13,18 К аналитической теории резистивного биосенсора на основе графена

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

Поступила в Редакцию 11 ноября 2023 г. В окончательной редакции 13 января 2024 г. Принята к публикации 13 января 2024 г.

> В качестве резистивного биосенсора рассмотрен однолистный графен (через который пропускается электрический ток), капсулированный между массивной полупроводниковой подложкой и органической макромолекулой (биомолекулой-антителом). Тестируемая органическая макромолекула (биомолекула-антиген) помещается поверх антитела. В рамках простой модели получены выражения для концентраций носителей тока в графене до и после размещения тестируемой макромолекулы (антигена). Определены условия, при которых присутствие антигена изменяет тип проводимости графена.

Ключевые слова: капсулированный графен, антитело (биорецептор), антиген (биомаркер).

DOI: 10.61011/FTT.2024.02.57256.251

1. Введение

В последние годы в графеново-сенсорной тематике интерес исследователей заметно сместился от резистивных газовых сенсоров [1-4], предназначенных для мониторинга окружающей среды, к разработке резистивных биосенсоров, пригодных для медицинских экспрессанализов [5-12]. Газовый сенсор представляет собой эпитаксиальный однолистный графен (эпиграфен), адсорбция молекул газа на котором вызывает изменение $\Delta \sigma$ проводимости графенового слоя σ , которое и фиксируется сенсором. Более сложная структура биосенсора схематически представлена на рисунке: в исходном состоянии сенсор содержит однолистный графен, капсулирован между полупроводниковым субстратом и антителом Ab, или биорецептором, представляющим собой органическую макромолекулу [11]; в процессе измерения тестируемая биомолекула-антиген Ag, или биомаркер приводится в контакт с Ab [11,12]. Взаимодействие Ag с Ab изменяет проводимость капсулированного графена, что и служит показателем ее присутствия. Таким образом, как для газовых, так и для биосенсоров определяется изменение тока в графене. С точки зрения теории, необходимо определить результирующее изменение относительной проводимости $\Delta \sigma / \sigma = \Delta v / v + \Delta \mu / \mu$, где v — концентрация носителей тока¹ и μ — их подвижность. В настоящей работе мы приведем оценки отношения $\Delta \sigma / \sigma$, исходя из двух ранее предложенных моделей: капсулированной структуры [13] и оборванных связей антитела [14].

2. Капсулированный графен

Для описания капсулированного однослойного графена воспользуемся подходом, развитым в работе [13]. Считая, что однослойный графен заключен между обкладками, представляющими собой субстрат и антитело, представим его функцию Грина $G(\omega, \mathbf{k})$ в виде

$$G^{-1}(\omega, \mathbf{k}) = \omega - \varepsilon_D - tf(\mathbf{k}) - \sum_{sub}(\omega) - \sum_{Ab}(\omega). \quad (1)$$

Здесь ω — энергетическая переменная, ε_D — энергия точки Дирака, t — энергия перескока электрона между ближайшими соседями в графене, $f(\mathbf{k})$ — дисперсионная функция, равная в низкоэнергетическом приближении $\pm 3|\mathbf{k}|a/2$, где a — расстояние между ближайшими соседями в графене и \mathbf{k} — волновой вектор, отсчитываемый от точки Дирака [15]. Функции $\sum_{sub}(\omega)$ и $\sum_{Ab}(\omega)$

Схема резистивного биосенсора на основе графена. Ab — антитело (макромолекула биорецептора), Ag — антиген (макромолекула биомаркера). Ток распространяется вдоль листа графена.

¹ Для обозначения концентрации мы применяем здесь символ v, так как символ n используется ниже для обозначения числа заполнения атомов графена.

являются собственно-энергетическими частями, описывающими влияния соответственно подложки и антитела на электронный спектр свободного графена. Собственноэнергетические части могут быть представлены в виде

$$\sum_{sub(Ab)} (\omega) = \Lambda_{sub(Ab)}(\omega) - i\Gamma_{sub(Ab)}(\omega).$$
(2)

Функции полуширины уровней графена, наведенной обкладками, равны

$$\Gamma_{sub(Ab)}(\omega) = \pi V_{sub(Ab)}^2 \rho_{sub(Ab)}(\omega), \qquad (3)$$

где $V_{sum(Ab)}$ — матричный элемент взаимодействия графена с подложкой (антителом), $\rho_{sub(Ab)}(\omega)$ — плотность состояний подложки (антитела). Функции сдвига уровней графена, наведенного обкладками, есть

$$\Lambda_{sub(Ab)}(\omega) = V_{sub(Ab)}^2 P \int_{-\infty}^{\infty} \rho_{sub(Ab)}(\omega')(\omega - \omega')^{-1} d\omega',$$
(4)

где P — символ главного значения интеграла. Таким образом, вид функций $\Gamma_{sub(Ab)}(\omega)$ и $\Lambda_{sub(Ab)}(\omega)$ однозначно определяется плотностями состояний $\rho_{sub(Ab)}(\omega)$. В дальнейшем будем рассматривать полупроводниковую подложку, для описания плотность состояний которой воспользуемся моделью Халдейна—Андерсона [16]:

$$\rho_{sub}(\Omega) = \begin{cases} \rho_s, & |\Omega| \ge E_b/2, \\ 0, & |\Omega| < E_g/2 \end{cases}$$
(5)

где $\Omega = \omega - \omega_0$, E_g — ширина запрещенной зоны подложки, центру которой соответствует энергия ω_0 , $\rho_s = \text{const.}$ Тогда $\Gamma_{sum}(\Omega) = \pi V_{sub}^2 \rho_s$ при $|\Omega| \ge E_g/2$ и 0 в остальных случаях, так что

$$\Lambda_{sub}(\Omega) = \rho_s V_{sub}^2 \ln \left| \frac{\Omega - E_g/2}{\Omega + E_g/2} \right|. \tag{6}$$

Модель оборванных связей антитела

Взаимодействие антитела Ab с полупроводниковой подложкой будем описывать моделью оборванных связей пограничных фрагментов биомолекулы Ab с энергиями ε_i и концентрациями $N_i = m_i/S$, где m_i — число оборванных связей типа *i*, приходящихся на элементарную ячейку графена площадью $S = 3\sqrt{3}a^2/2$ [14]. Плотность состояний биомолекулы Ab представим в виде

$$\rho_{Ab}(\omega) = \sum_{i} N_i \rho_i(\Omega_i), \quad \rho_i(\Omega_i) = \frac{1}{\pi} \frac{\gamma_i}{\Omega_i^2 + \gamma_i^2}, \quad (7)$$

где $\Omega_i = \omega - \varepsilon_i$ и $\gamma_i = \text{const}$ — собственная полуширина оборванной *i*-ой связи, возникающая из-за ее взаимодействия с остальной частью биомолекулы Ab. Тогда в соответствии с (4) получим

$$\Gamma_{Ab}(\omega) = \pi \sum_{i} N_i V_i^2 \rho_i(\Omega_i)$$

И

$$\Lambda_{Ab}(\omega) = \sum_{i} N_i \lambda_i(\Omega_i), \quad \lambda_i(\Omega_i) = \frac{\Omega_i V_i^2}{\Omega_i^2 + \gamma_i^2}.$$
 (8)

В дальнейшем будем рассматривать слабую связь капсулированного графена с обкладками, т.е. полагать $\Gamma_{sub(Ab)}(\omega) \ll t$. Пренебрегая функциями $\Gamma_{sub(Ab)}(\omega)$ по сравнению с $\Lambda_{sub(Ab)}(\omega)$ (см. соответствующее обоснование в [17]), можно представить плотность состояний капсулированного графена как

$$\rho(\omega) = \begin{cases} 2|w|/\xi^2, & |w| \le \xi, \\ 0, & |w| > \xi, \end{cases}$$
(9)

где $w = \omega - \varepsilon_D - \Lambda_{sub}(\omega), \ \xi = t\sqrt{2\pi\sqrt{3}}$ [18]. Положим $\varepsilon_D = 0$ и, исходя из режима слабой связи обкладки — графен, будем считать, что

$$w \approx \omega - \Lambda_{sub}(0) - \Lambda_{Ab}(0).$$

При нулевой температуре число заполнения атома капсулированного графена равно

$$n = \int_{-\xi}^{\varepsilon_F} \rho(\omega) d\omega$$

где ε_F — уровень Ферми, откуда получаем

$$n = \begin{cases} (\xi + \varepsilon_F)(\xi - \varepsilon_F + 2\Lambda_0)/\varepsilon^2, & \varepsilon_F < \Lambda_0\\ 1 + \varepsilon_F(\varepsilon_F - 2\Lambda_0)/\xi^2, & \varepsilon_F > \Lambda_0, \end{cases}$$
(10)

где $\Lambda_0 = \Lambda_{sub}(0) + \Lambda_{Ab}(0)$. Отметим, что концентрация носителей v = 2(n-1)/S: при n < 1 капсулированный графен обладает дырочной проводимостью, при n > 1 — электронной проводимостью.

Подключим теперь к антителу Ab антиген Ag. Отметим, что каждое антитело взаимодействует со строго специфическим уникальным элементом антигена, что и позволяет этот антиген детектировать [10,11,19]. Не вдаваясь в детали этого взаимодействия, будем считать, что влияние антигена на антитело сводится к сдвигу энергий оборванных связей и изменению их уширения: ε_i и γ_i переходят соответственно в $\bar{\varepsilon}_i = \varepsilon_i + \Delta \varepsilon_i$ и $\bar{\gamma}_i = \gamma_i + \Delta \gamma_i$. Тогда число заполнения атомов капсулированного графена при наличии антигена по-прежнему определяется формулами (10), но с заменой Λ_0 на $\bar{\Lambda}_0 = \Lambda_{sub}(0) + \bar{\Lambda}_{Ab}(0)$, где

$$ar{\Lambda}_{Ab}(0) = \sum_i N_i ar{\lambda}_i(0)$$
 и $ar{\lambda}_i(0) = -ar{arepsilon}_i V_i^2 / (ar{arepsilon}_i^2 + ar{y}_i^2).$

При этом мы предположили, что положение уровня Ферми диктуется исключительно массивной подложкой, и поэтому положили $\bar{\varepsilon}_F = \varepsilon_F$.

Параметры политипов карбида кремния (в eV)

Политип	3 <i>C</i>	8H	21 <i>R</i>	6 <i>H</i>	15R	27 <i>R</i>	4H
E_g	2.40	2.86	2.96	3.00	3.06	3.13	3.23
$-(\omega_9 - \varepsilon_D)$	0.70	0.51	0.50	0.45	0.36	0.34	0.29

4. Обсуждение результатов

Предположим для простоты, что $|\Delta \varepsilon_1|$, $|\Delta \gamma_i| \ll \gamma_i$. Тогда

 $\Delta\Lambda_0 = ar{\Lambda}_0 - \Lambda_0 = \sum_i N_i \Delta\lambda_i,$

где

$$\Delta \lambda_i = \bar{\lambda}_i - \lambda_i \approx -\Delta \varepsilon_i V_i^2 / (\varepsilon_i^2 + \gamma_i^2).$$

Разность чисел заполнения капсулированного графена при наличии и в отсутствие антигена равна $\Delta N = \bar{n} - n - 2(\xi + \varepsilon_F)\Delta\Lambda_0/\xi^2$ при $\varepsilon_F < \Lambda_0$, $\bar{\Lambda}_0$ и $\Delta_n = \bar{n} - n = -2\varepsilon_F\Delta\Lambda_0/\xi^2$ при $\varepsilon_F > \Lambda_0$, $\bar{\Lambda}_0$. Так как $t \sim 3 \text{ eV}$ [15], имеем $\xi \sim 10 \text{ eV}$, откуда следует, что для слабо допированного графена ($|\varepsilon_F|/\xi \ll 1$) разность Δn является величиной второго порядка малости. Тот же порядок малости имеет и разность концентраций носителей $\Delta v = \bar{v} - v = 2\Delta n/S$.

Если в отсутствие антигена $\varepsilon_F < \Lambda_0$, а при его наличие $\varepsilon_F > \overline{\Lambda}_0$, то $\Delta n \approx -2\Lambda/\xi$. В обратной ситуации, когда без антигена $\varepsilon_F > \Lambda_0$, а в его присутствие $\varepsilon_F < \bar{\Lambda}_0$, имеем $\Delta n \approx 2\Lambda_0/\xi$, т.е. величины первого порядка малости. Именно такая ситуация наиболее подходит для тестирования. Таким образом, следует добиваться ситуации, когда уровень Ферми лежит внутри энергетического интервала ($\varepsilon_D + \Lambda_0$, $\varepsilon_D + \bar{\Lambda}_0$). Экстраполируя результат, полученный в приближении слабой связи графен-обкладки, на общий случай, можно сказать, что наилучший вариант работы сенсора реализуется, когда внесение биомолекулы антигена изменяет тип проводимости графена, имевший место в изначальной структуре субстрат-графен-антитело. Представляется, что для реализации такого режима необходимо выполнение условия $\varepsilon_D \sim \varepsilon_F$. Согласно [20,21], работа выхода недопированного графена $\phi \approx 4.5 \, \text{eV}$. В таблице приведены значения E_g и $\omega_0 - \varepsilon_D = \phi - (\chi + E_g/2)$ для политипов SiC (материала, часто используемого в сенсорах), взятые из работы [22]. Легко видеть, что отношение $|\omega_0 - \varepsilon_D|/E_g$ можно считать малым.

Таким образом, для достижения условия $\varepsilon_D \sim \varepsilon_F$ требуется сравнительно слабый уровень допирования политипов SiC и/или графена. Этого же условия можно добиться путем приложения электростатического поля [23], используя, например, схему FET [12].

Мы рассматривали здесь режим слабой связи графена с обкладками не только с целью упрощения задачи. Дело в том, что в режиме сильной связи, когда $\Gamma_{sub(Ab)}(\omega) > t$, графен теряет свою уникальную специфику. Более того, в пределе $\Gamma_{sub(Ab)} \gg t$ мы получаем набор отдельных атомов углерода, привязанных к подложке и антителу.

5. Заключение

В настоящей работе мы получили аналитическую оценку отношения $\Delta v / v = \Delta n / n$ и выявили условия, при которых капсулированный графен до и после подключения антигена обладает различными типами проводимости. Если $|\Delta \nu/\nu| \gg |\Delta \mu|/\mu$, то полученные результаты справедливы и для отношения $\Delta\sigma/\sigma$. Следует отметить, что оценить отношение $\Delta \mu / \mu$ для капсулированного графена существенно сложнее, чем определить отношение $\Delta n/n$ [24]. Если, однако, в капсулированном графене превалирует короткодействующее рассеяние на нейтральных примесях, то можно полагать, что $|\Delta \mu|/\mu \ll 1$, так как подключение антигена не должно создавать на интерфейсе антитело — графен дополнительных рассеивающих центров. Если же доминирующим является кулоновское рассеяние на заряженных центрах, то наличие антигена должно проявляться, так как заряды оборванных связей изменяются. Согласно существующим представлениям [24,25], подвижность *µ* обратно пропорциональна плотности заряженных i-центров N, но не зависит от концентрации носителей тока v². Таким образом, проблема теоретического определения отношения $\Delta \sigma / \sigma$ остается открытой и требует для своего решения дополнительных экспериментальных исследований. По той же причине достаточно трудно судить о сделанных в работе приближениях.

В настоящей работе, где рассматривался бесщелевой графен, мы не затрагивали вопроса о роли температуры, так как влияние температуры на электронное состояние адсорбатов рассматривалось нами ранее в работе [26]. В дальнейшем мы планируем рассмотреть щелевой (полупроводниковый) графен, где температура определяет его концентрацию носителей.

Финансирование работы

Работа выполнена при поддержке гранта РНФ 22-12-00134.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- D.J. Buckley, N.C.G. Black, E.G. Castanon, C. Melios, M. Hardman. O. Kazakova. 2D Mater. 7, 032002 (2020).
- [2] S.Z.N. Demon, A.I. Kamisan, N. Abdullah, S.A.M. Noor, O.K. Khim, N.A.M. Kasim, M.Z.A. Yahya, N.A.A. Manaf, A.F.M. Azmi, N.A. Halim. Sens. Mater. **32**, 759 (2020).
- [3] U. Yaqoob, M.I. Younis. Sensors 21, 2877 (2021).
- [4] S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood. Sens. Int. 2, 100116 (2021).

² В случае нейтральных центров $\mu \propto \nu^{-1}$, что делает короткодействующее рассеяние доминирующим при высокой концентрации носителей [24].

- [5] Y. Bai, T. Xu, X. Zhang. Micromachines 11, 60 (2020).
- [6] M. Coros, S. Pruneanu, R.-I. Stefan-van Staden. J. Electrochem. Soc. 167, 037528 (2020).
- [7] V. Nanesh, N. Lee. Sensors 21, 1109 (2021).
- [8] S. Shahriari, M. Sastry. S. Panjikar, RK Singh Raman. Nanotechnol. Sci. Appl. **14**, 197 (2021).
- [9] Laxmia, B. Mahapatrab, R.V. Krishnac, P.K. Patel. AIP Conf. Proc. 2327, 020011 (2021).
- [10] A.A. Lebedev, S.Yu. Davydov, I.A. Eliseyev, A.D. Roenkov, O. Avdeev, S.P. Lebedev, Y. Makarov, M. Puzyk, S. Klotchenko, A.S. Usikov. Materials 14, 590 (2021).
- [11] С.В. Воробьев, С.Н. Янишевский, А.Ю. Емелин, А.А. Лебедев, С.П. Лебедев, Ю.Н. Макаров, А.С. Усиков, С.А. Клотченко, А.В. Васин. Клиническая лабораторная диагностика 67, 1, 5 (2022).
- [12] S. Wang, X. Qi, D. Hao, R. Moro, Y. Ma, L. Ma. J. Electrochem. Soc. 169, 027509 (2022).
- [13] С.Ю. Давыдов. Письма в ЖТФ 47, 13, 52 (2021).
 [S.Yu. Davydov. Tech. Phys. Lett. 47, 1 (2021)].
 DOI: 10.1134/S1063785021070051.
- [14] С.Ю. Давыдов. ФТТ 64, 2050 (2022). [S.Yu. Davydov. Phys. Solid State 64, 2018 (2022)].
- [15] A.H. Castro Neto, F. Guinea, N.M.R. Peres, R.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009).
- [16] F.D.M. Haldane, P.W. Anderson. Phys. Rev. B 13, 2553 (1976).
- [17] С.Ю. Давыдов. ФТТ 64, 1828 (2022). [Phys. Solid State 64, 1792 (2022)].
- [18] С.Ю. Давыдов. ФТТ **58**, 779 (2016). [Phys. Solid State **58**, 804 (2016)].
- [19] D.R. Davies, E.A. Padlan, S. Sheriff. Annu. Rev. Biochem. 59, 439 (1990).
- [20] J.-H. Kim, J.H. Hwang, J. Suh, S. Tongay, S. Kwon, C.C. Hwang, J. Wu, J.Y. Park. Appl. Phys. Lett. 103, 171604 (2013).
- [21] D. Niesner, T. Fauster. J. Phys.: Condens. Matter, 26, 393001 (2014).
- [22] С.Ю. Давыдов. ФТП **53**, 706 (2019). [S.Yu. Davydov. Semiconductors **53**, 699 (2019)].
- [23] Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim. Nano Lett. 9, 3430 (2009).
- [24] J.H. Gosling, O. Makarovsky, F. Wang, N.D. Cottam, M.T. Greenaway, A. Patané1 R.D. Wildman, C.J. Tuck, L. Turyanska, T.M. Fromhold. Commun. Phys. 4, 30 (2021).
- [25] С.Ю. Давыдов, А.А. Лебедев. ФТП 57, 392 (2023).
 [S.Yu. Davydov, А.А. Lebedev. Semiconductors 57, 395 (2023).]
- [26] С.Ю. Давыдов. ЖТФ **86**, 7, 145 (2016). [S.Yu. Davydov. Tech. Phys. Lett. **61**, 1106 (2016)].

Редактор Ю.Э. Китаев