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Effect of adsorbed macromolecule on the carriers mobility in single layer

graphene: Dangling bonds model
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Within the framework of the previously proposed model (S.Yu. Davydov. Phys. Solid State 64, 2018 (2022)),
in which the interaction of a macromolecule (MM) with single-layer graphene (SLG) is carried out by stitching of

dangling MM bonds with carbon atoms, the effect of these stitching on the mobility of carriers in graphene was

studied. It is shown that short-range scattering of MM-SLG stitching prevails over Coulomb scattering. It has also

been found that the effect of induced by stitching graphene deformation on mobility can be neglected compared to

short-range scattering. The cases of free and epitaxial graphene are considered. The use of the MM-SLG-substrate

structure as the basis of a biosensor is discussed.
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1. Introduction

The unique ability of graphene to detect the adsorp-

tion of a single molecule [1] predetermined its use in

various sensors, including biosensors [2–10]. In [11], a

dangling bonds model (DBM) was proposed to describe

the adsorption of an organic macromolecule (MM) on

single-layer graphene (SLG). In this model, a simple

theoretical scheme was used to estimate the interaction

energy of the i-th dangling bond of a MM molecular

fragment with the carbon atom adjacent to the SLG (or
adsorption energy Eads

i ), which allows obtaining analytical

results. Molecules of O2, NO, NH, CH2, NH2, CH3

were considered as fragments of MM, and bonds of C,

N and O atoms were considered as dangling bonds. The

adsorption energy of the entire MM, or adhesion energy

Eadh, was determined as the sum of Eads
i Ni , terms, where

Ni being concentration of dangling bonds. In [11], the

charge transition between MM and SLG was determined

and Eadh values were estimated for a number of MM

molecular fragments. In this study, we will consider

the effect of MM on the mobility of charge carriers in

graphene.

The uniquely high mobility of carriers in graphene from

the very beginning of the graphene story was with a good

reason considered the main feature of SLG and aroused

great interest [12,13], which has not yet faded [14,15].
In this study we will consider scattering at the so-called

stitching of dangling bonds of MMs with the SLG atoms

closest to them (MM-SLG stitching) as the first effect

affecting the mobility of carriers in graphene. These

bonds can be considered as particles adsorbed on graphene

(adparticles) and the results of numerous studies devoted to

the scattering of carriers by charged impurities and neutral

defects in graphene [12–22] can be used.

In recent years, interest in the effect of induced (by some

external factor) deformation fields on the physical properties

of 2D materials and devices based on them has grown no-

ticeably. This area of research is called straintronics [23,24].
Graphene is of particular interest among all 2D materials

because of its Young’s modulus of ∼ 1TPa, its capability of

withstanding reversible elastic deformation upon stretching

up to 25% [23], and its promising potential for development

of flexible electronics [24]. Deformation affects the phonon

and electronic subsystems, so that its effect changes almost

all the characteristics of graphene, which allows suggesting

the deformation engineering. In this study, the deformation

caused by MM-SLG stitching will be considered as the

second mechanism of carrier scattering.

2. Carrier scattering at MM-SLG stitching

Then, we will consider the situation when the SLG

conductivity σ is described by the quasiclassical Boltz-

mann theory in the relaxation time approximation and, in

accordance with the Drude theory, with σ = enµ, where

e is elementary charge. This description is valid at a

high concentration of free carriers in graphene. We

will assume that the condition of n ≫ nimp, ndef is valid,

where nimp and ndef are the concentrations of charged

impurities and neutral defects, respectively. According to

various theoretical models, it is now generally accepted that

µ ∝ n−1
imp, n−1

def [13,22]. In the scattering theory, two limiting

cases are considered: Coulomb and short-range scattering

centers [12,13], which have corresponding carrier mobilities

of the following form:

µC =
e
~

(~νF)
2

nscu2
C

, µSR =
e
4~

(~νF)
2

nnscu2
SR

. (1)
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Here ~ is reduced Planck’s constant, n is concentration

of carriers in graphene, nsc is concentration of scattering

centers, uC = ZCe2/εst (ZC e is charge of the Coulomb

center, εst is static dielectric constant of graphene), uSR is

determined by the expression for the short-range potential

USR(r) = uSRδ(r − r0) (r0 is two-dimensional radius vector

defining the position of a point defect) [12,13].

Going over to the adsorption of MM on SLG, to stitch

the i-th dangling bond with a graphene atom, we introduce

an effective scattering potential of the following form:

ui = |Zi |uC + (1− |Zi |)(2uSR) (2)

and replace nsc with Ni . Then the contribution of

i-th stitching µi and the total mobility is

µi =
e
~

(~νF)
2

Ni u2
i

,
1

µsc
=

∑

i

Ni

µi
. (3)

Let us going over to numerical estimates by assuming

ZC = 1, because we believe that before the interaction

with graphene, the dangling bonds contained one electron.

Values of Zi are given in the table of [11]. Static dielectric

constant is εst = 3 [25,26]. Then uC ≈ 5 · 10−8 eV · cm.

If we assume, as in [13], uSR = 10 eV · nm2 (or even

lower by an order of magnitude), we have 2uSR ≫ uC

(here it is taken into account that |Zi | ∼ (1− |Zi |) —
see the table and [11]), so ui ≈ 2(1− |Zi |)uSR . Thus,

µi ∝ N−1
i (1− |Zi |)−2. Due to the fact that νF ≈ 108 cm/s,

with Ni = 4 · 109 cm−2 [13] and uSR = 10 eV · nm2 we

get µi ≈ 2700/(1 − |Zi |)2 cm2/V · s. Naturally, the same

mobility will be obtained for Ni = 4 · 1011 cm−2 and

uSR = 1 eV · nm2. It should be noted that graphene samples

with µ > 104 cm2/V · s are currently available [22].

The total charge transferred from MM to SLG is

Z = −∑

i Zi [11]. If the concentration of carriers in

SLG without the MM was equal to n0, then now we

have the concentration of n = n0 + 1n, where 1n = −Z|/S,
Suc = 3

√
3a2/2 being area of the lattice cell of graphene,

a = 1.42 Å being distance between the nearest neighbors

in graphene. The change in mobility is 1µ = µsc − µ0. If

(µ0 − µsc)/µ0 ≪ 1, then the change in conductivity due to

the interaction of SLG with MM can be represented as

1σ ≈ e(n01µ + µ01n), where it is taken into account that

|1n| ≪ n0 [11].

3. The effect of graphene deformation
induced by MM-SLG stitching
on the carrier mobility

We will assume that the stitching i corresponds to the

central force Fi(r − r i ) = Fizδ(r − r i), where r = (x , y),
acting on the graphene carbon atom with the coordinate

ri = (x i , y i). For simplicity, considering the SLG to be

an elastically isotropic sheet, we obtain the following

expressions for the displacements uir =
√

u2
ix + u2

iy in the

graphene plane:

uir = −AFi/(r − r i), A =
(1 + ν)(1− 2ν)

2π(Y2D/h)
, (4)

where ν and Y2D are Poisson’s ratio and Young’s mod-

ulus [27], h = 3.35 Å,1 the z subscript of the force Fiz

is omitted. With Y2D = 340N/m, ν = 0.165 [28] and

Y2D = 342N/m, ν = 0.19 [29] we get A ∼ 0.1 (TPa)−1.

The deformation corresponding to displacement (4) is

uirr = ∂uir/∂r = −AFi/(r − r i)
2. If the average dis-

tance between dangling bonds is taken to be 2R, then

the average deformation is ūirr ≈ −AFi/Ra . According

to estimates of [11], the average length of dangling

bonds (extended along the z axis) for atoms of C,

N, and O is equal to di ∼ 2.5 Å. For the σ -bond

of the dangling p-orbital of MM with the pz -orbital

of SLG we have Vi = Vppσ = 2.22(h2/m0d2
i ) [30–32],

which yields Vi ∼ 3 eV for the average d ∼ 2.5 Å2 Then

F = Fi = ∂Vi/∂d = −2Vi/d ∼ −2.4 eV/Å, which yields

ūrr =
∑

i

ūirr ≈ 2AV M/dRa, (5)

where M =
∑

i mI is total number of i-bonds per lattice cell
of graphene. Then we get ūrr ∼ 3 · 10−3M/R, where R is

measured in nm. Due to [11] we have M < 0.01−0.1 [11],
then R∼

√
Suc/2M∼(2−20) nm. Thus, (ūrr)max∼10−4.

Using the low-energy approximation [12], we represent

the density of states of free graphene (per one graphene

atom) in the following form:

ρSLG(ω) = (2|ω|/ξ2)2(ξ − |ω|), (6)

where ω is energy measured from the Dirac point εD = 0,

ξ = t
√

2π
√
3 ∼ 3t is cutoff energy [33], t ∼ 3 eV is elec-

tron hopping energy between the nearest graphene atoms,

2(. . .) is Heaviside function. Then, at zero temperature

the energy of the electronic subsystem of graphene is

E(εF) = 2(ξ3 + ε3F)/3ξ
2, where εF is Fermi level, and

concentrations of free electrons (at εF > 0) and holes (at
εF < 0) are equal to 2(εF/ξ

2)/Suc . Due to the fact that the

number of electrons in the lattice cell of graphene does not

change during deformation, it is easy to derive the relation

of δεF = −2εFūrr . Then we have δE(εF) = −2ε3F/ξ
2)ūrr , so

the deformation potential is wdp = −2ε3F/ξ
2. To estimate

1 The h factor is introduced for dimensional reasons, because in the 3D

case the Young’s modulus is measured in N/m2, whereas in the 2D case it

is measured in N/ m. It should be noted that h = 3.35 Å corresponds

to the interlayer distance in graphite and is sometimes referred to as the

graphene thickness. The introduction of this factor allows using the results

of the standard theory of elasticity, for example, [27].
2 As in [11], we have chosen the Vi -bond of pz -orbitals characterized

by a factor of 2.22 for the estimates of the matrix element. For the bonds

of pz -orbitals with sp, sp2, and sp3 the factors are 2.57, 2.63, and 2.63,

respectively [31], which does not result in any significant change in the

estimates made.
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the relaxation time due to the deformation of graphene

τdeform, we use the relation (the Fermi’s golden rule):

τ −1
deform = (2π/~)|wdpūrr |2ρSLG(εF), (7)

which yields τ −1
deform ∼ 7 · 109 s−1. On the other hand, the

relaxation time at short-range centers τSR , determined by

the formula

1

τSR
=

NSRu2
SR

4(~νF)2
(εF/~) (8)

(see [13]), with Ni = 4 · 109 cm−2 yields τ −1
SR ∼ 3 · 1015 s−1.

Thus, the carrier scattering caused by the deformation of the

graphene sheet by its stitching with MMs can be neglected

in comparison with the scattering on the stitching itself.

4. Macromolecule on epitaxial graphene

The diffusive conductivity of free graphene can be

represented in the following form

σ (εF) = e2ρSLG(εF)ν
2
Fτ (εF)/2Auc , (9)

resulting from the Einstein relation of σ (εF) =
= e2ρSLG(εF)D(εF), where the diffusion constant is

D(εF) = ν2
Fτ (εF)/2Auc [13]. Based on the Fermi’s golden

rule, expression (9) for epitaxial graphene (epigraphene)
can be rewritten as

σ̃ (εF) = e2~ν̃2
F/4πAucV 2

sub, (10)

where V 2
sub = 〈|Vak|2〉BZ is square of the matrix element of

the interaction of the graphene atom with the electronic

spectrum of the substrate (hereinafter the tilde refers to

epigraphene) averaged over |k〉 states of the substrate. As

shown in [34,35], the effect of the semiconductor substrate

on the Fermi velocity in SLG is determined by the following

relationship:

ν̃F/νF = η(εF), η(εF) =

(

1−
(

d3sub(ω)

dω

)

εF

)

−1

, (11)

where

3sub(ω) = V 2
subP

∞
∫

−∞

ρsub(ω
′)(ω − ω′)−1dω′

is function of the shift of electronic states of graphene due

to the interaction with the substrate, P is symbol of the

main value of the integral, ρsub(ω) is density of states of the

substrate. Assuming ρsub(�) = ρs2(|�| − Eg/2), where

� = ω − ω0, ω0 is center of band gap with a width of Eg ,

ρs = const, we get

3sub(ω) = ρsV
2
sub ln |�− Eg/2)/(� + Eg/2)|

(the Haldane–Anderson model [36]). Then, with

|εF − ω0| < Eg/2 we get

η(εF) =

(

1 +
V 2
sub(Eg/2)

(Eg/2)2 − (εF − ω0)2

)

−1

, (12)

so that ν̃F/νF < 1. Taking this effect into account, instead

of formulae (1) we get

µ̃C = µCη
2(εF), µ̃SR = µSRη

2(εF), (13)

i. e. µ̃C/µ̃SR = µC/µSR .

Now the change in the charges of dangling bonds Zi

included in expression (2) should be taken into ac-

count. First, let us take into account that if there

is a substrate, expression (6) should be replaced

with ρ̃SLG(ω̃) = (2|ω̃|/ξ2)2(ξ − |ω̃|), where ω̃ − 3sub(ω).
Using the results of [11], the shift function 3I(ω) of the

energies of dangling MM bonds takes the following form:

3̃i(ω̃) = (V 2
i ω̃/ξ

2) ln |ω̃2/(ξ2 − ω̃2)|.

In the modes of weak interaction of SLG with the substrate

(i. e., at V 2/t2 ≪ 1) and dangling bonds with graphene

(see [11]), the difference between ω̃ and ω in the expression

for 3̃i(ω̃) can be neglected3 . So we can still use the Zi

values calculated in [11]. It follows therefrom that the

presence of a substrate does not change the conclusion

made in Section 2 about the predominance of short-range

scattering over Coulomb scattering.

In [7,8,37] the MM−SLG−SiC-substrate system was

considered as the basis of the biosensor. The MM was a

biomolecule known as antibody (Ab) or a bioreceptor in

biosensorics. The biomolecule under test (antigen (Ag) or

biomarker) is brought into contact with Ab and the change

in current flowing in the SLG is recorded. In [37], the charge
transition 1Q between Ab and epitaxial graphene and the

change 1Q in the presence of Ag were assessed. The change

in conductivity as a result of contact of Ab with Ag is

equal to 1σ̃ = σ̂ − σ̃ , where σ̃ means the conductivity of

epigraphene without Ag, and σ̂ is the conductivity of the

epigraphene in the presence of Ag.

5. Conclusion

So, within the previously proposed model of dangling

bonds [11] for the case of Drude−Lorentz diffusive conduc-

tivity, we have succeeded to establish the following:

1) short-range scattering on MM-SLG stitching prevails

over Coulomb scattering;

3 It is worth reminding that we are considering a situation where the

carrier concentration in graphene is high, so that εF and ε̃F are distant

from the Dirac point. It is also taken into account that the logarithm is a

weakly varying function.
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2) the effect of stitching-caused deformation on mobility

can be neglected in comparison with the short-range

scattering;

3) conclusions 1) and 2) are valid for both free graphene

and epitaxial graphene.

In this study, gapless graphene was considered. In the

presence of a gap, it is convenient to use the so-called

formula of Tagaki et al. to estimate the mobility [37]
(see also [38–40]). In this case, the effective mass can be

estimated using formula (12) of [41].
Unfortunately, at present the results obtained here cannot

be compared with experimental data, because the studies

of [7,8] mainly considered technological issues of creating

a resistive biosensor based on single-layer graphene and

systematic current measurements have not yet been carried

out.
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