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The influence of quantum effects, such as spatial nonlocality and splitting of electron cloud near the surface,

on the extinction cross-section and field intensity in the gap between particles was analyzed via the Discrete

Source Method using a pair of plasmonic gold nanoparticles. In this case, spatial nonlocality is described within

the framework of the Generalized Nonlocal Optical Response Theory, while the splitting of the electron cloud is

accounted for by using the theory of mesoscopic boundary conditions with Feibelman parameters. It has been

found that mesoscopic boundary conditions lead to restoring of the plasmon resonance amplitude compared to the

volume nonlocal effect.
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Introduction

Processes arising from the interaction of light with

plasmonic metal nanostructures are of increasing interest to

researchers and technologists because the discovered effects

are widely used in various fields of science and technology,

including physics, biology and healthcare. Plasmonic struc-

tures allow the manipulation of light at the nanoscale and

make it possible to obtain strong, highly concentrated and

localized electromagnetic fields. This is achieved through

localized surface plasmon resonance (PR), a well-known

phenomenon that occurs in metal nanostructures due to

collective vibrations of free electrons under the effect of

external electromagnetic field. Plasmon resonance leads to

an increase in field intensity by several orders of magnitude

at a certain frequency of the external excitation, which

makes it possible not only to achieve a giant gain of the

field near the structure but also to concentrate and retain

it in volumes much greater than the Rayleigh limit. These

properties of plasmonic nanostructures form the basis of

numerous practical applications [1,2].

The interest in metal structures with nanogap character-

istics is mainly due to their use in important applications

in spectroscopy, associated, in particular, with experimental

results obtained in the study of single-molecule surface-

enhanced Raman scattering [3]. The maximum level

of sensitivity achieved in such structures is determined

precisely by the presence of localized surface plasmon

resonance associated with the presence of a nanogap, inside

which the increase in the electric field strength can be as

high as several orders of magnitude [4]. An example of

the implementation of such a plasmonic structure can be

paired particles (dimers) of noble metals. They are formed

in such a way as to minimize the gap between them. It

should be noted that modern synthesis technologies make

it possible to obtain a subnanometer gap ∼ 1 nm between

nanoparticles [5]. Paired particles are used to decipher the

spectra of individual molecules and implement biosensors

with a wide range of practical applications [6–8].

A decrease in the size of particles of noble metals leads

to the emergence of quantum effects in them, such as

bulk nonlocality and the release of free electrons beyond

the surface of the particles [9,10]. When studying paired

nanoparticles, it is customary to distinguish three gap

regimes depending on the size of the gap δ [11].

1. For δ ≥ 2 nm, classical Maxwell theory gives essen-

tially the same results as the nonlocal response approxima-

tion.

2. For 2 nm ≥ δ ≥ 0.5 nm, strong nonlocal effects appear,

and both local and nonlocal descriptions predict the same

qualitative behavior of optical characteristics, but significant

quantitative differences arise both in the PR amplitude and

its position in the frequency domain.

3. For δ ≤ 0.5 nm, the main role is played by quantum

effects, such as the spill out of electrons outside the metal

and the tunneling of electrons between nanoparticles [12].

It is important to note that in the case of paired particles,

the use of purely quantum research methods, such as the

time-dependent density functional theory (TDDFT) [13],
seems ineffective due to the significant volume of the

metal nanostructure, which requires enormous computing

power and time [14]. Therefore, in this case, quasi-

classical approaches have become more widespread. Among

them, the hydrodynamic Drude theory and its generaliza-

tion, the generalized nonlocal optical response (GNOR)
theory [15,16], should be highlighted. This theory allows

taking into account two bulk quantum effects: the appear-

ance of longitudinal fields inside plasmonic nanoparticles
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and the Landau damping. GNOR gives results that coincide

with other theories and experiment [17], however, it does
not take into accountthe spill out of electrons beyond the

surface, which may be critical when analyzing the spectral

characteristics of fields in the subnanometer gap of paired

nanoparticles [18,19] .
To take into account the surface quantum effect, surface

response functions (SRF) — Feibelman parameters [20]
have recently been developed. These parameters are

included in the so-called
”
mesoscopic“ boundary condi-

tions [21], which are a generalization of the classical

conditions for coupling the fields at the interfaces of

media with different characteristics, taking into account the

occurrence of induced surface charges and currents, with

the field inside the medium being described by classical

Maxwell’s equations. This approach is considered as the

missing link connecting the purely quantum description of

effects with the quasi-classical one [10,22].
This study, based on a modification of the Discrete

Sources Method (DSM) [23,24], investigates the influence

of quantum bulk and surface effects on the optical char-

acteristics of a pair of two gold spheroidal nanoparticles,

including the field intensity in the gap between them. Two

models are considered in the study: the GNOR theory [16]
and the theory with mesoscopic boundary conditions —
SRF [22]. It should be reminded that DSM is a numerical-

analytical method where fields in the vicinity of surfaces

of the scattering structure are represented by analytical

functions. Therefore, the presence of surface divergence

in mesoscopic boundary conditions [22] does not pose any

particular difficulties for the numerical implementation of a

new DSM computational scheme.

Statement of the boundary problem of
diffraction

We will consider the problem of diffraction of a plane

P-polarized electromagnetic wave {E0,H0} on a pair of

identical axisymmetric homogeneous nanoparticles having

a common axis of rotation (Fig. 1). As it is established

in [23], the most noticeable PR occurs precisely in the case

of P-polarization. Let us denote the internal regions of the

particles as D1,2, and denote the external region as De . The

corresponding smooth particle surfaces will be denoted as

∂D1,2 ∈ C(2,τ ). Assume that all media are non-magnetic,

and the time dependence is chosen in the form of exp( jωt).
When particle sizes are less than 20 nm, bulk nonlocality

arises inside them [15], which leads to the emergence

of longitudinal (irrotational) fields in addition to classical

transverse (divergence-free) fields. Following the approach

of [24], we will use the GNOR theory in this case.

Let us proceed to a description of the SRF theory and

consider the mathematical formulation of the diffraction

problem with mesoscopic boundary conditions.

In the external region, the scattered field {Ee,He}
satisfies the system of Maxwell’s equations of the following
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Figure 1. Geometry of the problem.

form

rotHe = jkεeEe ; rotEe = − jkHe ; in De . (1)

Inside the particles, the total field {Ei,Hi} satisfies the

classical system of Maxwell’s equations

rotHi = jkεiEi ; rotEi = − jkHi ; in Di . (2)

The following boundary conditions are satisfied on the

particle surface:

ni × (Ei (P) − Ee(P) − E0(P)) =

− d⊥ni ×∇
{

ni · (Ei(P) − Ee(P) − E0(P))
}

,

ni(Hi(P) −He(P) −H0(P)) =

− jωd‖

{

ni × [Di(P) − De(P) − D0(P)]
}

× ni ; P ∈ ∂Di .

(3)
At infinity, the scattered field satisfies the Silver-Müller

radiation conditions [25]

lim
r→∞

r
(√

εe Ee ×
r
r
−He

)

= 0; r = |M|. (4)

Here εe,i are dielectric constants of the media in the

corresponding areas, ni are unit external normals to the

surfaces ∂Di , respectively, with Imεe = 0, Imεi ≤ 0,

k = ω
c , D is displacement of the electric field.

The Feibelman parameters d⊥, d‖ for a flat interface

(y = 0) are formally defined as follows [10]:

d⊥(ω) =

∫

ρ(x , ω)xdx
∫

ρ(x , ω)dx
, d‖(ω) =

∫

∂x Jy(x , ω)xdx
∫

∂x Jy(x , ω)dx
,

where ρ(x , ω) is density of surface charges induced by

an external field, and J(x , ω) is density of currents. It is

assumed that at the metal-dielectric interface the normal

component of the current of free charges is zeroed, therefore

d‖(ω) = 0 [22]. d⊥(ω) is a complex quantity, its real part

corresponds to the center of mass of the electron cloud of

induced charges, the imaginary part describes the Landau

damping. For gold: d⊥ ∼ 1 nm.

Assume that the boundary problem of diffraction (1)−(4)
is solvable in a unique way. In the case of a homogeneous

sphere, this was established in [26].
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Discrete Sources Method

To solve the boundary problem of diffraction (1)−(4), we
will use the Discrete Sources Method (DSM) [23,24], which

is a rigorous numerical-analytical surface-oriented method.

Within the DSM, the representation for the approximate

solution in each of the regions D1,2,e is built up as a

finite linear combination of fields of lower order multipoles

distributed along the symmetry axis of the particle [23].
This representation meets the system of Maxwell’s equations

everywhere outside discontinuities in the characteristics of

the medium and satisfies the radiation conditions at infinity

in an explicit analytical form. The corresponding DS

amplitudes are determined from the boundary conditions

specified at the interfaces of different media ∂D1,2. DSM

allows estimating the error of the resulting solution by

calculating the discrepancy of fields on the surfaces of

particles. The latter circumstance makes it possible to

calculate the optical characteristics of fields in the gap

between particles with a given accuracy.

Let us start by constructing an approximate solution to the

boundary problem (1)−(4) for the case of P-polarization of

an incident plane wave. It is in this case that the most

noticeable PR arises [23]. The external excitation field in

this case can be written as

E0 = (ex cos θ0 + ez sin θ0)χ(x , z );

H0 = −√
εeeyχ(x , z ), (5)

where χ(x , z ) = exp{− jke(x sin θ0 − z cos θ0)},
ke = k

√
εe, and (ex , ey , ez ) is Cartesian basis.

We will build up fields in the regions D1,2,e based on

the vector potentials induced by sources distributed along

the symmetry axis of the scatterer. The potentials can be

written in the following form [23]:

A1,α
mn = Y α

m (ζ , z α
n ){eρ cos[(m + 1)ϕ] − eϕ sin[(m + 1)ϕ]};

α = 1, 2, e;

A2,α
mn = Y α

m (ζ , z α
n ){eρ sin[(m + 1)ϕ] + eϕ cos[(m + 1)ϕ]};

A3,α
n = Y α

0 (ζ , z α
n )ez .

Here the corresponding functions have the following form

Y i
m(ζ , z i

n) = h(1)
m (k i Rz i

n
)

(

ρ

Rz i
n

)m

,

Y e
m(ζ , z e

n) = h(2)
m (keRz e

n
)

(

ρ

Rz e
n

)m

,

where h(1,2)
m are spherical Hankel functions, k i,e = k

√
εi,e ,

ζ = (ρ, z ), ρ2 = x2 + y2, R2
z n

= ρ2 + (z − z n)
2,

{z α
n}

Nm
α

n=1 are coordinates of discrete sources. A special

feature of the DSM application for the case of analysis

of paired particles is the representation of an approximate

solution for internal fields [23]. Whereas the classical

scheme of the method represents internal fields through

spherical Bessel functions [24], and {z i
n} are located

inside Di , in our case Hankel functions h(1)
m are used

to represent them, and the sources are located outside

Di , in the complex plane passing through the origin and

perpendicular to the axis of rotation. That is, the z i
n

coordinates are complex: Rez i
n = 0, and Imz i

n are located

symmetrically relative to the axis of rotation OZ [23], taking
both positive and negative values (Fig. 1).
Taking into account the above, the field representations in

the case of P polarization take on the following form:

EN
α =

M
∑

m=0

Nm
α

∑

n=1

{

pα
mn

j
kεα

rotrotA1,α
mn + qα

mn
j
εα

rotA2,α
mn

}

+

N0
α

∑

n=1

rαn
j

kεα
rotrotA3,α

n ;

HN
α =

j
k
rotEN

α , α = i, e. (6)

It is easy to verify that constructed fields (6) satisfy all

conditions of the diffraction boundary problem (1)−(4)
with the exception of boundary conditions (3). These

are exactly the boundary conditions, from which the un-

known amplitudes of discrete sources pN
m = {pα

mn, qα
mn, rαn},

α = i, e are determined directly.

Once the amplitudes of the discrete sources have been

determined, the scattered field can be calculated using rep-

resentation (6). An important characteristic that describes

the scatterer’s response to external excitation is the scattered

field radiation pattern. It is determined as [25]

Ee(M)/|E0(M)| =
exp(− jker)

r
F(θ, ϕ) + O(r−2), r → ω.

Following the asymptotics of scattered field (6), θ, ϕ

components of the radiation pattern for the P polarization

take on the following form:

FP
θ (θ, ϕ) = j

M
∑

m=0

( j sin θ)m cos(m+1)ϕ

Nm
e

∑

n=1

{pe
mn cos θ+qe

mn}

× exp{ jkez e
n cos θ} − j sin θ

N0
e

∑

n=1

re
n exp{ jkez e

n cos θ},

(7)

FP
ϕ (θ, ϕ) = − j

M
∑

m=0

( j sin θ)m sin(m + 1)ϕ

×
Nm

e
∑

n=1

{pe
mn + qe

mn cos θ} exp{ jkez e
n cos θ}.

Another important characteristic when studying the diffrac-

tion by nanoscale structures is the extinction cross-section; it

is this parameter that shows how much energy the structure

takes for the absorption and scattering from the field of
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a plane wave. It should be noted that the extinction

cross-section is a few orders of magnitude greater than

the scattering cross-section. In relation to the diffraction

problem under consideration, the extinction cross-section

will be determined as follows:

σ P
ext(θ0) = −4π

ke
ImFP

θ (π − θ0, π). (8)

The extinction cross-section is measured in nm2. In addition,

we will also analyze the behavior of the field gain (G) in

the gap between particles in the region of wavelengths λ:

F(λ) = |EN
e + E0|2/|E0|2. (9)

This quantity is dimensionless.

Numerical results

Let us proceed to the discussion of the results of

numerical modeling. The quantum parameters for the

GNOR model for gold are taken from [16]:

~ωp = 9.02 eV, ~γ = 0.071 eV, vF = 1.39 · 1012 µm/s,

D = 8.62 · 108 µm2/s.

Particles that make up the pair will be considered as

prolate spheroids, which are often encountered in appli-

cations [8]. Let us fix the equivolume diameter of each

particle as D = 15 nm and vary the ratio of the axes of the

spheroids r = b/a . We denote the gap between the particles

as δ and assume that the particles are in water (ne = 1.33).
The refraction index of the gold shell was calculated taking

into account the frequency dispersion of the material [27].
In turn, values of the Feibelman parameter d⊥ for gold were

taken from experimental data [28].
Since the values of d⊥ significantly depend on the

characteristics of the environment external to the metal, we

used a correction of the values of d⊥ measured for the gold-

air interface. The correction is based on the following ratio:

εi + 2εe −
2

R
(εi − εe)d⊥ = 0,

obtained in the case of PR for a sphere with a radius of R
in [26]. From the latter relationship it follows that

d⊥ = 0.5R
εi + 2εe

εi − εe
. (10)

Unfortunately, it is impossible to determine
”
numerical“

value of the parameter d⊥ from (10), because it depends on
the radius of the sphere, however, it is possible to correct

the experimentally obtained values of d0
⊥ for the metal-air

interface for the metal-dielectric case, for example for water.

To do this, it is sufficient to write relationship (10) for two

different media and exclude the radius of the sphere. The

result is as follows:

d⊥ = d0
⊥

εi + 2εe

(εi − εe)

(εi − 1)

εi + 2
. (11)

Fig. 2 shows the results of solving the problem of

diffraction of a plane wave by paired spheroids with the

ratio of the axes r = 2 and the gap between them δ = 1 nm;

the angle of incidence of the plane wave was taken equal

to 90◦ . As it was established earlier in [23], at this angle of

incidence the maximum PR amplitude is achieved. Fig. 2, a

shows graphs of extinction cross-section (8) for the local

case (LRA), bulk nonlocal case (GNOR), and the case of

mesoscopic boundary conditions (SRF). As a result of tests

for the precision of results in terms of residual error for the

parameters corresponding to Fig. 2, a, we have succeeded

in establishing the following. The relative residual error

of the field in the mesh norm L2 on the particle surface

1 ≤ 0.5% guarantees three correct digits of the extinction

cross-section σ P
ext for the cases of LRA and SRF. As for

the GNOR case, the residual value 1 ∼ 0.5% guarantees

an error of the results of the same order: 1σ P
ext ∼ 0.5%.

Moreover, in the results shown in Fig. 2, a the GNOR error

was equal to unity of the third digit of the extinction cross-

section. More detailed information about the relationship

between the error in the results of solving the diffraction

problems for nanoobjects with surface the residual value is

given in [29].
Fig. 2, b shows results for the field enhancement factor

(EF) in the gap (9) for a pair of spheroids with the same

parameters. From the results shown in the figures, it is

clear that, in comparison with the nonlocality bulk effect of

GNOR, the use of mesoscopic boundary conditions leads to

a significant restoration of the PR amplitude and a decrease

in the shift toward the short-wavelength region. This is

especially noticeable in the graphs of the field enhancement

factor in the gap. It should be noted that the latter result is

not unexpected, because the Feibelman parameter describes

the surface effect of nonlocality, which plays a significant

role when particles approach each other.

Fig. 3 shows the calculation results obtained for a fixed

gap of δ = 1 nm between particles with different axis ratios.

In all cases, the equivolume diameter of each particle was

constant, D = 15 nm. Fig. 3, a shows the behavior of the

extinction cross-section. It is obvious that as the elongation

of the spheroids increases, the amplitude increases but the

shift in the frequency domain changes insignificantly. The

PR amplitude for the surface quantum effect turns out to be

slightly smaller than that in the classical case, and the shift

toward the short-wavelength region is less than 10 nm.

Fig. 3, b shows similar results for the gain. In this case,

a change in the elongation of particles leads to a significant

shift in the position of the PR in the wavelength region.

For example, the position of the PR during deformation

from r = 2 to r = 4 changes by 200 nm! As before, the PR

amplitude for SRF turns out to be smaller than that in the

classical case, and the decrease ranges from 30% to 50%.

Fig. 4 shows the calculation results obtained for a fixed

elongation of spheroids r = 3 and a varying gap between

particles δ = 2, 1, 0.5 nm.

Fig. 4, a shows graphs of the extinction cross-section, and

Fig. 4, b shows corresponding graphs of the enhancement

Optics and Spectroscopy, 2023, Vol. 131, No. 8
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factor of intensity in the gap. It can be seen from Fig. 4, a

that decrease in the gap results in a slight decrease in the

PR values and its noticeable shift to the long-wavelength

region of the spectrum. The PR amplitude for the SRF case

decreases by no more than 15% compared to the classical

case. More noticeable changes can be seen in Fig. 4, b,

where similar curves for enhancement factor are shown.

In this case, a decrease in the gap entails an increase in

the PR by almost an order of magnitude with a shift to the

long-wavelength region by almost 50 nm. At the same time,

the decrease in the PR value for surface nonlocality can be

as strong as 50% with a shift of the order of 10 nm.

After considering the results obtained, one general

remark should be made. In noble metals (gold, silver), the
splitting of the electron cloud near the surface occurs in such

a way that its center is located inside the metal (the so-called
spill in) (see Fig. 5) in contrast to metals of the alkali group

(sodium), where the electron cloud leaks outward (spill
out). This is why in the case of paired Na particles it is not

possible to reliably describe the results for δ < 1.5 nm [19].
In our case, the center of the electron cloud shifts inside

the particles, because Red⊥ < 0, which actually leads to
”
a

decrease“ in particle size and, accordingly, to
”
an increase“

in the gap width δ . These circumstances entail a decrease in

the PR amplitude and a shift to the short-wavelength region

(blue shift) in the case of surface quantum effects.

Conclusion

The following main results were obtained in this study.

1. The Discrete Sources Method was adapted to the

investigation of the influence of surface quantum effects de-

scribed by mesoscopic boundary conditions with Feibelman

parameters.

2. As a result of a comparative analysis of bulk and

surface nonlocality, it was established that taking into

account surface quantum effects leads to the restoration of

the PR amplitude. A similar situation has already been

noted for isolated spheres in [30].
3. It is shown that the surface quantum effect, compared

to the classical local case, leads to a decrease in the

PR amplitude and a slight shift to the region of short

wavelengths. This circumstance is a consequence of the

effect of pressing the electron cloud, induced by an external

field, into the particles, which corresponds to a decrease in

the particle size and an increase in the gap size.
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