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Runaway electrons in a gas diode with a wedge-shaped cathode
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The features of electron runaway in a gas diode with a wedge-shaped cathode providing a sharply inhomogeneous

distribution of the electric field in the interelectrode gap are studied. It is shown that the character and conditions

of runaway are qualitatively different for wedges with relatively large and small opening angles, i.e., in fact, for

different degrees of field inhomogeneity. In the first case, the transition to the runaway mode is determined by the

behavior of electrons in the immediate vicinity of their starting point, the vertex of the wedge-shaped cathode. For

a wedge close in shape to a blade (opening angle less than 30◦ degrees), the relative contribution of the braking

force for electrons in the gas increases with distance from the cathode, and their behavior at the periphery, near the

anode, begins to play a key role in the analysis of runaway conditions. The influence of an external magnetic field

on the geometry of the ionized region near the wedge vertex, starting from which the electrons become runaways,

is also discussed.
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Introduction

Free electrons in a gas or plasma are capable of continu-

ous acceleration when a sufficiently strong external electric

field is applied [1–3]. The presence of such — runaway —
electrons (RAEs) in gas discharges has been established

experimentally: see, for example, [4–16]. Under laboratory

conditions, they gain energies of tens to hundreds of kilo-

electron volt [10,12,13,17–20] and even higher [21]. The

speed of RAEs becomes comparable to the speed of light,

as a result of which they cross the gas gap with a length

of units to tens of millimeters for tens to hundreds of

picoseconds. During these times, the RAEs pre-ionize the

gap, thereby initiating its breakdown in the sub-nanosecond

time range [19,22–26] (see also [6,16,27–33]). Note that

the RAEs energy can exceed the energy corresponding

to the voltage applied to the gap. The registration of

such
”
anomalous“ electrons was first reported in [8]. This

phenomenon has been investigated in detail experimentally

and theoretically for cathodes of different geometries, e.g.,

in [18,19,22,24,34].

In conditions of a homogeneous electric field, the

mass transition of free electrons into the runaway mode

occurs when its strength E exceeds some threshold

value Ec, depending on the gas grade and its density

(pressure) [3,6,28,35]. What is meant here is a situation

where electrons can become runaway electrons regardless

of their initial energy. In particular, low-energy thermal

electrons run away, which is why this mode is often called

”
cold“ or

”
thermal“ runaway — see, for example, [36].

According to [28,29], Ec ≈ 270 kV/cm can be taken for

atmospheric air at a pressure of 760 Torr and a temperature

of 300K (other estimates for the critical field in the range of

220−450 kV/cm are given in [35–39]). The threshold char-

acter of electron runaway is due to the non-monotonicity

of the dependence of the friction (braking) force acting on

electrons in the gas on their kinetic energy ε. For low ener-

gies, the frictional force increases with increasing ε, reaching

some maximum Fmax at energies εc on the order of 100 eV.

For air, the maximum is at the energy εc ≈ 110 eV [35,40]
(note that other values, such as 150 eV in [28,29], are

given in the literature). For energies greater εc, but not

reaching relativistic values in units of mega-electronvolts,

the frictional force decreases with increasing ε because of

the falling cross section of the interaction of fast electrons

with gas particles. As a consequence, if an external force

exceeding in absolute value Fmax acts on the electron, it

will accelerate unboundedly — run away. The criterion

for
”
cold“ runaway of electrons in a homogeneous field is

E > Ec ≡ Fmax/e (here e is elementary charge) or U > EcD
in terms of the potential difference U applied to a gap of

length D.

In laboratory experiments with RAEs, the electric field

distribution is often sharply inhomogeneous — its strength

in the gap varies by more than an order of magnitude.

This is due to the use of pointed cathodes [20,24,41–46],
providing local field enhancement at the tip to values

necessary for the initiation of field-emission processes and,
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as a consequence, the appearance of primary free electrons

in the gas. In addition, from a practical point of view,

it is much easier to ensure the realization of conditions

for the transition of electrons to the runaway mode in a

relatively small near-cathode region than in the entire gap,

when much higher voltages would be required. An electron

that has gained sufficiently high energy in the field-enhanced

area near the pointed cathode can continue to run away in

the peripheral area with a relatively low field due to the

rather rapid, according to the law ε−1 ln ε [47], decrease

in friction force with increasing ε. Thus, for example,

in a homogeneous field for an air gap with a length of

20mm for
”
cold“ runaway of electrons, a sufficiently high

value (from the practical point of view) of the applied

potential difference, at least EcD = 540 kV, is required. In

the inhomogeneous field caused by the use of a tubular

edge cathode with an edge radius of 200 µm, at the same

gap length, RAEs were recorded at much lower voltage

values — 84 kV [41]. This corresponds to an average field

in the interval 42 kV/cm, which is obviously less than the

threshold value Ec. The field at the cathode edge was

estimated to be 500−600 kV/cm, i.e., larger than Ec. We

note that the E > Ec condition at the cathode edge is only

a necessary, but not a sufficient, runaway condition. In the

opposite case, RAE generation could occur at any small

(but finite) voltages applied to the gap in the case of using

a cathode with a sufficiently small radius of curvature of the

tip to fulfill this condition, which, of course, does not make

physical sense. A series of works [44,48,49] purposefully

investigated the conditions of electron runaway in the air

gap
”
tubular edge cathode — flat anode“ as a function of

the radius of rounding of the cathode edge. On the basis

of analytical and numerical studies of the RAE dynamics,

it was concluded that in the conditions of a sharply

inhomogeneous field, the condition of voltage U exceeding a

certain threshold Uc, depending both on the gas parameters

and on the gap geometry, is stronger than the E > Ec

condition. Indeed, in experiments [44] with an air gap

of 7.5mm, RAEs were observed only at U > 40− 44 kV,

despite the field strength significantly exceeding the value Ec

at the cathode edge sharpened to extremely small values of

the rounding radius 5−50 µm.

In the present paper, we consider the dynamics and con-

ditions of runaway of electrons starting from the edge of a

wedge-shaped cathode with an arbitrary opening angle. This

will allow us to study how the character of electron runaway

changes when the degree of inhomogeneity of the electric

field distribution varies. The field strength decreases with

distance r from the wedge edge according to a power law,

E ∝ rγ−1, where the exponent γ depends on the opening

angle and belongs to the range 1/2 ≤ γ ≤ 1 (see Section 1).
The upper limit of this interval (γ = 1) corresponds to

the trivial case of a uniform field, E = const, realized for

a wedge with an angle of 180◦, i.e., for a flat cathode.

The lower limit (γ = 1/2) — the case of a sharply

inhomogeneous field E ∝ 1/
√

r , realized for the blade

cathode (wedge with zero opening angle) and the related

tubular sharp-edge cathode [49,50].

In result of our consideration, it will be shown that the

behavior of RAEs in the electric field of a wedge-shaped

cathode with relatively large (exceeding ∼ 30◦) opening

angles, is generally similar to the behavior of electrons in

a uniform field. The possibility of their transition to the

runaway mode and subsequent acceleration in the whole

gas gap is entirely determined by the local distribution of the

electric field in the area from which they start. For a sharp

wedge whose opening angle is smaller than ∼ 30◦ (note that
the value of the angle depends logarithmically weakly on the

system size, see section 5), local processes near the cathode
edge cease to play a determining role, and the runaway

conditions take on a nonlocal character. An electron that

has passed to the runaway mode in the near-cathode region

may begin to slow down and eventually become thermal at

the periphery, in the area of the weak electric field. In such

a situation, when analyzing the possibility of continuous

acceleration of the electron in the entire gas gap, the balance

of forces acting on it near the anode begins to play a key

role. The nonlocality of the processes under consideration

is manifested in the fact that the braking force acting on

the electron near the anode depends on the kinetic energy

with which it reaches it, and to determine this energy it is

necessary to take into account the entire prehistory of its

motion.

Also in connection with recent experiments [20,51] on the

control of RAE flows in air gaps by means of an external

guiding magnetic field, the paper discusses its influence on

the geometry of the electron runaway area near the top

of the wedge (the ionized region, starting from which the

electrons will run away). It is demonstrated that this area

begins to deform (shrink) noticeably at values of magnetic

induction in units of tesla.

1. Problem statement, results of
numerical calculations of runaway
conditions

We investigate the peculiarities of electron runaway in

a gas diode under inhomogeneous electric field conditions

caused by the use of a wedge-shaped cathode. Consider a

cathode in the form of an ideal (with zero edge rounding

radius) wedge with an opening angle β (Fig. 1). The

origin coincides with the top of the wedge; the x-axis lies

in the plane of symmetry of the system, and the y-axis

is perpendicular to it. Since RAEs are generated at the

initial stage of breakdown development, and their number

at the conditions threshold for runaway is minimal, it can

be considered that they cross the gap when the electric

field distribution is not yet distorted by the bulk electric

charge. Then the electric field potential (ϕ) will satisfy the

Laplace equation, which is conveniently written using polar
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Figure 1. Geometry of the interelectrode gap for β = 30◦ and

D = 7.5mm

coordinates with origin at the top of the wedge:

∂2ϕ

∂r2
+ r−1 ∂ϕ

∂r
+ r−2 ∂

2ϕ

∂θ2
= 0.

Here r =
√

x2 + y2 is the distance from the point, and

θ = arctan(y/x) is the angle read from the x axis. The

solution for ϕ is found by separation of variables —
by substituting ϕ − ϕ0 = A(r)B(θ), where A and B are

unknown functions, and ϕ0 is the cathode potential, which

without loss of generality can be assumed to be zero (the
anode potential will be positive). Taking into account the

symmetry of the problem with respect to the plane y = 0,

we get:

ϕ(r, θ) = U(r/D)γ cos(γθ), (1)

where D is interelectrode distance, U > 0 is constant

potential difference applied to the interelectrode gap, γ

is some positive (otherwise the potential will not go to

zero at the top of the wedge r = 0) constant. Thus,

a power dependence of the potential on the distance to

the wedge edge ϕ ∝ rγ is realized, in which the degree

of inhomogeneity of the field distribution in the gap is

characterized by the exponent γ .

Let us now require the equipotentiality condition for

the faces of the wedge: ϕ|θ=±π∓β/2 = 0. Substituting

here the expression (1) leads to the simple trigonometric

equation cos(πγ − βγ/2) = 0, the solution of which gives

the following relationship between the exponent γ and the

wedge opening angle β :

γ =
π

2π − β
. (2)

For the allowable range 0 ≤ β ≤ π of wedge opening

angles, it gives the following range of values: 1/2 ≤ γ ≤ 1

(graphically, the relationship of γ and β is shown in Fig. 2.

The upper limit of this range (γ = 1) corresponds to an

expanded angle of 180◦ . In this case, the cathode is flat

and the electric field is homogeneous. The lower bound

(y = 1/2) corresponds to an infinitely thin wedge, β = 0◦,

i.e., a blade cathode. The electric field decreases with

distance from the blade edge according to the root law

E ∝ 1/
√

r .
From general considerations, it is clear that the direction x

is the most favorable for the runaway of electrons. There-

fore, to investigate the conditions of runaway — determining

the minimum value of the voltage at which the electrons

starting from the top of the wedge runaway — it is sufficient

to consider the one-dimensional problem of the motion of

free electrons along the symmetry axis x (in this case θ = 0

and r ≡ x). According to (1), the electric field potential ϕ

and the absolute value of electric field strength E are given

by the expressions

ϕ(x) =
Uxγ

Dγ
, E(x) =

∣

∣

∣

∣

dϕ
dx

∣

∣

∣

∣

=
γUxγ−1

Dγ
(3)

i.e. ϕ ∝ xγ and E ∝ xγ−1. In force the negativity of the

degree exponent γ − 1 for E (except for the trivial case

of γ = 1), the field is enhanced in the region of small x
(formally, E → ∞ at x → 0), which is necessary both to

initiate the field emission of primary free electrons and for

their transition to the runaway mode.

The equation of one-dimensional motion of an electron

starting from the cathode with zero velocity is conveniently

written in terms of its kinetic energy ε(x) [6,28]:

dε
dx

= f (x , ε), ε(0) = 0, (4)

where f = eE(x) − F(ε) is the total force acting on the

electron. The first term (eE) corresponds to the force acting

on the particle from the electric field. The second term (F)
is the friction (braking) force acting on the electron in the

gas, to determine which we will use the non-relativistic

Bethe [35,47] formula, represented in compact form

F(ε) =
eEcεc

ε
ln

2.718ε

εc
(5)

0 45 90 135 180

γ

0.5

0.6

0.7

0.9

1.0
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0.8

Figure 2. Dependence of the field inhomogeneity exponent γ on

the opening angle of the wedge-shaped cathode β .
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Figure 3. The threshold voltage for electron runaway as a function

of the field inhomogeneity exponent γ (gas — atmospheric air at

pressure 760Torr and temperature 300K, D = 7.5mm): Uc —
numerical calculation, Uloc — local criterion (7).

when using the values Ec and εc (here 2.718 is the base of

the natural logarithm). Note that in numerical calculations

in the range of relatively low energies ε < 0.72εc ≈ 79.2 eV

we will use the approximation F ∝ √
ε instead of for-

mula (5). It corresponds to an electron drift with fixed

mobility. In the high energy band, the applicability of

formula (5) is limited by the condition ε < mc2 ≈ 510 keV,

where m is the rest mass of the electron, c is the speed

of light. It is clear that the description of electron

motion within the framework of the compact equations (4)
and (5) is a considerable simplification; up-to-date data on

electron-medium interaction cross sections can be found, for

example, in the NIST database.

The RAE is assumed to be continuously accelerated

throughout the interelectrode gap. Then the runaway

condition is

f > 0, 0 ≤ x ≤ D, (6)

and the threshold value of the applied potential difference U
for runaway will be its minimum value Uc, at which (6) is

satisfied.

In Fig. 3, the red solid line (in the online version)
shows the results of a numerical study of threshold runaway

conditions for D = 7.5mm (this gap length corresponds

to experiments [44]), εc = 110 eV, and Ec = 270 kV/cm

(these values correspond to atmospheric air at a pressure

of 760 Torr and a temperature of 300K [28,29,40]). Equa-

tion (4) was solved for field inhomogeneity exponents γ

over the entire allowable range of values of 1/2 ≤ γ ≤ 1.

In result of varying the voltage U , a threshold Uc, below

which the electron stopped running away, was calculated.

For γ = 1(the case of a homogeneous field), as one would

expect, Uc is maximized and equal to EcD = 202.5 kV.

The local electric field enhancement near the tip at γ < 1

facilitates the transition of the free electron into the runaway

mode and consequently leads to a decrease in Uc. As the

degree of field inhomogeneity increases (i.e., as the value

of the exponent γ decreases), the value Uc monotonically

decreases, reaching a minimum ≈ 25.8 kV at γ = 1/2.

2. Local runaway criterion

We will call local a criterion, for which the key for

the transition of the electron into the runaway mode is

its dynamics in the region from which it starts. In our

case, this is the neighborhood of the apex of the wedge-

shaped cathode. It is assumed that if the electron has not

become thermal in this region, it will run away in the rest

of the gap as well. Thus, in a weakly inhomogeneous field

(dE/dx ≪ U/D2) the runaway condition of an electron

starting from some point x0, is the inequality E(x0) > Ec,

i.e., the runaway condition is clearly of local character —
all determines the field distribution at the starting point.

In the case of a sharply inhomogeneous field of interest to

us, such a criterion loses significance: the value of E(0)
formally goes to infinity at γ < 1.

A more adequate, yet still local, criterion may be pro-

posed, based on the requirement that the E > Ec condition

must be satisfied at the point x c, at which the electron gains

energy εc and, according to formula (5), the frictional force

is maximum. The position of this point in the vacuum

approximation (i.e., neglecting energy losses in collisions

with gas molecules) is determined from the equation

εc = eϕ(x c). The runaway threshold — magnitude Uloc in

terms of the voltage applied to the gap — is then found

from the condition E(x c) = Ec. Given the field and potential

distributions (3), we obtain a system of equations with two

unknowns Uloc and x c :

εc =
eUlocx

γ
c

Dγ
,

γUlocx
γ−1
c

Dγ
= Ec.

We find it from it

Uloc =
(εc

e

)1−γ
(

EcD
γ

)γ

, x c =
γεc

eEc

. (7)

The runaway criterion

U > Uloc(γ) (8)

can be considered local since under the considered condi-

tions at 1/2 ≤ γ ≤ 1 will be x c ≈ 2− 4µm, i.e., the point

x = x c is in close proximity to the cathode.

The dependence of Uloc on γ corresponding to (7) is

shown in Fig. 3 by the blue dashed line (in the online

version). It can be seen that the local runaway criterion (7),
(8) is exact in the trivial case of the homogeneous

field γ = 1, when Uloc = Uc = EcD = 202.5 kV. It gives

acceptable accuracy (i.e. Uloc ≈ Uc) for values of the

exponent γ approaching unity, i.e., for the case of a weakly

inhomogeneous distribution of the electric field in the gap

(a wedge with a large opening angle β). At the same time,

it is obvious from the figure that the criterion (7), (8) is

inapplicable for values γ close to 1/2 (wedge with small β).
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Thus, Uloc(0.5) ≈ 6.7 kV, which is almost four times smaller

than the numerically calculated value of Uc(0.5) ≈ 25.8 kV.

This means that in the case of a sharply inhomogeneous

field, the runaway criterion is not local, and the processes

both near the cathode and at the periphery will determine

the runaway threshold. We will discuss the reasons for this

behavior of electrons in Sections 3 and 4.

3. Reasons for the limitations
in applicability of the local runaway
criterion

Let us discuss the motion of an electron in space not

confined by the anode, i. e., when its energy can grow

unlimitedly with time. Let us compare the forces acting on

the electron eE and F at x → ∞. Suppose here eE ≫ F ,
i.e. the electron at the periphery moves as in vacuum,

and the energy gained by it will be determined by the

passed potential difference: ε(x) ≈ eϕ(x). In this case,

ε ∝ xγ , which allows us to estimate the friction force (5)
as F ∝ x−γ ln x . Comparing this force with the electric one

eE ∝ xγ−1, we find that our assumption of the dominance

of eE over F is valid at 1/2 < γ ≤ 1 and is violated by the

presence in (5) of a logarithmic multiplier at the single point

γ = 1/2, corresponding to the zero opening angle of the

wedge (blade cathode). This means that if an electron has

gone into runaway mode near the cathode, it will continue

to run away at the periphery at 1/2 < γ ≤ 1. At γ = 1/2,

in the x → ∞ limit, the frictional force F will dominate the

electric force eE . The electron will start to lose energy and

will inevitably become thermal.

Thus, the electron dynamics is qualitatively different

for the cases of γ = 1/2 and γ > 1/2. However, these

differences are evident in the limit x → ∞. In real situation,

when the trajectory of the electron is limited by the gap

0 ≤ x ≤ D, a smooth transition between these cases should

be expected when the value of the exponent γ decreases,

and the answer to the question of the conditions and

character of the runaway of electrons requires a more

detailed analysis.

4. Two modes of electron runaway

To illustrate the differences in RAE dynamics at dif-

ferent γ , we give characteristic distributions of the total

force acting on the electron f in the interelectrode gap

0 ≤ x ≤ D when the voltage U minimally exceeds the

threshold Uc. It is convenient to introduce a dimensionless

reduced (normalized by eE) force

f n ≡ f /(eE) = 1− F/(eE),

which for RAEs is always in the interval 0 < f n < 1. The

Fig. 4 shows the dependencies of f n(x) for γ = 0.5, 0.7,

0.9. They confirm our assumption about the different

nature of RAE behavior for different parts of the allowable

0 2.5 7.5

f n

0

0.25

0.50

1.00

0.75

5.0

g = 0.9
U = 131.2 kV

g = 0.7
U = 47.6 kV

g = 0.5
U = 25.8 kV

x, mm

Figure 4. Distributions of the reduced force acting on the

RAE f n in the interelectrode gap for γ = 0.5, 0.7, 0.9 at near-

threshold voltage values U ≈ 25.8, 47.6, 131.2 kV respectively

(gas — atmospheric air at pressure 760Torr and temperature

300K, D = 7.5mm).

range γ . For large γ (i.e. γ = 0.7 and 0.9 in Fig. 4) inside

the gap there is a pronounced minimum of the reduced

force f n, where its value approaches zero. When the voltage

decreases below the threshold Uc, the force would become

negative; in such a situation, the electron would begin to

lose energy, i.e., it would no longer be runaway. Above

the threshold, the value f n is positive at the minimum.

The electron continuously gains energy in the gap and also

formally in the region behind the anode x > D.

For relatively small γ (i.e. γ = 0.5 in Fig. 4) a

qualitatively different picture is observed. The induced force

decreases monotonically over the entire interval 0 ≤ x ≤ D,

reaching a minimum — zero — value at the anode x = D.

This means that the electron gains maximum energy at the

anode, and behind it formally begins to lose it.

Thus, two modes of electron runaway can be distin-

guished. The first mode — when the runaway threshold is

due to the presence of a force minimum f n inside the gap

(cases of γ = 0.7, 0.9 in Fig. 4). When this narrow spot is

overcome, the electron will continue to run away in the rest

of the gap. The second mode — when the minimum (for
the runaway threshold — zero) value of the reduced force

is at the anode (case γ = 0.5 in Fig. 4). In first mode, the

electron runs away at any x ≥ 0; in the second mode —
only inside the interelectrode gap 0 ≤ x ≤ D. Below, we

analytically formulate and analyze the runaway conditions

for both regimes.

5. Non-local runaway conditions

The above analysis indicates that the local runaway

criterion U > Uloc, based on the analysis of the behavior

of the electron at the place of its start — the vicinity of

the apex of the wedge-shaped cathode, — does not work

Technical Physics, 2023, Vol. 68, No. 9
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for close to 1/2 values of the exponent γ , i. e., at small

opening angles of the wedge (Fig. 2). This is due to the fact

that, as can be seen from Fig. 4, the relative contribution

of the friction force to the total force acting on the electron

increases as it moves toward the anode. In this situation, the

runaway threshold will not be determined by its dynamics

near the cathode, as was assumed in the formulation of the

local runaway criterion (7), (8).
We derive in this section the necessary nonlocal (i. e.,

taking into account the motion of the electron in the whole

gap) runaway criterion. To avoid confusion, we note that the

analyzed criterion has no relation to the nonlocal condition

of the absence of the Townsend multiplication of electrons

αiD ≤ 1 (here αi is multiplication factor), which the authors

[52] proposed to use as a runaway criterion. We will use the

method of successive approximations to derive the criterion.

In first, vacuum approximation, we neglect the friction

force F . The energy of the electron will then be deter-

mined by the potential difference it has traveled through:

εvac(x) = eϕ(x). In the next approximation we will take

into account the influence of the friction force, but for

its calculation we will use the energy of the electron

found at the previous step, i.e. εvac. The total force

acting on the electron is approximated as f (x , εvac(x)).
It is clear that the inequality εvac(x) ≥ ε(x) is always

true. According to Bethe (5) formula, the friction force

decreases monotonically with increasing ε at ε > εc, then

F(εvac(x)) < F(ε(x)) and f (x , εvac(x)) > f (x , ε(x)). This

means, that in the approximation used we overestimate

the total force acting on the electron. Consequently, the

runaway criterion derived from it will underestimate the

voltage threshold; it will be necessary but not sufficient.

Thus, by analogy with (6), the necessary nonlocal

runaway condition is

f (x , εvac(x)) = eE(x) − F(eϕ(x)) > 0, 0 ≤ x ≤ D (9)

and the threshold value of the applied potential difference U
for runaway will be the minimum value Unl, at which

inequality (9) is satisfied. Substituting expressions (3) into

(9), we obtain after simple transformations

γeU2x2γ−1

εcEcD2γ
− ln

(

2.718eUxγ

εcDγ

)

> 0.

To analyze this expression, it is important that its left-

hand side has a minimum at some x = xmin. It is found

from the condition that the derivative of the left-hand side

by x goes to zero, i.e.

γ(2γ − 1)eU2x2γ−2
min

εcEcD2γ
− γ

xmin

= 0.

From here we find that:

xmin =

[

εcEcD2γ

(2γ − 1)eU2

]

1
2γ−1

. (10)

In the trivial case of a uniform electric field (γ = 1,

β = 180◦), when the exact value of the threshold voltage

is EcD, formula (10) gives xmin = εc/(eEc) ≈ 4µm, i.e., the

minimum is in the vicinity of the cathode. This is exactly the

same as the analogous case of γ = 1 for the local runaway

criterion — see (7).
In the opposite limit of γ → 1/2, it follows from (10)

that xmin → ∞ (it is important for this conclusion that U
is finite). This means that for values of γ close to 1/2,

the minimum falls outside the range 0 ≤ x ≤ D, in which

condition (9) must be satisfied.

From this analysis, we can conclude that two types of

runaway criterion should be distinguished depending on the

value of γ . For the first type, the minimum (10) falls within

the interelectrode gap 0 < xmin < D, while for the second

type it is outside it, xmin ≥ D.

In the first case, after passing a
”
narrow“ place in

which the magnitude of the friction force F approaches the

magnitude of the electric force eE , the electron will run

away in the remaining part of the gap. Then to formulate

the runaway condition, it suffices to consider its behavior

at a single point xmin. The electron will run away if the

force f is positive in it. The threshold value for runaway

strength Unl1 (to be precise — its estimate from below)
corresponds to the force turning to zero:

f (xmin, εvac(xmin)) = 0, (11)

or, similarly, a pair of conditions f = 0 and d f /dx = 0,

simultaneously defining values xmin and Unl1. Substitut-

ing (10) into (11) and solving the resulting expression

with respect to U , we obtain the desired nonlocal runaway

criterion of the first type:

U > Unl1(γ), Unl1 =

(

εc

2.718e

)1−γ( EcD
2γ − 1

)γ

. (12)

Using (10) and (12), we find the position of the minimum

force f for the runaway threshold

xmin =
(2γ − 1)εc

eEc

exp

(

2− 2γ

2γ − 1

)

.

With the help of this expression, it is easy to find the

threshold value γc of the exponent γ , below which the first

runaway criterion (12) is not applicable. The threshold

corresponds to the situation where the position of the

force minimum falls on the anode, i.e. xmin = D (more

generally, the threshold γc is determined from the conditions

f |x=D = 0 and d f /dx |x=D = 0). We obtain the following

transcendental equation for γc:

(2γc − 1) exp

(

2− 2γc

2γc − 1

)

=
eEcD
εc

. (13)

It shows that γc depends logarithmically weakly on the

dimensionless complex eEcD/εc or, given that the critical

field Ec is proportional to the gas pressure p [6,35,37],
the product pD. Thus, when the value of eEcD/εc is

varied over a wide range from 800 to 8000 (with the

interelectrode distance D varying from 3mm to 3 cm),
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the value γc changes (decreases) only slightly, from 0.55

to 0.54. According to (2), the corresponding threshold

value of the wedge opening angle changes from 33◦ to 27◦.

For the example considered in this paper (D = 7.5mm,

Ec = 270 kV/cm, εc = 110 eV) we have for the right-hand

side of (13): eEcD/εc ≈ 1840. The solution of (13) is

then γc ≈ 0.546. The following threshold angle of the

wedge corresponds to this value of the exponent: βc ≈ 30◦

(the cathode configuration shown in Fig. 1 corresponds to

this angle value). Given the weakness of the dependence

of γc and βc on system size, the indicated values (0.546
and 30◦, respectively) can be considered universal. Thus,

the criterion (12) is applicable for γc ≤ γ ≤ 1, i. e., for

the case of a weakly inhomogeneous electric field. This

range of values of the exponent γ corresponds to a

wedge-shaped cathode with relatively large opening angles

30◦ < β ≤ 180◦ .

In the second case, the minimum (10) is either outside

the interelectrode gap, xmin > D, or absent altogether

(special case γ = 1/2). The reduced power f n then

decreases monotonically in the gap with distance from the

cathode and is minimal at the anode x = D. Then, for

the runaway of the electron, it is sufficient for the force

to be positive at the anode, i.e. f |x=D > 0. The threshold

voltage Unl2 corresponds to the force turning to zero:

f (D, εvac(D)) = 0.

We obtain from here a non-local runaway criterion of the

second type:

U > Unl2(γ), (14)

where threshold Unl2 is defined by the transcendental

equation

γeU2
nl2

εcEcD
= ln

(

2.718eUnl2

εc

)

. (15)

In a sufficiently wide range of parameters, the approxi-

mation can be used to determine Unl2:

Unl2 ≈
(

εcEcD
γe

(

1.95 + 0.5 ln
eEcD
γεc

))1/2

.

The criterion (14), (15) is applicable for

0.5 ≤ γ ≤ γc ≈ 0.546, i.e., for the case of a sharply

inhomogeneous electric field. This range of values of the

exponent γ corresponds to wedge-shaped cathodes with

small opening angles 0◦ ≤ β ≤ 30◦ .

So, the necessary nonlocal condition for runaway is

U > Unl(γ), Unl(γ) =

{

Unl2(γ), 1/2 ≤ γ ≤ γc,

Unl1(γ), γc < γ ≤ 1,
(16)

where the values Unl1 and Unl2 are determined by expres-

sions (12) and (15). The dependence of the threshold

voltage Unl on the exponent γ corresponding to (16) is

shown in Fig. 5 by the solid green line (in the online

version). The Uc(γ) (red dashed line (in the online

version)) and Uloc(γ) (blue dotted line (in the online
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Figure 5. The solid green line (in the online version) —
the threshold voltage Unl for electron runaway as a function of

the value γ according to the nonlocal criterion (16) (gas —
atmospheric air at pressure 760 Torr and temperature 300K,

D = 7.5mm); the green dot marks the γ = γc ≈ 0.546 boundary

of applicability of formulas (12) and (15), which determine the

values Unl1 and Unl2 . The results of the numerical calculation

of the threshold voltage Uc(γ) (red dashed line (in the online

version)) and corresponding to the local runaway criterion (7),
(8) dependence Uloc(γ) (blue dashed line (in the online version))
are shown for comparison. The inset — enlarged area of the

relatively small γ , the black dot shows the analytical evaluation of

the U0.5 ≈ 32.7 kV [44,48] voltage threshold for γ = 0.5.

version)) dependencies demonstrated earlier in Fig. 3 are

shown for comparison. It can be seen that taking nonlocal

effects into account allowed us to noticeably increase the

accuracy of the analytical runaway criterion in the range of

small, approaching 1/2, values of the exponent γ compared

to the local criterion. In particular, Unl(0.5) ≈ 16.4 kV,

which is much closer to the numerically calculated value

of Uc ≈ 25.8 kV than the local criterion, Uloc(0.5) ≈ 6.7 kV

(see insert in Fig. 5, where the range of 0.5 ≤ γ ≤ 0.6 is

given with magnification).
In significant part of the γc < γ ≤ 1 area, as can be seen

from Fig. 5, the nonlocal runaway criterion is quite weakly

different from the local criterion, i. e. Unl ≈ Uloc . This can

be attributed to the smallness of the ratio xmin/D when

the ratio is sufficiently large γ . So, for example, when

0.59 ≤ γ ≤ 1 it will be xmin/D < 0.01. A sharp increase

in xmin to a value D occurs only in the vicinity of the

boundary value of the exponent γ = γc . This means that

despite the non-local approach used in finding the Unl1(γ)
dependence, the runaway criterion itself at 0.59 ≤ γ ≤ 1

is actually local in nature. The transition of the free

electron into the runaway mode is determined by processes

in the immediate vicinity of the cathode, as for the coarser

criterion (7), (8).
We will discuss separately the runaway conditions

for γ = 1/2. This isolated case, corresponding to the

consideration of the blade cathode, was considered by us

in [44,48,49]. The progress in its analysis was due to the
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revealed possibility of solving the free electron equation

of motion exactly for large ε, when one can neglect the

weak logarithmic dependence on energy in the Bethe (5)
formula and consider F ∝ 1/ε. The threshold voltage U0.5

for this case, according to [44,48], can be estimated from

the transcendental equation

eU2
0.5

8εcEcD
= ln

(

2.718eU0.5

2εc

)

, (17)

differing from (15) by coefficients. For the values of D,

Ec, εc used in this study, formula (17) gives U0.5 ≈ 32.7 kV

(black square in the inset of Fig. 5), which slightly exceeds

the numerically calculated value of ≈ 25.8 kV. The reason

for this discrepancy is that in [44,48] the asymptotic

behavior of the electron at x → ∞, i.e., actually behind the

anode, was analyzed. In numerous calculations of Sec. 1 we

have, more correctly, considered the runaway of an electron

in a given gap 0 ≤ x ≤ D.

6. Runaway area; effect of magnetic field

Above we analyzed the threshold conditions of elec-

tron runaway and therefore limited ourselves to the

consideration of particles starting from the top of the

wedge: their transition to the runaway mode is the

most probable. Consider now the case where, for

a given γ , the applied voltage exceeds the runaway

threshold, U > Uc . In this situation, electrons starting

not only directly from the top of the wedge, but also

from some region of space surrounding the top will be

able to run away. Let us consider the geometry of

such a region, which we will call the runaway area

for the sake of brevity, and in connection with recent

works [20,51] its deformation under the influence of an

external homogeneous magnetic field B , directed along the

axis x.

Let us first define the configuration of the region of space

near the wedge apex in which the absolute value of the

electric field strength exceeds the runaway threshold, i.e.

E = Ec. Its boundary is given by the equality E > Ec. From

Eq. (1), we find

E =

√

(

∂ϕ

∂r

)2

+
1

r2

(

∂ϕ

∂θ

)2

=
γUrγ−1

Dγ
.

It follows that in the plane
{

x , y
}

the boundary is a circle

of radius

rc =

(

γU
EcDγ

)
1

1−γ

.

Since the E > Ec condition is a necessary local condition

for electron runaway, the sought runaway area falls inside

the circle r < rc, i. e. rc gives an upper estimate of its scale.

Let us consider the most important case for applications

γ = 1/2, when the wedge opening angle is zero and the

–150 –100 50 100 150

y,
m

m

–150

–50

–100

0

150

–50

rc

100

50

0
x, mm

B = 0, 1, 2, 3 T

Figure 6. Runaway areas in the vicinity of the blade cathode apex

for B = 0, 1, 2, 3 T (U = 50 kV, D = 7.5mm, gas — atmospheric

air at pressure 760Torr and temperature 300K). The dashed line

shows the area (circle of radius r c ≈ 114 µm) in which the electric

field strength exceeds the threshold Ec .

cathode is a blade (Fig. 6). In this case,

rc =
U2

4E2
c D

. (18)

Let us take for definiteness the voltage value of

U = 50 kV, which is about twice the runaway threshold

(recall that for γ = 1/2 it is about 25.8 kV). We obtain

rc ≈ 114 µm. Note that this estimate agrees with the

calculated in [19,24] dimensions of the near-cathode region

in which free electrons multiply as a result of impact

ionization of gas molecules and their subsequent transition

to the runaway mode.

In Fig. 6, the solid colored lines show the geometry

of the runaway areas for B = 0, 1, 2, 3 T. They were

determined on the basis of numerical calculations of the

three-dimensional dynamics of free electrons launched from

different points in the vicinity of the blade tip and moving

under the action of the Lorentz force and the friction

(braking) force in the gas. These areas fall, as expected,

inside the circle r = rc (black dashed line), where the

necessary local runaway condition E > Ec is satisfied. It

can also be seen that the runaway areas deform (decrease)
with increasing B due to the magnetization of electrons,

which prevents them from gaining energy under conditions

of crossed electric and magnetic fields. This situation is

realized, for example, when electrons start from the side

edges of the cathode.

Let us estimate the characteristic values of magnetic

induction at which the magnetic field begins to have a

significant effect on the RAE. In addition to the scale rc,

Technical Physics, 2023, Vol. 68, No. 9



1212 N.M. Zubarev, O.V. Zubareva, M.I. Yalandin

in the presence of a magnetic field there is an additional

scale — the Larmor radius (gyroradius) rg = mu/(eB),
where u =

√
2ε/m is the characteristic velocity of the

electron (we consider it nonrelativistic), m is its mass. It

is clear that in a rigorous analysis of the motion of the

electron the transverse and longitudinal with respect to the

direction of the vector B components of velocity should be

separated; however, for qualitative evaluations it is sufficient

to limit ourselves to the use of the absolute value of velocity.

Obviously, a relatively weak magnetic field, for which the

Larmor radius rg is much larger than rc, will have little

effect on the configuration of the runaway area. It starts to

deform noticeably if the Larmor radius rg is smaller rc . The
threshold value Bc of the magnetic induction is determined

from the condition rg = rc, which, taking into account the

definition of the Larmor radius and the formula (18) for rc
gives √

2mε

eBc

=
U2

4E2
c D

.

The electron energy in the runaway area is esti-

mated in the vacuum approximation from the scale rc :
ε ≈ eU

√
rc/D. Finally, we find

Bc ≈
4m1/2E3/2

c D1/2

e1/2U
.

For the parameters we consider, Bc ≈ 2.3T, which is

consistent with the results of numerical calculations of the

geometry of the runaway areas demonstrated in Fig. 6.

Significant changes in the shape of the runaway areas occur

at values of magnetic induction close to Bc. Importantly, Bc

falls within the range of 1−5T values used to control

RAE flows in [20,51]. This suggests the necessity to take

into account the deformation of the electron runaway area

under the influence of the magnetic field under experimental

conditions.

Conclusion

In work we analyzed the conditions of electron runaway

in a gas diode with a cathode representing an ideal (with

zero radius of curvature of the edge) wedge with an

opening angle in the range 0 ≤ β ≤ 180◦ . At such a

cathode configuration, the electric field distribution in the

interelectrode gap is essentially inhomogeneous. The field

strength satisfies the scaling of E ∝ rγ−1 with 0.5 ≤ γ < 1,

which provides that E formally turns to infinity at r → 0.

Using the example of an air gap with a length of

7.5mm, it was shown that the character of electron

runaway is qualitatively different for cathodes with relatively

large (βc ≤ β < 180◦; βc ≈ 30◦) and small (0 ≤ β ≤ βc)
opening angles. In the first case, when the electric

field distribution can be conventionally considered weakly

inhomogeneous, the transition of electrons to the runaway

mode is determined by their behavior near the top of the

wedge, from where they start. The relative contribution

of the friction force to the total force acting on the RAE

reaches a maximum here. This situation is in general

similar to the one arising for a homogeneous field. In

the second case — the case of a sharply inhomogeneous

field — the relative contribution of the friction force

increases with distance from the cathode, and the narrow

place determining the possibility of electron runaway is no

longer the near-cathode, but the near-anode part of the

gap.

The identified differences in the behavior of electrons at

different degrees of electric field inhomogeneity also lead to

different runaway conditions, (12) and (14), (15), applicable
for angles βc ≤ β ≤ π and respectively 0 ≤ β ≤ βc. Com-

parison of these conditions with the results of numerical

calculations showed qualitative agreement, see the graphs

Unl and Uc in Fig. 5. Note that the threshold value of the

opening angle βc depends very weakly (logarithmically) on

the dimensionless complex eEcD/εc . Thus, when eEcD/εc
is increased by an order of magnitude from 800 to 8000,

the angle changes relatively little: it decreases from 33◦

to 27◦ . This allows us to consider the evaluation of

βc ≈ 30◦, corresponding to the eEcD/εc ≈ 1840 case we

have discussed in detail, to be fairly universal.

The effect of an external magnetic field on the geometry

of the runaway area near the top of the wedge was also

investigated in this work. It was shown that it begins to

deform (shrink) noticeably at values of magnetic induction

in units of tesla when the Larmor radius for the RAE

becomes comparable to the scale of the region of the

subcritical (E > Ec) field near the tip. Just such fields

(B = 1−5T) were used to control the RAE flows in

recent experiments [20,51]. The noted compression of the

runaway area adequately describes the tendency of the

RAE current to decrease with increasing magnetic field

observed in the experiment [20], since the total current

depends on the area of the boundary of the ionized

region.
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