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A non-empirical relativistic calculation of the potential energy curve of the ground X16+ state of the carbon

monoxide (CO) molecule in the internuclear distances range RAB ∈ [0.5, 30.0] a.u. is performed. The calculation

is carried out by the multireference configuration-interaction method in the basis of the Dirac-Fock-Sturm orbitals.

For the entire specified range of distances, multi-electron quantum-electrodynamic corrections to the CO energy

are calculated by the method of the model Lamb shift operator. The contributions of the quantum electrodynamic

corrections to the value of the equilibrium internuclear distance Re
AB , the dissociation energy De and the vibrational

constant ωe of the CO molecule are obtained.
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1. Introduction

As one of the most widespread molecules in the uni-

verse [1–3], carbon monoxide (CO) is an important object

of study in modern physics and astrophysics. Accurate

spectroscopic data on the CO molecule make it possible

to study the isotopic composition of the Sun [4], the history

and development of the Solar System [5], galactic structures
and star formation [6]. The CO molecule plays an important

role in the chemistry of the atmosphere of Mars [7],
Venus [8], as well as gas giant exoplanets [9]. In addition,

carbon monoxide (a gas made from CO molecules) is an

essential component of the earth’s atmosphere, because

chemical reactions with it form CO2 and O3 pollutants,

which are greenhouse gases [10–13] and negatively affect

human health [14]. Studying the concentration of CO

in different regions of the planet allows monitoring the

dynamic processes in the earth’s atmosphere [15]. The

analysis of many experimental results and observations

requires theoretical data on the spectroscopic parameters

of the CO molecule.

One of the important spectroscopic characteristics of a

molecule is the potential energy curve. It can be used

to calculate vibrational frequencies, equilibrium internuclear

distance, dissociation energy and other properties of the

molecule. Theoretical studies of potential energy curves for

low-lying CO states have been performed by many research

groups. In [16–22] various semi-empirical methods were

used. Some sections of the potential energy curve of the

CO molecule were calculated by ab initio methods [22–26].
However, the need to calculate the potential energy curve

of the CO molecule using a single ab initio method remains

urgent in a wide range of internuclear distances both in the

region of the potential minimum and in the region of the

dissociation limit.

To compare the results of high-precision theoretical

calculations with experimental data, especially for molecules

containing heavy atoms, it may be necessary to take into

account quantum electrodynamic (QED) contributions to

the electronic energy of the molecule. Rigorous ab initio

calculation of QED-corrections in multielectron atoms and,

especially, in multielectron molecules is a very complex

and time-consuming task. Previously, ab initio calculations

of QED-corrections were carried out only for one-electron

quasi-molecules containing heavy nuclei [27,28] and the

simplest light molecules H2, HD, H+
2 [29]. In [30], the

model operator method [31] was used to calculate QED-

corrections in one-electron quasi-molecules. Some modi-

fication of this method was used in calculations of heavy

molecules [32,33]. In [34,35], to take into account the

QED-corrections in molecules, the model radiative operator

proposed earlier in [36] was used. The contribution of the

Lamb shift to the energy of the ground state of the CO

molecule at an equilibrium distance was assessed in [25]
using a semi-empirical method.

The first attempts to use the basis of non-relativistic

Sturmian functions in calculations of the electronic structure

of atoms were made by M. Rotenberg [37]. The application

of the basis of Sturmian functions in calculations of atoms

using the non-relativistic Hartree-Fock method is presented

in [38]. The use of the multireference configuration-

interaction method in the Dirac-Fock-Sturm orbital basis

(MRCI-DFS) in relativistic calculations of atoms is de-

scribed in our study [39], see also [40,41]. One of the

main objectives of this study was the development of the

relativistic MRCI-DFS method for calculating the potential
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energy of diatomic molecules. In this study, this method was

used to calculate the potential energy curve of the ground

state X16+ of the CO molecule in the region of internuclear

distances of 0.5−30.0 a.u.

Another task was to develop a method for calculating

QED-corrections to the electronic energy of multielectron

diatomic molecules, based on the use of a model QED

operator. For a description of this model operator and its

application in calculations of QED-corrections in multielec-

tron atoms and ions, see [31,42–44]. Earlier in [30], the

model operator method was applied in the calculations of

QED-corrections in one-electron diatomic quasi-molecules.

In this study, the scope of application of the model QED

operator is extended to multielectron diatomic molecules.

Using the model QED operator method, we calculated

QED-corrections to the energy of the ground state of

the CO molecule in the region of internuclear distances

of 0.5−30.0 a.u. In addition, the contribution of QED-

corrections to the equilibrium internuclear distance Re
AB ,

dissociation energy De and vibrational constant ωe of the

CO molecule was calculated.

This study is structured as follows. The second section de-

scribes the theoretical methods used in this study. The third

section presents the results obtained, their discussion and

comparison with literature data.

By default, the study uses the atomic system of units

(e = m = ~ = 1), unless otherwise specified.

2. Theoretical methods

Calculations of the energy of a CO molecule as a function

of the internuclear distance in this study were performed

in the Born-Oppenheimer approximation. To solve the

molecular many-electron Dirac equation, the MRCI-DFS

method was used. The Dirac-Coulomb (DC) Hamiltonian

was taken as the Hamiltonian of the molecular system:

ĤDC = 3(+)
[

ĤD + V̂C

]

3(+). (1)

Here ĤD is the sum of the one-electron Dirac Hamiltonians

ĤD =

N
∑

i

ĥD(i), (2)

where

ĥD = c(α · p) + mc2(β − 1) + VAB(r), (3)

p is the momentum operator, α and β are the Dirac

matrices, VAB is the potential created by nuclei:

VAB(r) = V A
nucl(r − RA) + V B

nucl(r − RB), (4)

RA, RB are the radius vectors of nuclei A and B , respectively.

When building up the nuclear potentials V A,B
nucl (r), the finite

size of the nucleus was taken into account. The values of the

root-mean-square radii of carbon and oxygen nuclei were

taken from [45]. The interelectronic interaction operator V̂C

in equation (1) is determined as follows

V̂C =
1

2

N
∑

i 6= j

1

r i j
, r i j = |r i − r j |. (5)

The projectors 3(+) in Hamiltonian (1) are the direct

product of the one-electron projectors and the positive

spectrum of the Dirac-Fock (DF) operator. In this study,

the Breit interaction is omitted. It can be taken into account

separately [25].
The multielectron wave function 9� with a certain value

of the projection � of the total angular momentum onto

the internuclear axis is represented as a linear combination

of Slater determinants built up on one-electron molecular

orbitals

9� =
∑

β

Cβ(�)detβ(�). (6)

In the case of closed shells, as is the case for the ground

state of the CO molecule, the projection is � = 0. For

each internuclear distance RAB = |RA − RB |, the problem

of determining the coefficients Cβ(�) is reduced to an

eigenproblem

HDCC(�) = EDC(�)C(�), (7)

where HDC is matrix of the DC Hamiltonian in the Slater

determinant basis, C(�) is column vector consisting of

expansion coefficients (6).
Molecular orbitals ψi(r) are expanded in a two-center

basis of DFS orbitals centered at points A and B

ψi(r) =
∑

α=A,B

∑

a

ui
α,aφα,a (r − Rα). (8)

The DFS basis functions φα,a (r − Rα) are central field

Dirac bispinors centered on nuclei A and B . The subscript

a = n, κ, m represents the quantum numbers of the basis

functions, n is principal quantum number, κ is Dirac angular

quantum number, m is angular momentum projection. The

expansion coefficients ui
α,a of molecular orbitals ψi(r) over

the DFS basis are solutions to the two-center DF equations

in matrix form

FU i = εi SU i , (9)

where F is standard Fock matrix in the restricted DF

method in the basis of the one-electron DFS functions, S is

the non-orthogonality matrix (matrix of overlap integrals),
U i is column vector of expansion coefficients (8).

The basis of the one-electron DFS functions is constructed

as follows. The orbitals of occupied and partially occupied

states 1s , 2s , and 2p of C and O atoms are determined

by numerically solving the integro-differential DF equa-

tions [46]. Virtual orbitals are Sturmian functions, which

are numerical solutions to the so-called Dirac-Fock-Sturm

equation

(ĥDF − ε0)φ j = λ jW (r)φ j , (10)
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where ĥDF is DF operator, ε0 is reference energy, which

is the energy of DF orbitals ns , np or nd, W (r) is weight

function of the following form

W (r) =

[

1− e−(ar)2

(ar)2

]n

. (11)

The parameters a and n are selected in a certain way

in order to achieve the fastest convergence of the energy

EDC(�) in terms of the number of virtual orbitals. The

relativistic DFS equation is described in more detail in [39–
41,47].
To implement the CI-DFS method for diatomic

molecules, it is necessary to calculate one-electron and

two-electron two-center matrix elements with the DFS

basis functions numerically specified on the radial grid.

In this study, the calculation of two-center matrix elements

with such functions is based on the use of a symmetric

expansion [47–49] of the product of two orbitals of different

centers. This symmetric expansion is a modification of

Lewdin’s re-expansion [50] of the atomic orbitals of one

center to another. The procedure for calculating one-

electron relativistic matrix elements of the Dirac operator

was described in detail earlier [47]. Expressions for

two-electron two-center matrix elements are much more

cumbersome. Some of them are described in [51].
Calculations of QED-corrections to the electronic energy

of the ground state of the CO molecule were performed us-

ing a model QED operator, which is described in [30,31,42–
44]. The model QED operator is constructed in such a way

as to reproduce the exact values of the matrix elements

of single-loop QED contributions for low-lying states of

hydrogen-like ions. In calculations of QED-corrections to

the energy of the CO molecule, the finite field method

was used, i. e. the model operator was added to the Dirac-

Coulomb Hamiltonians (1) and DF (ĥDF). In addition, the

matrix elements of the model operator were added to the

Fock matrix F . Thus, QED contributions were taken into

account when building up the DFS basis, when solving the

molecular DF equations (9), as well as when calculating

the matrix HDC. The QED-correction to energy was defined

as the difference between the total electronic energy of

a molecule with and without the inclusion of a model

operator.

3. Calculation results

For the ground state of the 12C16O molecule, calculations

of the potential energy curve were performed in the

Born-Oppeheimer approximation in the interatomic distance

range of 0.5−30.0 a.u. When building up the configuration

space, all possible single and double excitations from several

reference configurations into the spaces of active and virtual

orbitals were considered. In this study, the DFS functions

with the principal quantum number n ≤ 5 and the orbital

quantum number l ≤ 3 were used as a one-electron basis set

at each center, and 6s -orbital DFS was additionally added.
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Figure 1. Dependence of the potential energy of the ground

state X16+ of the CO molecule as a function of the internuclear

distance, calculated by the CI-DFS method, as well as comparison

with the semi-empirical curve from [22].

The lowest molecular orbitals formed by the 1s orbitals of

each atom were included in the frozen core and thereby

excluded from the active space.

Fig. 1 and 2 show the results of calculations of the

potential energy curve of the CO molecule obtained in this

study (thick dots) and the semi-empirical potential energy

curve (solid line) taken from [22]. Fig. 1 presents the results

obtained in a wide range of distances RAB ∈ [0.5, 5.5] Å,

and Fig. 2 shows in more detail the region of minimum

of the potential curve. The analytic curve approximating

experimental data and ab initio calculations obtained in [22]
has a correct behavior in a wide range of interatomic dis-

tances and, in particular, at RAB → 0 and in the dissociation

limit. Comparison of the results of our calculations with the

semi-empirical data presented in Fig. 1 and 2 shows that the

points of the potential energy curve obtained in this study

are in good agreement with the semi-empirical curve [22].
Further, the QED-corrections to the total energy of the

CO molecule were calculated. When calculating QED-

corrections, 3s, 3p functions for each atom were used

as atomic virtual orbitals. Fig. 3 shows a graph of the

magnitude of the QED-corrections as a function of the

internuclear distance. It can be seen from Fig. 3 that the

depth of the minimum of the QED-correction curve is of

the order of 3 cm−1.

Using the potential energy curve obtained in this study,

the equilibrium internuclear distance Re
AB , the dissociation

energy De, and the vibrational constant ωe of the CO

molecule were calculated. In addition, the contributions of

QED-corrections to the above-listed spectroscopic constants

were calculated. The values of Re
AB and ωe were determined
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Figure 2. Dependence of the potential energy of the ground

state X16+ of the CO molecule as a function of the internuclear

distance, calculated by the CI-DFS method, as well as comparison

with the semi-empirical curve from [22].
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Figure 3. Dependence of QED-corrections to the potential energy

of the ground state X16+ of the CO molecule on the internuclear

distance, calculated using the model QED operator method.

using the OpenMolcas software package. The dissociation

energy De was obtained as the difference between the total

energy of CO at a distance of 30 a.u. and the energy at the

minimum of the potential curve.

The table shows values of Re
AB ,De and ωe obtained in this

study, taking into account QED-corrections (3-rd column)

Results of calculation of the equilibrium interatomic distance

Re
AB (Å), dissociation energy De (cm−1), and vibrational constant

ωe (cm −1) and comparison with the data of [19]

Parameter DC DC+QED [19]

Re
AB (Å) 1.1284 1.1284 1.1282

De (cm−1) 88066 88068 90674

ωe (cm−1) 2104.4 2104.5 2163.6

and without taking into account QED-corrections (2-nd
column). A comparison is given with the results of [19]
presented in the 4-th column of the table. The values of

Re
AB , De were determined using the semi-empirical potential

WBO [19]. The ωe constant was obtained as double the value

of G0 from [19].
As can be seen from the table, taking into account the

QED-correction has virtually no effect on the value of the

equilibrium distance. Indeed, the value of Re
AB , calculated

both without and with QED-corrections, is 1.1284 Å. This

value agrees well with the equilibrium distance 1.1282 Å
obtained in [19]. The dissociation energy De, calculated

using the DC Hamiltonian, is equal to 88066 cm−1. The

value of the QED-correction to the dissociation energy

calculated by us is of the order of 3 cm−1, which can be

compared with the estimate of 3−4 cm−1 obtained in [25]
by semi-empirical scaling of the one-electron Darwin term.

The difference between our value of De and the result

of [19] is approximately 3%. The value of the vibrational

constant ωe , obtained without taking into account QED-

corrections, is 2104.4 cm−1. The inclusion of the model

QED operator in the calculation introduces a very small

correction to this value of the order of 0.1 cm−1. The

difference between the value of ωe in this study and the

value from [19] is at the level of 3%.

Of course, the values of QED-corrections for the CO

molecule are negligible compared to the error in the values

of the spectroscopic constants we obtained. However, the

values of QED-corrections may be of independent interest

and can be taken into account when comparing the results

of more accurate calculations with experimental data. In

addition, the method we developed for calculating QED

contributions to the spectral characteristics of diatomic

molecules can be useful in calculating the electronic

structure of molecules containing heavier atoms.

4. Conclusion

In this study, the potential energy curve of the

CO molecule is calculated for internuclear distances

RAB ∈ [0.5, 30.0] a.u. by the method of configuration

interaction in the basis of Dirac-Fock-Sturm orbitals. For

these distances, multielectron QED-corrections were also

calculated using the method of model QED operator. In

addition, the equilibrium internuclear distance Re
AB , the

dissociation energy De, and the vibrational constant ωe of

Optics and Spectroscopy, 2023, Vol. 131, No. 8
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the CO molecule were calculated taking into account QED-

corrections. Comparison of the resulting potential energy

curve, as well as the molecular constants, with the data

from previous studies shows reasonable agreement of the

results.
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cellet, J.D. Paris, P. Nédélec, G.S. Diskin, J.R. Podolske,

J.S. Holloway, P. Bernath. Atmos. Chem. Phys., 10 (21), 10655
(2010).

[13] C. Beale, E. Buzan, C. Boone, P. Bernath. J. Mol. Spectrosc.,

323, 59 (2016).
[14] K.L. Ebi, G. McGregor. Environ. Health Perspect., 116 (11),

1449 (2008).

[15] C. Clerbaux, M. George, S. Turquety, K.A. Walker, B. Barret,

P. Bernath, C. Boone, T. Borsdorff, J.P. Cammas, V. Catoire,

M. Coffey, P.F. Coheur, M. Deeter, M. De Mazière, J. Drum-

mond, P. Duchatelet, E. Dupuy, R. de Zafra, F. Eddounia,

D.P. Edwards, L. Emmons, B. Funke, J. Gille, D.W.T. Griffith,

J. Hannigan, F. Hase, M. Höpfner, N. Jones, A. Kagawa,
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Puertas, M. Luo, E. Mahieu, D. Murtagh, P. Nédélec,
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