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1. Introduction

As it is known, even in the late 60s to explain the

universality of the critical behavior of materials near points

of second kind phase transitions (PTs), the thermodynamic

scaling hypothesis was formulated. Its main predictions

were soon supported by theoretical model calculations

performed within the framework of ε and 1/N expansions

of the renormalization group method. The physical clarity of

the scaling pattern of PT and the experimental confirmation

of the predicted relationships between the values of the

critical indices of thermodynamic variables (susceptibility,
order parameter, heat capacity, etc.) greatly strengthened

confidence in the correctness of the scaling hypothesis. The

existence of critical correlation length of thermal fluctuations

of the order parameter, growing indefinitely at the point of

2-nd kind PT, began to seem not only expected, but also

even simply a self-evident phenomenon. The most popular

way to observe it at that time was through experiments on

the scattering of thermal neutrons, X-rays and light. The

subsequent application of scaling arguments to describe the

dynamics of fluctuations of the order parameter resulted

in the prediction of the existence of a characteristic time

scale associated with an unlimitedly growing radius of

thermal fluctuations and also diverging at the transition point

(
”
critical slowing-down“).
Near the critical points of liquids both of these tendencies

manifested themselves quite clearly in experiments. Howe-

ver, for a number of PTs in solids the picture unexpectedly

turned out to be more complex. The first experiments

where a qualitative difference of the pattern of the excitation

spectrum from the expected one were experiments on

inelastic scattering of thermal neutrons in the vicinity of

a structural PT of the displacement type in SrTiO3 (see [1]

and cited there publications). In addition to the expected

”
side“ phonon peak, the frequency of which decreased

as the temperature approached the PT point (but, as it

turned out, actually reached saturation in its immediate

vicinity), a quasi-static
”
central peak“ (CP) was discovered,

the intensity of which increased much faster, and this growth

continued just up to the PT point. The same was observed

in subsequent experiments on Raman scattering, carried

out both on SrTiO3 and other crystals from the perovskite

family (RbCaF3, LaAlO3, KMnF3, LiTaO3, LiNbO3) [1–7],
as well as in numerous experiments on inelastic neutron

scattering, which revealed the occurrence of CP with a

similar temperature dependence.

In addition to the presence of two time scales, greatly

different in magnitude (at least by 4 orders of magnitude),
later, during the scattering of neutrons and X-rays, the

existence of two spatial lengths was discovered, the smaller

of which could be associated with the thermal correlation

radius, and the origin of the larger one, having the order of

microns, remained unknown (see [2,8] and the publications

cited there). It is appropriate to note here that in addition

to these experiments, back in 1956 at α−β PT in quartz

a very strong increase in the light intensity was observed

(approximately by 104 times compared to the intensity

at room temperature), scattered at an angle of 90◦ to

the optical axis, on large-scale (with a characteristic size

∼ 30µm) optical inhomogeneities arising in narrow vicinity

of temperatures (∼ 0.1K) [9]. Later, the intensity of light

scattering at small angles to the optical axis was measured,

and it was found that its relative increase was is even greater

(∼ 106) [10,11].
The situation became even more serious when the occur-

rence of two characteristic scales was discovered not only

for structural PTs, but also in high-resolution experiments on

1737



1738 A.L. Korzhenevskii

X-ray and neutron scattering for magnetic PTs in a number

of metals and their compounds (Tb, Ho, UO2, NpAs, USb,

UP, UP2Al3) (see review [2], and [12–21]), and then in

invar alloys Fe1−xNix [22–25].
Thus, incongruities appeared: in almost every crys-

tal, experiments performed with high spatial or temporal

resolution demonstrated an pattern of PT universal, but

qualitatively contradictory to the results of both static and

dynamic generally accepted renormalization group theory!

Of course, starting from the publication of the first

unexpected experimental results [26,27], a number of

considerations were made about their physical interpre-

tation. First, the possible role of defects was pointed

out. Experimental evidence indicated that they undoubtedly

played some role, but it was unclear how big this role

was. Attempts to purposefully introduce defects or studies

with crystals of higher quality did not significantly change

the results: PT demonstrated
”
critical“ behavior, did not

blur, and the values of the effective indices did not change

noticeably. Secondly, a scenario was proposed in which PT

mechanism would include not only a soft phonon mode,

but also a mode describing the collective movement of

dynamic clusters (with a rather high amplitude of the

order parameter) as a whole. This intuitively attractive,

non-defective mechanism has received some support in

two-dimensional numerical experiments [1]. However, no

corresponding analytical theory was created. Besides, it was

experimentally shown that X-ray scattering from the larger

length is not induced in a significant part of the sample

volume.

In turn, numerous subsequent works on Raman scat-

tering of light in quartz (see [3,28] and the publications

cited there), LiNbO3 (see [3,5,7] and cited publications)
and LiTaO3(see [3,4,6] and cited publications) showed that

the intensity and half-width of the CP strongly depend on

the growth conditions of these crystals, and in addition to

abnormally growing, narrowing CPs near PT points, the

presence of CPs (possibly having a different mechanism of

origin [5]) was discovered far from these points. A relation-

ship was also established between the characteristics of CP

and the degree of defectivity of crystals, which are especially

sensitive to the concentration of extended defects, such as

dislocation threads and loops [7].
Thanks to all these facts, a general oppinion gradually

emerged in the literature that it is defects that are the main

cause of the occurence of CPs in real crystals.

From the theoretical point of view, the problem was that

standard models of weakly disordered crystals, processed

using the so-called replica trick within the framework of

the general renormalization group method, implied the

dominance of one (maximum) correlation length and the

corresponding one (also maximum) time scale — the

influence of all smaller scales and times turned out to

be insignificant compared to large-scale long-lived thermal

fluctuations. At the same time, the experiment clearly

indicated the existence of two lengths, and the larger of

them (as well as the larger of the two times) had a

mysterious character! This seemed more strange since,

as a rule, the most carefully grown crystals were selected

for experiments, and subsequent processing of the samples

was also carried out in such a way that they contained the

minimum possible number of defects.

Where did the generally accepted scaling hypothesis and

the renormalization group theory based on it miss the pos-

sibility of the existence of such a global PT scenario? Please

note that in the usual renormalization group calculation

scheme it is assumed that when approaching PT point the

properties of defects do not change. In particular, their

effective sizes are considered to be the same as those far

from the PT point.

It is clear that the qualitative difference between these

ideas and the results of the above scattering experiments

means their physical inadequacy. In particular, remarkable

optical experiments in NH4Br clearly showed the occur-

rence of nuclei of a new phase near dislocations, with

their subsequent growth as they approach the global PT

point [29]. Besides, additional electron microscopy [14], as
well as X-ray experiments [19,20], carried out in the same

SrTiO3, also demonstrated that this scenario, based on the

effect of local PT near extended defects (dislocations, their
clusters, cracks, etc.) is actually realized in real crystals.

These facts suggest a physical reason for the inadequacy

of the standard renormalization group calculation scheme:

the effective size of the most powerful defects does not

remain constant, but can increase, moreover, faster than the

radius of thermal fluctuations changes. Thus, the radius of

thermal fluctuations turns out to be already not the largest

spatial scale; therefore, the entire spatial picture of the PT

process development can also qualitatively change.

For the first time, the possibility of a nonclassical scenario

of magnetic PT of the 2nd kind in crystal model with

postulated large-scale fluctuations of the Curie temperature

was indicated in [30]. Then, in [31], the almost inevitable

presence of dislocations in actual crystals was pointed

out as a specific physical reason for such fluctuations

occurrence. The analysis carried out in [31] showed that

in dislocation crystals, depending on the parameters of PT

and the dislocation ensemble, both the
”
percolation“ PT

scenario [30] and PT are possible. when the macroscopic

order parameter is initially localized on the
”
framework“ of

dislocations. Later, in [32] the crossover mechanism was

traced in the global spatial nature of PT process when the

dispersion parameters and the correlation scale of the local

PT temperature field changed. The results obtained were

then used to solve the
”
problem of two lengths“ discovered

in experiments on the scattering of X-rays and thermal

neutrons in dislocation crystals [21,33].

In particular, the general results obtained in theo-

retical papers [30–33] were fully confirmed in a se-

ries of subsequent experimental studies on small-angle

neutron scattering and depolarization of neutron beams

in Invar alloys Fe1−xNix [22–25], in a comprehensive

study, including small-angle X-ray scattering, in the alloy
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V2H [16,17,21], as well as in local X-ray scattering

measurements for SrTiO3 [19,20].

Thus, the
”
problem of two lengths“ in experiments on

elastic scattering near PT points in actual crystals can

now be considered solved in principle. However, the

origin of the 2 time scales remains unclear. In particular,

within the framework of phenomenological models such as

two coupled oscillators or oscillator interacting with low-

frequency relaxator, the key factor remains unknown —
the physical origin of the low-frequency mode associated

with the supposed conditionally soft mode. As a result,

the corresponding results of calculation of the intensity

and half-width of the dynamic CP observed in the spectra

during inelastic scattering depend on several fitting param-

eters (at least three). Therefore, even good quantitative

agreement between the results of such calculations and

experimental data, obtained for sets of
”
optimal“ values of

such parameters for specific materials, does not mean that

CP problem was solved. Note that the CP problem solution

cannot be considered complete until it is clarified what

properties of the crystal and features of the phase transition

are associated with both the very existence of the additional

low-frequency mode and its characteristic frequency, half-

width and intensity.

In addition to the unresolved question of CP physical

nature, the question of the possible existence of relationship

between abnormally large spatial and temporal scales also

remains open.

This statement proposes a new approach to these issues

solution.

2. Process of nucleation of new phase
in the elastic field of ensemble
of dislocations

In this Section we briefly recall how the process of

nucleation of new phase in crystal with dislocations and its

further spatial development as the temperature approaches

the PT point is theoretically described. At the initial stage

of this process, relatively far from PT point, the appearance

of nuclei occurs near dislocation lines, in regions where,

due to large elastic deformations, the local PT temperature

increases, such that Tc(r) > T . At this stage, when the

size of the occurred nucleus is minimal, to calculate Tc(r)
it is sufficient to take into account only the dominant

contribution to the local deformation from the dislocation

closest to the given nucleus. Since the result does not

depend on the structure of the entire dislocation ensemble,

the calculation is reduced to solving the model problem of

the new phase nucleation on a single dislocation.

For simplicity, we will assume that the order parameter

(OP) of PT η is single-component, the dislocation is

rectilinear and purely edge, and the crystal 1s elastically

isotropic. The free energy density in such model can be

written as an expansion in powers of OP:

8 =
1

2
g(∇η)2 +

1

2
αo(T − To)η

2 +
1

4
Bη4 +

1

4
Dη6

+
1

2
Aη2

(

εii + εd
ii(r)

)

+
K
2
ε2ii + µ

(

εik −
1

3
δikεll

)2

,

(1)
Where coefficient B > 0 for 2nd kind PT and B < 0 for

1st kind PT, A is strictive coefficient, K and µ — bulk

and shear modulus, respectivtly, εik — tensor of elastic

deformations, and εd
ii(r) — contribution to dilatational

deformation due to edge dislocation dislocation, recorded

in polar coordinates [34]:

εd
ii(r) =

bµ sinϕ

π
(

K + (4/3) · µ
)

r
. (2)

After eliminating the field of elastic deformations and

minimizing the free energy, we obtain an equation for the

OP field distribution in the vicinity of the dislocation

−g1η + αo

(

T − To +
A
αo

εd
ii(r)

)

η + B∗η3 + Dη5 = 0,

(3)
where B∗ — coefficient renormalized by striction consider-

ation.

From (3) it is obvious that the dislocation presence

changes the local temperature of PT Tc(r), and the ratio

A
αo

≈

(

K
To

)(

∂Tc

∂ p

)

(where Tc — PT temperature in dislocation-free crystal,

p — pressure), and from (2) it follows that for any sign

of the coefficient A there is a region in which Tc(r) > T .
In the case of 2nd (or weak 1st) kind PT, the value of the

temperature at which the nucleus appears Tn and its size Rn

can be found exactly (or approximately) as the bifurcation

point of the linearized differential equation (3) [35]. For our
purposes, it is enough to have estimates

Tn − Tc ≈
1

αog
(Ab)2,

Rn ≈
g

Ab
≈

√

g
αo(Tn − Tc)

= rc(T = Tn). (4)

They are obtained from interpretation of the linearized

equation as the Schrödinger equation for a particle having a

state localized in a potential well.

It is obvious that with temperature decreasing the size

of the nucleus R∗(T − Tc) will increase. It is not difficult

to obtain its temperature dependence if we note that the

term g1η is important only within the interphase boundary,

which has a thickness equal to about the correlation radius

rc ∼ (T−Tc)
−1/2. Assuming that R∗ ≫ rc , from (2), (3)

we obtain

R∗(T ) ≈
bK

(

∂Tc
∂ p

)

2π(T − Tc)
, (5)

i. e., the size of the nucleus actually increases as it

approaches PT point faster than the correlation radius. Thus,
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estimate (5) suggests that thermal fluctuations may not play

a dominant role in PT process in crystals with dislocations.

To make sure that PT scenario other than that dictated by

large-scale thermal fluctuations is possible, it is necessary to

find out how a non-zero average value of the macroscopic

PT can arise on a set of nuclei that initially have have OPs

of different signs. The answer to this question depends on

the spatial structure of the dislocation ensemble (DE) of the
sample.

The latter is determined by the conditions of crystal

growth and its subsequent treatment (mechanical and

chemical) necessary for experimental measurements and

further operation. Accordingly, DE structures can vary

greatly.

For the model case of an absolutely chaotic arrangement

of dislocations with a given average density nd = R−2
d

(Rd — average distance between dislocations) in [31] it was
shown that at temperature of nucleation

Tn > Tc + K

(

∂Tc

d p

)

εd
ii (r = Rd)

the occurrence of macroscopic OP corresponds to a set of

cylindrical nuclei with characteristic radius R ≪ Rd , i. e. the

PT occurs on
”
framework“ of DE. In this case, the total

volume fraction of the new phase x(T ) is small, so that the

PT is experimentally observed as blurred. When the sign of

the inequality is reversed, the PT temperature corresponds

to the occurrence of a cluster of new phase, which has the

same sign of the local OP values for all nuclei, the merge

of which forms this cluster, penetrating the entire sample.

The spatial structure of this cluster is close to the geometric

structure of the
”
infinite cluster“ in the classical percolation

theory. In this case, the total fraction of the new phase

x(T ) is not small and PT is experimentally perceived as

not blurred, and the behavior of thermodynamic variables is

described by critical indices.

3. Manifestation of heterophase spatial
structure in experiments
by inelastic scattering

The results of observations of elastic scattering (neutrons,
X-rays and light) are determined by the equilibrium config-

uration of the nuclei, i. e. the equilibrium position of their

IPB. As is known, the IPB is exposed to a thermodynamic

force P (actually, pressure), directed along the normal and

equal to the difference in the free energies of the phases

per unit area. The magnitude of this force depends on the

proximity of the crystal to PT point. P = P(T − Tc). As

was established in the previous Section that DE creates a

spatially inhomogeneous field of elastic deformations and,

due to its strictive interaction with the OP, the associated

inhomogeneous distribution of local PT temperatures Tc(r).
In thermodynamic equilibrium IPBs are located so that the

force acting on them is P
(

T − Tc(R)
)

= 0.

It is obvious that with a small deviation by δR from the

equilibrium configuration the restoring force appears acting

on IPB

δP = −
dP
dT

∇TcδR. (6)

Considering it the IPB movement equation is

M(δR̈) + γδṘ + βδR = f (t), (7)

where the point above denotes the time derivative, M —
mass of unit area of IPB, γ — coefficient of viscous friction

force, f (t) — force acting on IPB, including its random

component and β ≡ − dP
dT ∇Tc .

Let us now consider the dynamics of the nucleus IPB

displacement in the temperature range where the shift of

the local PT temperature Tc(r) from dislocations not closest

to the given nucleus can be neglected. In this case we

can use (2), from where value ∇Tc on IPB (at r = R∗,

where R∗ — size of nucleus) is equal to

∇Tc

(

r = R∗(T )
)

=
µ

π
(

K + 4
3
µ
)

b
R2
∗

(

∂Tc

∂ p

)

. (8)

In (8) for R∗(T ) formula (5) is valid, and since R∗ ≫ b, it is
clear that the variable ∇Tc is

”
universally“ (i. e., regardless

of the properties of the dislocation-free material and the

type of phase transition) small. Accordingly, the restoring

force in (7) is also small, decreasing as the temperature

approaches the PT point. For displacement-type PT an

additional small factor that reduces the value of ∇Tc is the

multiplier — dP
dTc

≈ 1S ≪ 1, where 1S — the entropy jump.

The slowdown of the IPB dynamics is also facilitated by the

rather large mass value M ≈ mrc , since rc ≈
√

g
αo(T−Tc )

.

Since the value of the viscosity coefficient γ strongly

depends on the specific material experiencing a particular

PT, it is advisable to use equation (7) to estimate the

characteristic time of the IPB dynamics τc p in two limiting

cases

τc p ≈

(

1S
1

rc R2
∗

)

−1/2

(γ2 ≪ βM), (9)

τc p ≈

(

1S
1

R2
∗

)

−1

(γ2 ≫ βM). (10)

When writing estimates (9), (10), we used atomic normali-

zation, in which the units of time, length, energy are equal

to 10−13 s, 10−8 cm, 1 eV = 1.1 · 104 K, respectively, and

the unit of mass is equal to the mass of the atom.

To understand how small the CP frequencies corre-

sponding to cases (9), (10) are compared to normal

phonon frequencies, let us make a simple numerical

estimate for the size of the nucleus R∗ in the tem-

perature range 0.1 < T−Tc < 10K, commonly used in

experiments. Taking into account that the values of

the derivative dTc
dp ∼ (1−10) deg/kbar, from (5) we obtain

R ∼
(

(10−1)−(0.1−0.01)
)

µm, respectively, near and far

from the temperature Tc . These values are close to those

observed experimentally for elastic scattering.
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To estimate the ratio of CP width 1� to the frequency

of normal phonon modes ω, we choose the displacement-

type PT, since until now it was difficult to explain CP

appearance specifically with this type of PT (in contrast

to order-disorder type PTs, where the appearance of CPs is

expected due to uncorrelated hops of atoms over potential

barriers inside cells) [1,36]). Substituting dimensionless

values 1S ∼ 10−2, rc ∼ 102, R ∼ 105, we get in case (9)
1�
ω

∼ 10−5, and in case (10) 1�
ω

∼ 10−7. Accordingly, CP

line width is 1� ∼ 108 s−1 and 1� ∼ 106 s−1 for small and

large attenuation coefficients γ .

The estimates obtained explain the small value of the

observed CP width, which by 4−5 orders of magnitude

is smaller than the characteristic phonon frequencies [37].
They also help to understand why, at a sufficiently high

resolution ∼ (106−107) s−1, experiments for some materials

can resolve the CP linewidth, while in most others CP

linewidth remains unresolvable.

4. Discussion

Based on the assumption of the universal role of the

IPB dynamics of nuclei appearing on dislocations already in

the symmetric phase, the paper obtained estimates for the

width of experimentally observed CPs in inelastic scattering

spectra. Note that the dislocation density nd = R−2
d in

most of the high-quality crystals selected for scattering

experiments was small, so that Rd ≫ R∗ (up to the actually

achievable vicinity of PT point ∼ 0.1K). Therefore, the

contribution to the deformation field on the given nucleus

from distant dislocations can be neglected in comparison

with the field of the dislocation closest to it, which was

used in calculating the CP width.

In addition to the numerical results, two general con-

clusions can be immediately drawn from the expressions

for the characteristic size of the nucleus (5) and the time

associated with the dynamics of CP (9), (10). Firstly, it

is obvious that especially narrow CPs shall be observed

near tricritical points (at which 1S → 0). This prediction

is in agreement with experimental observations. Secondly,

combining (5) and (9), we find the temperature dependence

of CP half-width γR ∼ |T−Tc |, and combining (5) and (10)
we obtain γR ∼ |T−Tc |

2. Both of these dependences were

observed for different crystals [5,6,37].

It is especially interesting that the dependence

γR ∼ |T−Tc | appears for the case of IPB dynamics with re-

latively low damping (9), which is typical for displacement-

type PTs. Within the framework of the phenomenological

description of CP in the traditional Ginzburg−Landau

dynamic scheme, such dependence of the
”
critical slowing

down“, on the contrary, is unambiguously interpreted as

evidence of the order-disorder type PT presence. It is

possible that the above difference explains the solution to

the long-standing question about the type of PT in such, for

example, crystals as LiNbO3 and LiTaO3.

Despite the universality of the proposed mechanism of

CP formation and the agreement of the obtained estimates

with experimental data, note that they were obtained within

the framework of a simplified elastic-isotropic model with a

scalar OP, which does not describe all possible scenarios for

the evolution of the heterophase structure when approaching

the PT point.

Indeed, the anisotropy of the long-range elastic field

upon sufficient approach to PT point, can lead to the

formation of correlated structures of nuclei of the solid-state

nematic type [38] (this is apparently the origin of large-

scale
”
columns“ of α-phases responsible for the appearance

of abnormal small-angle light scattering during β−α PT

in quartz [9]) or regular heterophase superstructures [39]
(observed during PT in crystals Hg2Cl2 [40], BaTiO3 [41,42]
and DKDP [43]). Besides, in the model used above it was

implicitly assumed that dislocations do not change their

shape, are not displaced, and are not generated during

PT. That is, actually PTs were considered either in brittle

materials with high Peierls barriers or in materials with

locked dislocations (for example, pinned by the defect

atmospheres of Cottrell, Snook and Suzuki). In plastic

materials that experience PT of the 1st kind, the initial

DE can lose stability and transform into the vicinity of the

PT [44–47].
Analysis of such situations, as well as of specific effects

caused by the polarization properties of scattered particles

or light, scattering geometry, spatial inhomogeneity of DE,

etc., requires special consideration for specific materials

using more complex models with multicomponent OP and

its close connection with data from relevant experiments.
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