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1. Introduction

Two-dimensional Wigner lattices were the subject of

study since the 1970s [1–3]. In these systems, the Coulomb

repulsion is compensated by opposite charges separated by

an insulating layer from the two-dimensional quantum well.

Classical electrons occupy potential energy minima, and

quantum electrons form wave functions near the minima. If

the quantization energy becomes large, the electron lattice

melts, and the system transforms into an electron gas.

Various properties of two-dimensional Wigner lattice

(2DWL) were studied, in particular interaction energy, plas-

mon spectrum, melting phase transition and the magnetic

field influence. Two-dimensional Wigner clusters (2DWC)
with a small number of electrons, where electrons are kept

from scattering by an external potential along the surface,

were also considered. In [4] the spectrum of electronic

oscillations was studied, and in [5,6] — two-stage melting

of 2DWC was studied. Many articles, including reviews, are

devoted to the study of 2DWC [6–15].

Theoretically, 2DWL and 2DWC were considered clas-

sically and quantum not considering spins. At the same

time, the exchange interaction is weaker than the Coulomb

interaction. However, in the case of small differences

between the ordering minima, the exchange interaction can

affect the ordering of the coordinates.

Fine rearrangement of 2DWC states using a confining

potential and a magnetic field leads to their possible

application in electronics [16], lasers [17,18] and quantum

calculations [19].

A class of systems should be mentioned, namely two-

dimensional lattices of ions trapped on the surface of liquid

helium (see, for example [20]). In these systems the

effective mass is much larger than the electron mass, which

promotes the ion condensation.

The experimental implementation of 2DWCs in semicon-

ductors has encountered serious difficulties due to the low

required electron density, where disorder usually overcomes

the e-e interaction. However, in recent papers such

systems were implemented in the form of a one-dimensional

Wigner cluster with the transition
”
string−zigzag“ [21,22], a

Wigner crystal in a monolayer semiconductor [23] and two-

layer Wigner crystals in heterostructures of transition metal

dichalcogenides [24].

Electrons are usually considered as structureless particles.

The coordinate ordering of electrons in the cluster does

not directly affect their spin degree of freedom. However,

the spin structure of the 2DWC is important for its

thermodynamic properties.

The problem of exact diagonalization of the spin Hamilto-

nian 2DWC in the Heisenberg model requires a lot of time,

so it was carried out for small numbers of electrons (see,
for example, for a two-dimensional two-center oscillator [8]
and a two-dimensional harmonic confining potential [9] for
n = 4 and for n ≤ 8 [10]).

There are a number of studies of Coulomb blockade

in low-electron quantum dots (see, for example, the

review [11]). The Coulomb blockade approach differs from

the 2DWC by blurring of the electron density inside the

dot. In this approximation, unlike 2DWC, the correlation

between electrons is not taken into account or is considered

weak and perturbative.

A parabolic quantum dot with up to 20 electrons was

studied considering spins and using test wave functions [12].
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Confinement strongly affects correlations due to broken

translational symmetry, which leads to electron lattice

localization. The exact quantum problem for three electrons

in the asymmetric parabolic well is considered in [13]. The
cumbersome nature of the calculations does not make it

possible to significantly increase the number of electrons.

A review of results on electronic states in two-dimensio-

nal quantum dots and rings is contained in [14]. Among

them there are papers relating classical ordering [6,15].
Classical configurations with geometric shells (n1, n2, . . .)
of electrons in 2DWCs with different numbers of electrons

were obtained in [6,15,25]. These papers differ in the num-

ber of electrons considered. In particular, for n = 6 there are

configuration (1,5) [15] or (3,3) [6], at n = 10 configuration

(3,7) [6,26] or (2,8) [15]. These differences arise from

small differences in the energy minima corresponding to

”
isomers“ of 2DWC. Isomerism leads to easy melting of the

structure at low temperatures.

In [25] we studied the structure of the classical 2DWC in

the axially symmetric and asymmetric parabolic potential

k(x2 + b2y2). Inside the cluster the electrons form a

distorted triangular lattice. The competition between the

boundary and internal energies leads to polycrystallinity of

the inner part of the cluster and ordered arrangement of

boundary electrons, as well as to the presence of topological

defects inside the cluster. It turned out that the structures of

classical and quantum 2DWC are slightly different. We also

considered the rotation of 2DWC under the influence of an

alternating magnetic field [26].
Here we will focus on the issue of the spin structure

of stationary multielectron clusters. Even if the exchange

interaction turns out to be weak compared to the spinless

Hamiltonian, the Heisenberg exchange Hamiltonian is a

matrix of size 2n × 2n, the dimension of which grows

exponentially with n increasing. In this case, the simpler

Ising Hamiltonian significantly simplifies the problem of

spin ordering, preserving the main features of the position.

The Ising model is the most popular formulation of the

theory of phase transitions. 2DWC with large n corresponds

to many aspects of the two-dimensional Ising model, but

differs in finite size and lattice inhomogeneity. Besides,

in relation to 2DWC, the spin order of any n is specific.

In 2DWC the lattice is frustrated, finite, and contains

polycrystalline blocks and topological defects. 2DWC also

has different densities inside and at the boundary, this affects

the magnetic properties.

Our goal is to study the spin structure and magnetic

moment, as well as the susceptibility of electrons in

symmetric and asymmetric parabolic quantum wells. We

will consider a multi-electron 2DWC based on classical

ordering and then include exchange interaction to study spin

ordering based on the Ising model. This consideration of

2DWC is justified by its greater simplicity, which makes it

possible to expand the number of electrons considered.

The article is structured as follows. We first describe the

spatial structure of 2DWC. Then the exchange interaction of

electron spins at the lower coordinate energy level will be

described. After this, the Ising model will be formulated,

which determines the spin statistics, spin structure and

susceptibility. Next, we present the results of modeling the

spin structure of circular clusters, as well as the dependence

of the spin magnetic susceptibility on the magnetic field.

After this, we calculate the spin correlation functions at low

temperature and zero magnetic field. Finally, we discuss the

results obtained. The applicability of the Ising model for

describing the system of heavy holes in a two-dimensional

semiconductor quantum well is discussed in the Appendix.

2. Clusters under study

Let us consider free electrons near a flat surface, placed in

a potential well k(x2 + b2y2)/2, (k > 0), and experiencing

Coulomb repulsion
∑
i> j

e2

ε|ri−r j |
, where e — electron charge,

ε — dielectric constant of the environment, b — anisotropy

parameter of the potential well. Next we will use

dimensionless coordinates, scaling

ri → Lri , L = (2e2/εk)1/3.

Energy measured in units

E0 = (ke4/2ε2)1/3

is as follows:

H =
∑

i> j

1

|ri − r j |
+

∑

i

(x2
i + b2y2

i ). (1)

The asymmetry of the wells determines the corresponding

asymmetry of the two-dimensional cluster. At b = 1,

clusters on average have circular symmetry; at b ≫ 1 or

b ≪ 1 the cluster becomes elongated and, in the limit, one-

dimensional. At low temperatures electrons occupy energy

minima, forming a quasiperiodic lattice that minimizes the

cluster energy.

Estimating the size of 2DwC with nelectrons gives

R ∼ (ne2/εk)1/3, the distance between electrons is R/
√

n
and the characteristic electron density n/R2 [26].
To find the spin structure, it is necessary to take into

account the quantization of electrons. The wave functions

of one electron, when the others are fixed, are localized near

the bottom of wells and have energies ε0 = ~(k/me)
1/2n1/4,

where me — electron mass.

The spin ordering is determined by the spin Hamilto-

nian, which will be studied on the basis of the electron

coordinates found from the Hamiltonian (1). We neglect

the influence of spin interaction on the cluster structure.

Besides, we assume that all electrons are in the ground

coordinate state. The wave function of the ground state of

i-th electron decreases as

ψ(r − ri) ∝ exp(−α|ri − r|),

where α ∼ √
meε0L/~. The exchange interaction between

the spins of two electrons in the ground state is determined
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by the integral of overlap between the coordinate wave

functions J i j = J0 exp(−α|ri − r j |) and is antiferromagnetic

in nature. Here and below we neglect the difference in states

of different electrons.

Note that exponential behavior is not universal and does

not take into account either the lattice or the magnetic

field. In the presence of the magnetic field, the long-

range dependence is replaced by ∝ exp(−r2i j/a2
B), where

aB =
√

c~/eB is the magnetic length, B — magnetic

field, c — speed of light. This dependence leads to

exchange interaction controlled by the magnetic field. But

at r i j/a2
B ≪ α the magnetic field is insignificant for J i j .

We will use the Ising model to describe spin ordering.

This is a widely used model in the theory of phase

transitions. The applicability of the Ising model can be

confirmed for hole systems in conventional semiconductors

(see Appendix). In magnetic field B the spin energy E has

form

E =
∑

J i jσiσ j − h
∑

σi , σ j = ±1, (2)

where h = 2µbB/E0 and µB — Bohr magneton. Statistical

sum

Z =
∑

(σi =±1)

exp(−βE). (3)

Here β = E0/kBT , T — temperature, kB — Boltzmann

constant. Variable Z determines all thermodynamic prop-

erties of the system, in particular, induced magnetic

moment M and spin magnetic susceptibility χ :

M =
1

β

∂ lnZ
∂h

, χ =
∂M
∂h

. (4)

We performed numerical calculations based on the equa-

tions (2−4).

3. Magnetic moment

The results of the numerical calculation of the magnetic

moment dependence on the magnetic field are presented

in Figure 1. The magnetic moment of 2DWC increases

with the magnetic field to a maximum value equal to n.
The calculation shows that the dependence of the magnetic

moment on h differs significantly from the Curie−Weiss

model

M(h) = M0 tanh(γβh).

At high temperatures (black dashed lines), the growth is

more linear than would be expected from the Curie−Weiss

model (red dashed lines). We see that M(h) ∝ h for

small h. Then this dependence abruptly reaches M(h) = M0.

Another important property of M(h) is the presence of

steps. The steps are explained by the sequential spin pairs

depairing by the magnetic field. This result is in agreement

with the periodic peak structure χ(h).

h
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Figure 1. Spin magnetic moment of round cluster with n = 12

electrons vs. magnetic field at relatively high temperature T = 0.2

(black dashed line) and low temperature T = 0.05 (blue, solid

line). (See color illustration online.)
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Figure 2. Spin magnetic susceptibility χ(h) of round 2DWC with

9 electrons and derivative of average spin of k-th electron ξk(h)
depending on the magnetic field at temperature T = 0.1. Structure

of round 2DWC with 9 electrons. Digits inside circles enumerate

electrons. The peaks χ(h) can be attributed to specific electrons.

(See color illustration online.)

4. Spin magnetic susceptibility

The spin magnetic susceptibility χ(h)of round 2DWCs is

demonstrated in Figure 2. The dependence contains peaks

arising as a result of sequential spins depairing.

Round 2DWCs have a shell structure (Figure 3). Elec-

trons in different shells have very different bonds with other

shells. In the cases of 2−5 electrons they all form a

single shell with symmetry towards the replacement i → j .
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Starting from n = 6 two or more shells appear. The only

electron in the center at n = 6 or n = 7 remains unpaired.

Round 2DWCs (see Figure 2) have a complex spin

ordering. If the distance between the shells exceeds the

interelectron distance inside the shell, then the spin ordering

between the inner and outer shells occurs at much less h,
than the ordering in the shell. However, if the hell contains

odd number of electrons, a the depaired electron in one

shell can pair with electron in another shell, but with a

lower pairing energy. so, the pairing of distant electrons can

be superimposed on the simple single shell pattern, creating

more complex peak structure χ(h). We see this behavior in

Figure 2.

Note that more complex pairing options are possible. In

particular, direct exchange of two distant spins is very weak.

In this case, indirect pairing predominates [27]. The example

of such a situation is presented in Figure 2, where electrons

experience the transition from antiferromagnetic ordering at

h < J i j to ferromagnetic ordering at h > J i j .

5. Spin correlation function

The spin structure of the Wigner cluster can be effectively

identified using the spin correlation function ζi, j = 〈σiσ j〉,
where 〈. . . 〉 denotes statistical averaging. Unlike the

infinite 2DWL, ζi j depends on the coordinates of two spins.

The susceptibility of 2DWL χ smoothly depends on h.
On the contrary, in 2DWC, upon change in h, multiple

rearrangements occur, which leads to a periodic dependence

of susceptibility χ on h.
A common feature of different clusters is the pairing of

the most tightly bound nearby electrons, if there is an even

number of them. They comprise
”
molecules“. Electrons

that do not have a pair in this close community are paired

with more distant ones. If there are several such electrons,

then they have an unpaired spin. However, in the system

with many electrons different types of pairing are mixed.

Figure 3 shows the variables ζi, j for i chosen to have

the smallest value of r i . We set the zero temperature

limit to highlight the antiferromagnetic ordering of spins.

The correlation function in round clusters decreases with

distance |ri − r j |. The drop follows from statistical conside-

rations. The imperfection of the crystallographic lattice also

contributes to the attenuation of the correlation function.

Below we analyze the dependence ζi, j for round clusters

with small number of electrons. The weaker interaction

between the shells and the smaller distance between the

inner electrons make their spins more coupled. The

remaining spins adapt to the spins of the inner shells.

Systems with a small number of electrons n = 3, 4, 5 form

regular polygons. In these polygons the situation depends

on the parity n.
Let us analyze the resulting correlation functions. At

zero h the systems with even number of electrons tend to

pair all electrons, while in system with odd electrons one

electron remains unpaired.
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Figure 3. Correlation function ζi j = 〈σiσ j〉 of spins for 2DWC

with n = 2 . . . 12 and n = 17. The centers of the circles

correspond to the positions of the electrons. As number i = 1

we selected electron with the lowest r i . The value ζ1, j is shown

inside circle representing the corresponding electron located at the

corresponding location. The limit h → 0 β → ∞ is represented.

The lines of exact and approximate reflection planes are indicated

by dashed lines and dots, respectively. Antiferromagnetic ordering

is visible.
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In a system with 2, 3, 4 and 5 electrons, the particles

are located equidistantly. All positions are equal. You can

easily count all configurations with the same lowest energy

and find the correlation functions (see Figure 3).
2DWCs with 2 and 4 electrons are completely polarized,

and all ζ1, j 6=i = ±1. Let us consider the case n = 3. Let

i = 1, and σ1 = 1 fixed. Minimum energy is achieved for

configurations (1, 1,−1), (1,−1,−1), (1,−1, 1). Averag-

ing product σ1σ j , we obtain ζ1,1 = 1, ζ1,2 = ζ1,3 = −1/3.

Similarly for n = 5 we obtain ζ1,1 = 1, ζ1,2 = ζ1,5 = −3/5,

ζ1,3 = ζ1,4 = 1/5.

At n = 6 one electron is in the center, and the rest occupy

the vertices of a regular pentagon. The central spin is

connected to one spin on the outer shell. When distributed

over 5 sites, one spin gives ζ1, j 6=1 = −1/5.

A cluster with n = 7 contains 1 electron in the inner

shell and 6 paired electrons on the outer shell. This gives

ζ1, j 6=1 = 0.

The case n = 8 is similar to the case n = 6: one common

spin in seven sites of the outer shell gives ζ1, j 6=1 = −1/7.

At n = 9 and n = 10 there is no axial symmetry of

the spatial structure, but there is a reflection plane. The

two central, closely spaced spins are strongly coupled, and

ζ1, j 6=1 = ±1. The outer electrons have at n = 9 ζ1, j 6=1 ≈ ±1,

keeping alternation to minimize total energy, except for

two spins for which alternation is not possible. At n = 10

there are 8 paired electrons on the outer shell, which

gives ζ1, j = 0. The appearance of one more electron made

possible the spins alternation in the outer shell.

Systems with n = 11 and n = 12 also have central almost

regular triangles. However, the order of the spins in these

cases is very different. This can be explained by the

symmetry of the systems. In case of n = 11 there is a

plane of reflection, and in the case of n = 12 there is

symmetry C3ν .

At n = 11, the spatial structure of 2DWC has a reflection

plane, and the correlation function ζ1, j 6=1 is antisymmetric

with respect to it. As a result, one of the variables ζ1, j 6=1 in

the inner shell is small, and the other has a value about −1.

The four electrons on the top right, like 2DWC with n = 4

have ζ1, j ≈ ±1. The remaining spins have alternating values

of order ±0.5.

The inner shell of a 12 electron cluster has spin ordering

as system with 3 electrons. The spins of the outer shell

adjust to them.

Now let’s analyze the cluster with n = 17. This cluster

contains shells with 1, 6 and 10 electrons. The second

and third shells form approximately regular hexagon and

decagon. These shapes have mutual elements of symmetry:

two orthogonal planes of reflection and rotation by an

angle π, thereby conforming with group C2ν . An even

number of electrons in the second shell leads to their

complete pairing with ζi, j for j within this group. Symmetry

leads to the electrons separation on the outer shell into 3

subsets with 2, 4 and 4 electrons, which have the same

values of ζ1, j . The subset with ζ1, j = −0.93 is closer to

the origin (and interacts more strongly with the central

electron), while the others are paired with the nearest

electrons from this shell and have alternating spins.

Thus, the qualitative behavior of the correlation function

becomes completely understandable.

6. Relation between rearrangement of
spin structure and spin susceptibility

The presence of several peaks allows them to be assigned

to specific spin pairs. This can be called
”
spin pairing

spectroscopy“. The maximum value of h corresponds

to the bond strength. In the simple case, this value

coincides with J i j for specific pair {i, j}. However, if

the distance between electrons r i, j is large, the exponential

decay J i j makes direct exchange too weak. In this case,

the indirect effect along a certain chain of reorienting spins

coupling i with j can lead to stronger power-law interaction

between σi and σ j . Here we analyze different clusters in

different fields to systematize the types of spin ordering.

For example, consider the round cluster with n = 9

electrons, two of which are located within the cluster at

small distance, and the rest make up the outer shell with

approximately the same distances between them. The

corresponding dependence χ(h) is shown in Figure 2. To

match the peaks we also prepare the derivative with respect

to h of the average spin of each individual electron. We see

that all peaks χ(h) can be attributed to certain spins and

spin pairs. The inner electrons are located close to each

other. Then the peak at h = 0 is associated with unpaired

electron located on the outer shell. This electron is more

easily oriented by the weak h. This leads to maxima of

the average spin derivatives ξn(h) = d〈σn(h)〉/dh for shell

electrons with numbers n = 1, 2, 7, 8, 9. In the region

of large h there is only one peak at h ≈ 1, caused by the

strongest bound pair of the 4th and 9th electrons. The peak

at h = 0.2 can be attributed to 3rd electron (and partially

to the minima for the 2nd and 8th electron). The peak at

h = 0.35 is mainly associated with the peaks for spins of

the 5th, 6th, 2nd and 8th electrons and minima for the 4th

and 9th electrons.

Thus, the origin of the peaks can be understood from

the geometric structure of the cluster, and the magnetic

susceptibility spectrum allows one to study the spatial

organization of the clusters.

Note that, as can be seen in Figure 2, pairing-depairing

does not necessarily occur with pair of nearest electrons.

This is also reflected in the spins of other electrons (see
the maximum at h = 0.2 for ξ3, which is accompanied by

minima for ξ2 and ξ8 and a shoulder on the curve for ξ5
and ξ6).

7. Estimates of characteristic parameters

We expect that the most clear manifestation of 2DWC

can be obtained in systems with a relatively low dielectric

constant and a large electron mass. Besides, the purity of

Physics of the Solid State, 2023, Vol. 65, No. 10
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the material is important to avoid potential fluctuations that

localize holes. To get closer to the experimental situation,

we estimated the parameters characterizing 2DWC for

various systems where, we hope, electronic spatial and

spin ordering are significant. The most suitable systems are

electrons on the surface of liquid helium or freely suspended

layers of semiconductor of p-type. To eliminate the Fermi

energy, the charge density is chosen to be quite low.

However, this reduces the maximum melting temperature of

2DWC. We cannot lower the electron concentration much

because the exchange interaction falls exponentially with the

distance between the electrons. Let us consider electrons

on He surface, a p-channel of GaAs type, and a two-

dimensional material MoS2. It is convenient to choose

exchange integrals by several times less than unity.

Let us estimate the characteristic parameters. Let n = 12

(Figure 1), k = 1.66 · 10−2 meV/cm2, ε = 1 (free sus-

pended layer). Then R =6.18 · 10−3 cm, ns =105 cm−2, unit

of energy and temperature is E0 = 0.26meV= 2.99K, and

unit of length is L = 5.58 · 10−4 cm. Dimensionless temper-

atures on the graphs 0.05 and 0.2 correspond to T = 0.15K

and T = 0.6K. The corresponding maximum exchange

energies J i j are 0.043meV (He), 0.11meV (GaAs),
0.093meV (MoS2). Characteristic magnetic fields for h = 1

are B = 2.23 T (He), B = 1T (GaAs), B = 1.43T (MoS2).
These values seem to quite extreme, but achievable.

8. Conclusion and discussion

We studied the spin magnetic moment, correlation func-

tion, and magnetic susceptibility of round two-dimensional

Wigner clusters. It was found that the dependence of

the magnetic moment on the magnetic field differs from

Curie−Weiss law and is practically linear up to the satura-

tion value at relatively high temperatures. Low-temperature

magnetic susceptibility at low magnetic fields is zero for an

even number of electrons and finite for an odd number of

electrons, which is explained by spin pairing.

Magnetic susceptibility fluctuates at finite magnetic field

due to successive pairing from the weakest to the strongest

spin bonds. These oscillations show weak regularity, which

is associated with the shell structure of the cluster (weak
bond between electrons of different shells), the approximate

periodicity of the electrons arrangement on the shell, and

the cyclicity of individual shell (absence of ends). As

a result of the shell structure, the different shells act

almost like independent subsystems. The periodicity of

the electrons arrangement in the shell makes all electrons

equally susceptible to the magnetic field, but intershell

pairing leads to uneven magnetic oscillations.

Let us compare the correlation function of the 2DWC

with the infinite lattice of the 2DWL. The infinite 2DWL

is homogeneous. In the Ising lattice at h = 0 the phase

transition occurs at a certain temperature Tc . Near Tc the

correlation radius grows infinitely, and the correlation func-

tion becomes the power function. This behavior determines

the similarity laws for susceptibility at τ = (Tc − T )/Tc → 0

and h → 0. It is obvious that this scaling behavior will be

preserved to some extent in the inhomogeneous system such

as 2DWC, when the correlation length becomes smaller than

the cluster radius.

In the infinite system the 2nd kind phase transition

is accompanied by the infinite correlation length. The

two-dimensional triangular lattice undergoes a single phase

transition. In a finite magnetic field no phase transition

occurs. The susceptibility χ in a magnetic field smoothly

depends on h. On the contrary, in 2DWC, upon change in h,
multiple rearrangements occur, which leads to a periodic

dependence of susceptibility χ on h.
Note that the action of the magnetic field can be replaced

by cluster rotation with angular frequency � = eB
mc . 2DWC

in an axially symmetric potential is capable of free rotation

without changing shape and destruction [26], which makes

it possible to use rotation instead of the magnetic field.
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Appendix. Applicability of Ising model

Ising model is based on replacing the quantum spin

operator ŝ i of spin 1/2 with the classical c-number σi .

This reduces 2n-dimensional spin Hilbert state to a space of

n-dimensional binary numbers σi , reducing an NP-complete

problem to NP-incomplete one. From a physical point

of view this can be justified when, instead of the Pauli

matrices 2× 2 the Hamiltonian will include only one of

them, for example, σ = ŝ z . This is the case when the spin

Hamiltonian has the form

∑

i j

J i j,αβ ŝ iα ŝ jβ ,

where α and β denote Cartesian coordinates (x , y, z ), and
J i j,z z ≫ J i j,xx , J i j,z z ≪ J i j,yy . If this is so, then only

diagonal components of the spin, ±1, are taken into account,

and the Heisenberg Hamiltonian is transformed into the

Ising Hamiltonian.

However, symmetry allows such a case in simple models

J i j,α,β = J i jδαβ . In this case, it is impossible to transform

the Heisenberg model into the Ising model. Then Ising’s

approach is only an approximation to the more general

Heisenberg model.

However, there are systems in which this is not the case.

Imagine hole Hamiltonian in a regular cubic semiconductor
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such as GaAs. In the volumetric isotropic case, this

Hamiltonian has the following form:

H = Ap2 + B(pj)2,

where j — operator of spin 3/2. Surface quantization splits

the states m = ±3/2 and m = ±1/2 so that 3/2 usually

becomes the top state of the heavy hole. The doubly

degenerate states m = ±3/2 are similar to the state ±1/2 of

the free electron, excluding that now the exchange integral is

J i j,αβ ≈ J i jδαz δβz . In fact, the Hamiltonian of the exchange

interaction has the following form:

Hex ∝ (ji,α j j,β)

Projecting ji,α , j j,β on subspace of states with

j z = {3/2,−3/2} we see that 〈±3/2| jx | ± 3/2〉,
〈±3/2| jy | ± 3/2〉 = 0, 〈3/2| j z |3/2〉 = 3/2. This

diagonalizes the Hamiltonian and transforms it into

the Ising Hamiltonian. On the contrary, for states with

j z = ±1/2, 〈±1/2| jx | ± 1/2〉 6= 0, 〈±1/2| jy | ± 1/2〉 6= 0,

this situation shall be described by the Heisenberg model.

Therefore, such holes are good candidates for creating

Wigner two-dimensional hole clusters controlled by the Ising

Hamiltonian.
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