, α — угол падения излучения на структуру, серая поверхность — плоскость падения, h — общая толщина АГММ.

го периода L = l + h. Отражающие стенки резонатора — внешние плоскости фиолетового цвета, расположенные горизонтально.

468

АГММ представляет собой многослойную структуру, состоящую из периодически чередующихся слоев инвертированного графена (красные плоскости) и полупроводника, расположенных под наклоном по отношению к границам слоя АГММ, область 3 на рис. 1. Асимметрия возникает за счет наклона оптической оси (угол θ) по отношению к границам слоя АГММ. Вследствие такого наклона прямая и обратная волны, распространяющиеся в структуре, приобретают различные свойства при сохранении компоненты волнового вектора. В результате создаются условия для вывода THz-излучения, генерируемого в гиперболической среде, во внешнее пространство.

ГММ являются сильно анизотропными одноосными средами. В этом случае свойства среды описываются тензором диэлектрической проницаемости $\varepsilon = \{\{\varepsilon_{\perp}, 0, 0\}, \{0, \varepsilon_{\perp}, 0\}, \{0, 0, \varepsilon_{\parallel}\}\}$. Главные значения тензора диэлектрической проницаемости ε_{\parallel} и ε_{\perp} имеют разные знаки [6–8].

Характеристики гиперболического слоя можно описывать, применяя метод гомогенизации, в связи с малостью периода АГММ по сравнению с длиной распространяющихся в нем волн. В этом случае композиционная структура рассматривается как эффективная среда с усредненными параметрами [5,12,14]. В работе [12] проведено сравнение точного метода решения дисперсионного уравнения для периодической структуры с использованием теоремы Флоке-Блоха и метода гомогенизации на основании модели Максвелла–Гарнетта, и показано полное совпадение результатов для рассматриваемого АГММ. Диэлектрическая проницаемость эффективной среды рассчитывается по формуле

$$\varepsilon_{\perp} = \varepsilon_{\parallel} + \frac{i}{(d\omega\varepsilon_0)} [\sigma'(\omega, E_0) + i\sigma''(\omega, E_0)],$$

где $\varepsilon_{\parallel} = \varepsilon_h$ — диэлектрическая проницаемость материала, в котором расположены слои графена, ω — угловая частота, $\sigma(\omega, E_0)$ — поверхностная проводимость графена, E_0 — поперечная (по отношению к плоскости листов графена) компонента вектора напряженности электрического поля, ε_0 — электрическая постоянная, d — период АГММ.

Графен описывается в терминах поверхностной проводимости инвертированного графена $\sigma(\omega, E_0) = (\sigma_{intra} + \sigma_{inter})$, которая зависит от частоты и составляющей вектора электрического поля, поперечной к плоскости графена. Изменение ЕО влияет на значение химического потенциала μ_c . При таком подходе появляется возможность провести всесторонний анализ процесса генерации THz-волн в АГММ с учетом эффекта насыщения усиления графена. Для расчета проводимости слоев графена использована формула Кубо (формула (2) из работы [15]). Расчеты проведены для АГММ, в котором в качестве материала, чередующегося со слоями графена,

выбран карбид кремния. Выбор данного типа был мотивирован результатами экспериментальных работ, где описаны попытки выращивания слоев графена на подложке из карбида кремния [16]. В расчетах диэлектрической функции карбида кремния использованы данные из работы [17], где описаны все возможные политипы SiC и представлены некоторые экспериментальные и теоретические значения диэлектрической функции. Кроме того, в работе [18] показано высокое согласование средних значений экспериментальных данных с теоретическими. Расчет зависимости ε_{\perp} от частоты при использовании диэлектрической функции карбида кремния с учетом политипичности изложен в работе [5]. В представленной теории данный тип полупроводника может быть заменен на другой при использовании соответствующей диэлектрической функции полупроводника.

2. Метод

Создание условий для генерации THz-волны в АГММ рассматриваемого типа базируется на аномально большой плотности электромагнитных состояний вдоль асимптот гипербол изочастот, что приводит к высокой скорости спонтанной эмиссии и к возникновению большого числа обыкновенных и необыкновенных мод, распространяющихся в прямом и обратном направлениях внутри структуры. Изучение характеристик этих волн проведено посредством строгого математического подхода с использованием метода матриц передачи. Преобразования поля внутри АГММ описывается матрицей Берремана [19], которая позволяет рассчитать оптические характеристики прямой и обратной волн при произвольном угле излучения с учетом анизотропии среды. Метод позволяет рассчитать собственные значения итоговой матрицы полного обхода резонатора, амплитуды компонент электрического и магнитного полей и величину вектора Пойнтинга.

Характеристики излучения, распространяющегося в резонаторе, можно получить из произведения матриц передачи для среды резонатора $P_0(l_1)$ и $P_0(l_2)$ и гиперболического слоя P(h): $P_t = P_0(l_1)P(h)P_0(l_2)$. При рассмотрении среды с непрерывно меняющимися параметрами используются уравнения Максвелла в дифференциальной матричной форме. Для описания линейного преобразования между четырьмя тангенциальными компонентами электрического и магнитного полей на входе и выходе анизотропной оптической системы [19–21] справедливо следующее матричное выражение:

$$\frac{\partial}{\partial z}\Psi = \frac{i\omega}{c}\Delta\Psi.$$

В этом выражении Ψ — вектор-столбец, содержащий, в общем случае, все тангенциальные компоненты электрического и магнитного полей. В нашем рассмотрении вектор-столбец Ψ имеет вид:

$$\Psi = \begin{pmatrix} E_x \\ H_y \\ E_y \\ -H_x \end{pmatrix}$$

Элементы матрицы Λ определяются выражениями, содержащими компоненты волнового вектора, компоненты тензора диэлектрической проницаемости эффективной среды и углы Эйлера θ , φ , ψ [19–21]. В настоящей работе все расчеты выполнены в предположении $\psi = 0$.

При рассмотрении активных сред, с усилением или потерями, компоненты тензора диэлектрической проницаемости ε_{\perp} и ε_{\parallel} имеют комплексные значения. Для среды толщиной h электромагнитные поля падающей, отраженной и прошедшей волн связаны соотношением

$$\Psi_{\rm T} = P(h)(\Psi_{\rm I} + \Psi_{\rm R}),$$

где Ψ_T , Ψ_I и Ψ_R — векторы-столбцы прошедшей, падающей и отраженной волн, которые выражаются следующим образом:

Матрица P(h) может быть вычислена с помощью формулы

$$P(h) = \exp(i\omega h\Delta/c) \equiv \sum_{k=1}^{4} (\exp(i\omega h\Lambda_k/c))$$
$$\times (\prod_{i \neq k} (\Delta - \Lambda_i I) / \prod_{i \neq k} (\Lambda_k - \Lambda_i))$$

 Λ_{ik} — собственные значения матрицы Δ , I — единичная матрица.

Собственные значения κ_i итоговой матрицы P_t находятся из формулы $\Lambda_i = \exp(i\kappa_i L)$ и позволяют определить значения коэффициента усиления исследуемой структуры и частоту генерации THz-волны. Частота генерируемой THz-волны f определяется значениями k_z , для которых выполняется условие $\operatorname{Re}(\kappa_i L) = 2\pi m$, $m = 0, \pm 1, \pm 2, \ldots$ Мнимая часть собственного значения $\operatorname{Im}(\kappa_i)$ характеризует усиление в структуре. Следовательно, частота моды и интенсивность моды являются решениями уравнений

$$\operatorname{Re}[\varkappa_i(k_z, E_0) = 0], \quad \operatorname{Im}[\varkappa_i(k_z, E_0) = 0].$$
 (2)

3. Результаты

На основании описанного подхода проведено исследование характеристик распространяющегося в резонаторе излучения. Вследствие использования в качестве активной среды АГММ в резонаторе распространяются прямые и обратные обыкновенные и необыкновенные волны с соответствующими им собственными значениями матрицы передачи для полного обхода резонатора. Графики зависимости собственных значений матрицы передачи резонатора от частоты позволяют определить выполнение условия (2).

Ранее нами было определено посредством зависимости σ и ε_{\perp} от k_z , что диапазон от 2 до 12 THz имеет потенциал для генерации THz-излучения в рассматриваемом АГММ при значении энергии Ферми $E_F = 25 \text{ meV}$ [5]. В этом диапазоне частот выполняются следующие условия: $\text{Re}(\sigma) < 0$ — соответствует наличию усиления в графене; рассматриваемый АГММ обладает гиперболическими свойствами $\text{Re}(\varepsilon_{\perp}) < 0$ и усилением $\text{Im}(\varepsilon_{\perp}) < 0$ одновременно [5].

Зависимости собственных значений матрицы передачи резонатора от частоты изучены во всем этом диапазоне [13]. На основании всестороннего анализа собственных значений матрицы передачи полного обхода резонатора, включая оценку значений мнимой части собственных значений и выполнение условия (2), определено, что стабильные значения коэффициента усиления и выполнение условия ТНz-генерации выполняются только в части указанного выше диапазона, а именно от 2.9 до 4.7 THz, что соответствует интервалу $0.06 < k_7 < 0.095 \,\mu m^{-1}$. Выбор более узкой части диапазона частот для создания ТНz-генерации связан со значениями $Im(\kappa_i)$, которые характеризуют усиление. Показано [13], что только на выбранном диапазоне частот (2.9-4.7 THz) усиление достигает необходимых для генерации значений. Спектральные зависимости действительной и мнимой частей логарифмов собственных значений определяют обыкновенные и необыкновенные (прямые и обратные) собственные волны в резонаторе (рис. 2).

Красные линии соответствуют мнимой части собственных значений, черные — действительной. Кривые 1($\operatorname{Re}(\kappa_i)$) и 1' ($\operatorname{Im}(\kappa_i)$) соответствуют обыкновенным волнам, 2 ($\operatorname{Re}(\kappa_i)$) и 2' ($\operatorname{Im}(\kappa_i)$) — необыкновенным. По значению мнимой части κ_i можно заметить, что обыкновенные моды обладают большим усилением, чем необыкновенные. Появление в резонаторе большого числа необыкновенных мод обусловливает генерацию THzизлучения.

Ориентация оптической оси ГС является ключевым фактором для вывода во внешнее пространство большого числа необыкновенных мод. Угол наклона слоев определяется по аналогии с углом Брюстера. Сравнив набор типов волн, распространяющихся в рассматриваемом резонаторе с АГММ, с набором типов для резонатора, содержащего аналогичный симметричный

Рис. 2. Действительные (черные кривые) и мнимые (красные кривые) части собственных значений κ_i матрицы P_t в зависимости от k_z . Линии $I - \text{Re}(\kappa_i)$ для обыкновенных мод, $2 - \text{Re}(\kappa_i)$ для необыкновенных мод. Линии $I' - \text{Im}(\kappa_i)$ для обыкновенных мод. Параметры расчета: $L = 1320 \,\mu\text{m}$, $h = 5 \,\mu\text{m}$, $d = 50 \,\text{nm}$; $\theta = 55^\circ$, $\varphi = \pi/2$, $\alpha = 15^\circ$; $E_F = 25 \,\text{meV}$, $T = 300 \,\text{K}$, $t = 10^{-12} \,\text{s}$. Диапазон частот $2.9 < f < 4.7 \,\text{THz}$ (0.06 $< k_z < 0.095 \,\mu\text{m}^{-1}$).

Рис. 3. Действительные (черные кривые) и мнимые (красные кривые) части собственных значений κ_i матрицы Pt в зависимости от k_z . Линии I — $\text{Re}(\kappa_i)$ для обыкновенных мод, 2 — $\text{Re}(\kappa_i)$ для необыкновенных мод, 2' — $\text{Im}(\kappa_i)$ для необыкновенных мод, 2' — $\text{Im}(\kappa_i)$ для необыкновенных мод. Параметры расчета: $L = 1320 \,\mu\text{m}$, $h = 5 \,\mu\text{m}$, $d = 50 \,\text{nm}$; $\theta = 55^\circ$, $\varphi = \pi/2$, $\alpha = 15^\circ$; $E_F = 25 \,\text{meV}$, $T = 300 \,\text{K}$, $t = 10^{-12} \,\text{s}$. Диапазон частот $4.113 < f < 4.133 \,\text{THz} (0.0822 < k_z < 0.08362 \,\mu\text{m}^{-1})$.

метаматериал без наклона слоев АГММ относительно его внешней границы ($\theta = 0$), при сохранении всех остальных параметров можно констатировать, что в последнем случае необыкновенные моды отсутствуют. Графики для симметричного образца не приводятся в целях экономии места.

Для демонстрации выполнения условия (2) представлен фрагмент графика зависимости действительной и мнимой частей собственных значений матрицы передачи от kz в крупном масштабе для узкого интервала частот 4.113 < f < 4.133 THz $(0.0822 < k_z < 0.08362 \,\mu m^{-1})$ (рис. 3). Видно, что для необыкновенной моды выполняется условие (2) (обозначено квадратом), в то время как для обыкновенной моды $\operatorname{Re}(\kappa_i) \neq 0$.

Рассмотрев, таким образом, каждое значение частоты, на котором наблюдаются переходы кривых собственных значений матрицы полного обхода резонатора через нуль, можно заключить, что присутствия большого числа обыкновенных мод с большими значениями коэффициента усиления недостаточно для возникновения устойчивой генерации THz-волн. Наклон слоев позволяет создать условия для эффективного вывода излучения с высокой плотностью фотонных состояний, накопленного в гиперболической среде, в пространство резонатора, что и проявляется как возникновение большого числа необыкновенных мод. По предварительным оценкам, на основании численного моделирования определено, что ширина полосы генерации составляет $\Delta f \approx 0.00455$ THz [13].

Влияние отклонения угла наклона оптической оси на частоту генерации

Важным аспектом в изучении перспектив данных структур является оценка пределов изменений геометрических параметров АГММ, при которых выполняются условия для THz-генерации. Так как ориентация оптической оси является одним из основных факторов, изучим влияние отклонения значения угла наклона оптической оси θ от оптимального на усиление и выполнение условия генерации мод.

Расчетное оптимальное значение угла наклона оптической оси составляет $\theta = 55^{\circ}$. На рис. 4 представлены зависимости $\operatorname{Re}(\kappa_i)$ и $\operatorname{Im}(\kappa_i)$ одной необыкновенной

Рис. 4. Демонстрация выполнения условия (2). Действительная (черные кривые) и мнимая (красные кривые) части собственных значений матрицы P_t в зависимости от k_z для необыкновенной волны при трех значениях угла наклона оптической оси: $I - \theta = 50^{\circ}$, $2 - 55^{\circ}$, $3 - 60^{\circ}$: Параметры расчета: $L = 1320 \,\mu\text{m}$, $h = 5 \,\mu$ m, d = 50 nm; $\varphi = \pi/2$, $\alpha = 15^{\circ}$; $E_F = 25$ meV, T = 300 K, $\tau = 10^{-12}$ s.

Журнал технической физики, 2024, том 94, вып. 3

моды от k_z для трех значений угла наклона оптической оси 50° (обозначены цифрой 1), 55° (2) и 60° (3). Выполнение условия (2) наблюдается для всех трех рассмотренных значений угла θ , пересечения $\text{Re}(\kappa_i)$ с осью x выделены квадратами. Значения резонансной частоты при разных θ отличаются только в четвертом знаке после запятой и соответствуют частоте генерации $f \approx 4.13$ THz. При значениях θ менее 50° и более 60° нарушается условие THz-генерации (2). Следовательно, при изменении угла наклона оптической оси в пределах $\pm 5^{\circ}$ процесс генерации THz-волн в резонаторе, содержащем асимметричный гиперболический слой, поддерживается и осуществляется в выбранном частотном диапазоне.

5. Влияние величины периода структуры на диапазон частот ТНz-генерации

Важным вопросом является оценка влияния значения периода структуры АГММ *d* на изменение диапазона частот, в котором прогнозируется генерация THz-волны. Данный диапазон определяется, в первую очередь, величиной проводимости графена и эффективной диэлектрической проницаемостью гиперболической структуры [5]. В этой работе оценивается соответствие выбранного ранее оптимального значения периода АГММ определенному здесь диапазону частот 2.9 до 4.7 THz, в котором выполняется условие генерации. Для этого рассматривается зависимость эффективной диэлектрической проницаемости АГММ от частоты при 10 различных значениях периода d. Результат представлен на рис. 5. Сплошные кривые соответствуют $\operatorname{Re}(\varepsilon_{\perp})$, штриховые — $Im(\varepsilon_{\perp})$. Диапазон частот генерации соответствует частотам, на которых АГММ обладает гиперболическими $(\operatorname{Re}(\varepsilon_{\perp}) < 0)$ и усиливающими $(\operatorname{Im}(\varepsilon_{\perp}) < 0)$ свойствами

Рис. 5. Действительная и мнимая части эффективной диэлектрической проницаемости АГММ в зависимости от частоты. Сплошные кривые соответствуют $\text{Re}(\varepsilon_{\perp})$, штриховые — $\text{Im}(\varepsilon_{\perp})$. Для 10 значений периода АГММ от d = 10 nm (кривые I и I') до 100 nm (кривые I0 и I0'), с шагом 10 nm. $E_F = 25$ meV, T = 300 K, $t = 10^{-12}$ s.

Журнал технической физики, 2024, том 94, вып. 3

одновременно. Значения периода АГММ *d* изменялось от 10 nm (кривые 1 и 1') до 100 nm (кривые 10 и 10'), с шагом 10 nm (рис. 5). Как хорошо видно на графике, с увеличением периода структуры диапазон частот Δf , в котором возможна генерация THz-волны, уменьшается. Так, при $d = 100 \,\mathrm{nm}$ интервал частот Δf составляет от 3 до 4.8 THz. С уменьшением периода интервал Δf увеличивается и для значения периода АГММ d = 10 nmсоставляет от 2.25 до 11.25 THz. Однако, как мы отметили выше, коэффициент усиления приобретает значения, достаточные для генерации THz-волны лишь в диапазоне частот от 2.9 до 4.7 THz. Из рис. 5 видно, что данный диапазон поддерживается при значениях d от 50 до 100 nm. Таким образом, нецелесообразно выбирать период АГММ меньше 50 nm. Вариация периода АГММ от 50 до 100 nm изменяет значение частоты THz-генерации лишь в четвертом знаке после запятой [13].

Описанный метод позволяет определить оптимальный период АГММ и пределы возможных изменений его значений, при которых генерация THz-волны происходит в выбранном диапазоне частот. Этот факт имеет важное значение как для теоретических расчетов, так и для экспериментального изготовления образца. Миниатюризация устройств часто сопряжена с недостаточной точностью соблюдения заданных геометрических параметров, особенно на нанометровых масштабах. Использованный здесь метод позволит синхронизировать выбор параметров резонатора и АГММ для достижения генерации THz-волны в определенном диапазоне частот.

Учет эффекта насыщения усиления в графене

Исследование процессов распространения THz-волн в резонаторе проведено с учетом эффекта насыщения усиления в графене. Значение химического потенциала листов графена μ_c зависит от поперечной к плоскости графена компоненты электрического поля THzизлучения E0 [22]. Само THz-излучение может иметь такую компоненту поля, что и приведет к насыщению. В настоящей работе в качестве поля, влияющего на систему и изменяющего значение химического потенциала графена, выступает поле THz-излучения, сгенерированного в данном АГММ за счет усиления внутри системы. Начиная с малых значений Е₀, соответствующих тепловым флуктуациям в резонаторе, применяя метод итераций, можно вычислить изменение E_0 , а, следовательно, и μ_c , и соответствующие этим величинам собственные значения матрицы P_t, что позволяет определить частоту генерации моды с помощью уравнения $\text{Re}[\kappa_i(k_z, E_0)] = 0$. Изменение E_0 приводит к незначительному изменению значения k_z и к более выраженному изменению $Im(\kappa_i)$), определяющему усиление. Таким образом, E_0 изменяется до тех пор, пока не будет выполнено условие $\text{Im}[\kappa_i(k_z, E_0)] = 0.$

472

Рис. 6. Зависимость химического потенциала μ_c от поперечной компоненты электрического поля E_0 .

Связь химического потенциала графена μ_c и поперечной компоненты электрического поля THz-излучения E0, выражается посредством формулы [22]

$$E_0 = \left[e / \left(\pi \hbar^2 v_F^2 \varepsilon_b \right)
ight] \int\limits_0^\infty darepsilon \left(f_d(arepsilon) - f_d(arepsilon + 2\mu_c)
ight),$$

где $f_d(\varepsilon)$ — функция Ферми-Дирака, ε_b — диэлектрическая проницаемость графена. Функция $f_d(\varepsilon)$ определяется по формуле $f_d(\varepsilon) = 1/(\exp[(\varepsilon - \mu_c)/(k_{\rm B}T)] + 1)$. Зависимость химического потенциала листов графена μ_c от поперечной компоненты электрического поля THz-излучения E_0 представлена на рис. 6.

Оценка значения поперечной к плоскости графена компоненты вектора напряженности электрического поля ЕО, которое соответствует насыщению усиления графена, проведена с помощью закона Ламберта-Бера. Начальное значение коэффициента усиления определяется из графиков зависимости собственных значений матрицы Берремана от *z*-компоненты волнового вектора k_z и составляет Im $(\kappa_i) \approx 0.25$ (рис. 2). Потери заданы посредством значений коэффициентов отражения зеркал на границах резонатора r_1 и r_2 . Время релаксации носителей заряда в графене $\tau = 10^{-12}$ s. В результате расчетов установлено, что насыщение усиления в графене возникает, когда напряженность электрического поля выше значения $E_0 = 2.7 \cdot 10^{12} \,\text{V/m}$. Посредством графика зависимости химического потенциала μ_c от E_0 определено значение химического потенциала, соответствующее балансу потерь и насыщенного усиления, $\mu_c = 19.5 \,\mathrm{meV}$ (рис. 6).

Зависимость ненасыщенного усиления от химического потенциала графеновых листов для необыкновенных волн на частоте f = 4.13 THz представлена на рис. 7. Красная линия 3 характеризует уровень потерь. Линии пурпурного цвета относятся к прямой (кривая 1) и обратной (кривая 2) необыкновенным волнам. Видно, что усиление в исследуемом резонаторе значительно превышает уровень потерь за счет присутствия АГММ данного типа вследствие возбуждения большого числа

необыкновенных мод в гиперболической среде. Кривые, относящиеся к прямой и обратной необыкновенным волнам, демонстрируют несколько различное усиление вследствие асимметричности метаматериала. На вставке рис. 7 представлена та же зависимость с более мелким шагом по шкале ординат для демонстрации данного эффекта.

Принимая время релаксации импульса носителей заряда в графене, равным 10^{-12} s, можно заключить, что насыщение усиления происходит пропорционально усредненной в этом временном интервале напряженности электрического THz-поля. Для частоты 3–4 THz расчетное значение интенсивности THz-излучения для достижения эффекта насыщения усиления составляет около $1.2 \cdot 10^{15}$ W/m².

Для оценки предполагаемой мощности рассчитана *z*-компонента вектора Пойнтинга $P_z = E_x H_y^* - E_y H_x^*$:

$$P_z = E_x E_y^* - E_y E_x^*.$$

Пространственные компоненты электрического поля найдены из уравнения

$$k_z E_z + k_x E_x + k_y E_y = 0.$$

При выбранном на начальном этапе исследования условии $k_y = 0$ [5] уравнение для нахождения E_z выглядит следующим образом:

$$E_0 = E_x \sin \vartheta + E_z \cos \vartheta.$$

Компоненты E_x и E_y находятся из выражений векторов-столбцов падающей и отраженной волн Ψ_I и Ψ_R , формула (5). На основании анализа зависимости компонент вектора Пойнтинга от k_z обнаружено, что на частотах, соответствующих усилению, поток энергии в резонаторе нарастает.

Ожидаемая мощность электрического поля THzизлучения, при указанном выше значении интенсивности

Рис. 7. Зависимость коэффициента усиления от значений химического потенциала в графене μ_c [meV] для необыкновенных мод: кривая *I* (прямая волна) — Im(κ_1), *2* (обратная волна) — Im(κ_2). Линия *3* характеризует уровень потерь (0.0009). На вставке показано различие между прямой (*I*) и обратной (*2*) необыкновенными волнами в крупном масштабе.

ТНz-излучения, соответствующей насыщению усиления, составляет порядка 3.5 · 10³ V/nm. Конечно, эта величина достаточно велика, но следует отметить, что поперечное сечение пучка ТНz-излучения достаточно мало и определяется радиусом лазерного пучка оптической накачки графена, поэтому суммарная мощность THzизлучения может оказаться относительно небольшой. Большое значение интенсивности насыщения усиления означает, что в данной структуре можно ожидать значительной мощности THz-излучения при использовании оптимального пропускания выходного зеркала. Для более подробного анализа действия THz-лазера в данную теорию необходимо также включить процесс накачки, что будет сделано в последующих работах. В рамках настоящей работы накачка описывается как изменение химического потенциала графена.

Заключение

Теоретически исследован процесс распространения и генерации THz-излучения в резонаторе, содержащем АГММ, состоящий из тонких периодически упорядоченных слоев полупроводника и инвертированного графена. Продемонстрирована возможность ТНz-генерации в рассматриваемой структуре с учетом эффекта насыщения усиления. Определены условия ТНz-генерации. Показано увеличение усиления за счет присутствия АГММ данного типа. Определен диапазон частот, в котором возникает ТН*z*-генерация. Рассчитано значение электрического поля THz-волны, при котором происходит насыщение усиления и проведена оценка возможной мощности THz-излучения. Определены диапазон отклонений угла наклона оптической оси АГММ от оптимального, для которого выполняется условие THz-генерации, и влияние вариаций данного угла на изменение частоты генерации. Установлено, что изменение угла наклона оптической оси в пределах $\pm 5^{\circ}$ не влияет существенным образом на процесс генерации THz-волн в рассмотренном резонаторе и на значение частоты генерации. Проведена оценка предельно допустимых значений периода АГММ. Учет влияния отклонения геометрических параметров резонатора и АГММ от оптимально подобранных для достижения эффективной генерации THz-волн чрезвычайно важен в связи с трудностями изготовления структур сверхмалого размера. Полученные результаты могут быть использованы для создания источников THz-излучения на основе графена.

Финансирование работы

Работа выполнена в рамках государственного задания.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Журнал технической физики, 2024, том 94, вып. 3

Список литературы

- [1] X.-C. Zhang, J. Xu. Introduction to THz Wave Photonics (Springer-Verlag, NY, 2009)
- [2] A. Khalatpour, A.K. Paulsen, Ch. Deimert, Z.R. Wasilewski, Q. Hu. Nature Photonics, 15 (1), 16 (2012).
 DOI: 10.1038/s41566-020-00707-5
- [3] I. Smolyaninov, V.N. Smolyaninova. Solid-State Electron., 136, 102 (2017). DOI: 10.1016/j.sse.2017.06.022
- [4] T. Guo, L. Zhu, P.Y. Chen, C. Argyropoulos. Opt. Mater. Express, 8, 3941 (2018). DOI: 10.1364/OME.8.003941
- [5] О.Н. Козина, Л.А. Мельников. Известия Саратовского унта. Новая серия. Серия физика, 19 (2), 122 (2019).
 DOI: 10.18500/1817-3020-2019-19-2-122-131
- [6] Ф.И. Федоров. Оптика анизотропных сред (АН БССР, Минск, 1958)
- [7] L. Felsen, N. Marcuvitz. *Radiation and Scattering of Waves* (Englewood Cliffs. NJ.: Prentice-Hall, USA, 1973)
- [8] V. Iorsh, I.S. Mukhin, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar. Phys. Rev. B, 87, 075416 (2013).
 DOI: 10.1103/PhysRevB.87.075416
- [9] J. Sun, J. Zhou, B. Li, F. Kang. Appl. Phys. Lett., 98 (10), 101901 (2011). DOI: 10.1063/1.3562033
- D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A.A. Dubinov, A. Satou, M. Ryzhii, V. Ryzhii, T. Otsuji. Nanophotonics, 7, 741 (2018).
 DOI: 10.1515/nanoph-2017-0106
- [11] D.V. Fateev, K.V. Mashinsky, V.V. Popov. Appl. Phys. Lett., 110, 061106 (2017). DOI: 10.1063/1.4975829
- [12] I.S. Nefedov, C.A. Valaginnopoulos, L.A. Melnikov. J. Opt., 15, 114003 (2013). DOI: 10.1088/2040-8978/15/11/114003
- [13] О.Н. Козина, Л.А. Мельников. Радиотехника и электроника, 67 (10), 1058 (2022).
 DOI: 10.31857/S0033849422100060
 [O.N. Kozina, L.A. Melnikov. J. Commun. Technol. Electron., 67 (10), 1304 (2022). DOI: 10.1134/S1064226922100060]
- [14] O.S. Kidwai, V. Zhukovsky, J.E. Sipe. Phys. Rev. A, 85, 053842(12) (2012). DOI: 10.1103/PhysRevA.85.053842
- [15] A.A. Dubinov, V.Ya. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii.
 J. Phys. Condens. Matter., 23, 145302 (2011).
 DOI: 10.1088/0953-8984/23/14/145302
- [16] C. Virojanadara, M. Syväjarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov, T. Balasubramanian. Phys. Rev. B, 78, 245403 (2008). DOI: 10.1103/PhysRevB.78.245403
- [17] H. Mutschke, A.C. Andersen, D. Clement, Th. Henning, G. Peiter. Astron. Astrophys., 345, 87 (1999).
- [18] J. Chen, Z.H. Levine, J.W. Wilkins. Phys. Rev. B, 50 (16), 11514 (1994).
- [19] D.W. Berreman. J. Opt. Soc. Am., 62(4), 1157 (1972).
- [20] D.A. Yakovlev, V.G. Chigrinov. Modeling and Optimization of the LCD Optical Performance (Wiley, London, 2015)
- [21] S.P. Palto. J. Experiment. Theor. Phys., 92 (4), 552 (2001).
 DOI: 10.1134/1.1371338
- [22] О.А. Голованов, Г.С. Макеева, А.Б. Ринкевич. ЖТФ, 86 (2), 119 (2016).
 [О.А. Golovanov, G.S. Makeeva, A.B. Rinkevich. Tech. Phys., 61 (2), 274 (2016).
 DOI: 10.1134/S1063784216020122]