Фотолюминесценция и комбинационное рассеяние света в пористом GaSb, сформированном ионной имплантацией

© Ю.А. Данилов[¶], А.А. Бирюков, J.L. Gonçalves^{*}, J.W. Swart^{*}, F. likawa[†], O. Teschke[†]

Научно-исследовательский физико-технический институт Нижегородского государственного университета им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия * Centro de Componentes Semicondutores — UNICAMP, 13083-970 Campinas, SP, Brazil [†] Instituto de Física "Gleb Wataghin" — UNICAMP,

13081-970 Campinas, SP, Brazil

(Получена 1 июня 2004 г. Принята к печати 16 июня 2004 г.)

Формирование пористого слоя в ионно-имплантированном GaSb было изучено с помощью атомносиловой микроскопии, фотолюминесценции и комбинационного рассеяния света. С накоплением дозы ионов на поверхности GaSb сначала формируется система бугорков, а потом — пористый слой. Высота ступеньки на границе пористого слоя с необлученной областью может достигать значений 1 мкм. В ионно-имплантированном GaSb обнаружена широкая полоса фотолюминесценции между 1.1 и 1.65 эВ, интенсивность которой увеличивается с дозой ионов. В спектре комбинационного рассеяния света пористого GaSb обнаружены дополнительные линии 111 и 145 см⁻¹, характерные для окисленного полупроводника. Представленные данные свидетельствуют, что пористый слой, сформированный имплантацией ионов в GaSb, обладает свойствами, характерными для нанокристаллических систем.

1. Введение

Обнаружение интенсивной люминесценции из пористого кремния [1,2] вызывает повышенное внимание к исследованию светоизлучающих полупроводниковых структур на его основе. Пористый Si представляет собой сеть каналов-пор и вследствие этого систему кристаллитов различных размеров. Кристаллиты окружены поверхностными барьерами и (или) слоями естественного окисла. Наименьшие из кристаллитов имеют размеры порядка нескольких нанометров. Тогда, вследствие квантово-размерного уширения запрещенной зоны полупроводника, создаются условия для фото- и электролюминесценции из пористого Si в видимой области спектра. Пористые слои также могут быть сформированы и на поверхности других полупроводников, в частности SiC [3,4], GaAs [5-7], InP [8], GaP [9]. Указанные пористые полупроводники изготавливают электрохимической обработкой монокристаллической пластины с подбором индивидуального электролита для каждого материала. В связи с этим можно отметить, что в некоторых полупроводниках типа A^{III}B^V (InSb [10], GaSb [11], GaN [12]) пористый слой может быть сформирован ионной имплантацией. Однако оптические свойства этих ионно-имплантированных материалов до сих пор изучены нелостаточно.

2. Методика эксперимента

В настоящей работе монокристаллические образцы GaSb *n*-типа с ориентацией (100) были облучены ионами средних энергий с дозами *D* в диапазоне от $1 \cdot 10^{13}$ до $1 \cdot 10^{16}$ см⁻² при комнатной температуре мишени. Использованы ионы с различными массами от $^{11}B^+$ до $^{55}Mn^+$. Все ионные облучения выполнены в условиях, когда каналирование минимизировано с помощью наклона образцов на угол $\sim 7^\circ$ между нормалью к их поверхности и направлением падающего ионного пучка. Там, где не оговорено особо, энергия ионов составляла 50 кэВ.

Измерения фотолюминесценции (ФЛ) были выполнены при 77 К. Возбуждение осуществлялось He–Neили аргоновым лазером, а сигнал регистрировался фотоумножителем или Ge-детектором.

Спектры комбинационного рассеяния света (КРС) были исследованы при комнатной температуре. В качестве источника возбуждения применен Ar⁺-лазер с излучением на длине волны 514.5 нм. Лазерный пучок был сфокусирован на образец системой линз микроскопа. Спектры КРС были записаны в геометрии обратного рассеяния с помощью охлаждаемого до 77 К детектора типа прибора с зарядовой связью.

Морфология имплантированных образцов была исследована с помощью атомно-силового микроскопа ТороМеtrix TMX 2000 (IFGW-UNICAMP). Измерения средней высоты ступеньки h на границе облученной и необлученной частей пластины были выполнены с помощью прибора DECTAK-3 ST с нагрузкой на зонд не более 0.1 H.

3. Экспериментальные результаты и их обсуждение

Изучение поверхности облученного ионами GaSb с помощью атомного силового микроскопа (ACM) выявило значительные изменения морфологии импланти-

[¶] E-mail: danilov@phys.unn.ru

Рис. 1. АСМ-изображения морфологии поверхности GaSb, облученного ионами N^+ с дозами $1 \cdot 10^{15}$ (*a*) и $1 \cdot 10^{16}$ см⁻² (*b*).

рованных областей. Так, при дозе имплантации ионов N^+ $D = 9 \cdot 10^{14} - 1 \cdot 10^{15}$ см⁻² наблюдается формирование холмиков высотой ~ 10 нм, с диаметром основания ~ 60 нм и плотностью $\sim 3 \cdot 10^9$ см⁻² (рис. 1, *a*). Затем при увеличении дозы до $1 \cdot 10^{16}$ см⁻² (рис. 1, b) зарегистрировано образование морфологического рельефа, изображение которого характерно для пористого слоя [13]. Формирование пористого слоя в наших экспериментах коррелировало с появлением на границе имплантированной и неимплантированной областей ступеньки рельефа со средней высотой *h*. В частности, для случая облучения ионами N^+ с дозой $1\cdot 10^{16}\,\mbox{cm}^{-2}$ величина $h \approx 14$ нм. Эксперименты с имплантацией ионов F⁺ и Si⁺ показали, что подобные изменения на поверхности GaSb также происходят с увеличением дозы облучения. При этом дозы, характерные для указанных морфологических изменений, уменьшаются с увеличением массы ионов. Так, пороговая доза образования холмиков уменьшается до $\sim 5 \cdot 10^{13}$ см $^{-2}$ для ионов F⁺ и до $5 \cdot 10^{12}$ см⁻² для ионов Si⁺. Таким образом, изменения морфологии и образование пористого слоя не зависят от того, являются ли использованные ионы газовыми (N⁺) или нет (Si⁺), а определяются генерацией радиационных дефектов при торможении ускоренных ионов в матрице. Ясно, что увеличение массы ионов при равной энергии приводит к возрастанию концентрации радиационных дефектов, созданных в GaSb каждым падающим ионом.

Высота ступеньки определяется массой, энергией и дозой ионов и может достигать величины 1 мкм. На рис. 2 показаны зависимости величины h от дозы ионов Ar⁺ и Si⁺. Видно, что в первом приближении величина h прямо пропорциональна $(D - D_{inc})$, где D_{inc} — инкубационная доза порообразования, равная приблизительно $2 \cdot 10^{14}$ см⁻² в случае ионов Ar⁺ с энергией 40–80 кэВ.

Для исходного образца в спектре ФЛ (рис. 3, кривая 1) видна только фундаментальная полоса при энергии кванта ≈ 0.75 эВ, которая приблизительно соответствует ширине запрещенной зоны GaSb при температуре измерений [14]. В ионно-имплантированном GaSb эта полоса исчезает. При достаточно больших дозах ионов (выше порога порообразования) в спектре ФЛ появляет-

Рис. 2. Зависимость величины ступеньки h от дозы ионов: $I - Ar^+$, 40 кэВ, $2 - Ar^+$, 80 кэВ, $3 - Si^+$, 50 кэВ.

Рис. 3. Спектры ФЛ при 77 К для образцов GaSb: 1 — исходный, 2 — имплантированный ионами Mn⁺ с энергией 200 кэВ и дозой $1 \cdot 10^{14}$ см⁻², 3 — имплантированный ионами Mn⁺ с дозой $1 \cdot 10^{15}$ см⁻².

Физика и техника полупроводников, 2005, том 39, вып. 1

Рис. 4. Спектры КРС для образцов GaSb: 1 — неимплантированный, 2 — имплантированный ионами Si⁺ с дозой $5 \cdot 10^{13}$ см⁻², 3 — имплантированный ионами Si⁺ с дозой $1 \cdot 10^{15}$ см⁻², 4 — окисленный неимплантированный.

ся широкая полоса, смещенная в коротковолновую область относительно фундаментальной полосы. На рис. 3 (кривая 2) приведен спектр ФЛ для случая имплантации ионов Mn⁺ с энергией 200 кэВ и дозой $1 \cdot 10^{14}$ см⁻². Видна полоса ФЛ в диапазоне энергий квантов от 1.1 до 1.65 эВ. Интенсивность этой широкой полосы увеличивается с ростом дозы ионов (см. кривую *3* на рис. 3 для дозы ионов Mn⁺ $1 \cdot 10^{15}$ см⁻²). Здесь следует отметить, что появление похожей полосы ФЛ в коротковолновой (0.9–1.4 эВ) области спектра наблюдалось в [15] для GaSb, облученного низкоэнергетическими ионами Ar⁺ с дозами $\geq 4 \cdot 10^{17}$ см⁻², и объяснялось формированием квантовых точек на распыляемой поверхности.

Спектр КРС для неимплантированного образца GaSb показан на рис. 4 (кривая *I*). В спектре обнаруживается интенсивная линия при $\approx 234 \text{ см}^{-1}$, которая соответствует продольному оптическому (LO) фонону. Ее положение не отличается значительно от имеющихся в литературе значений (236 см⁻¹ в [16]). Появление этой линии соответствует правилам отбора для ориентации (100). Кроме того, обнаруживается слабая линия на частоте $\approx 222 \text{ см}^{-1}$, которая соответствует запрещенной в данной геометрии моде, связанной с поперечным оптическим (TO) фононом. Появление ее обусловлено небольшими нарушениями геометрии обратного рассеяния света и (или) отклонением ориентации пластины от плоскости (100).

При имплантации ионов интенсивность LO-линии уменьшается и, наконец, она исчезает. Это иллюстрирует спектр КРС для GaSb, облученного ионами Si⁺ с дозой $5 \cdot 10^{13}$ см⁻² (рис. 4, кривая 2). С уменьшением массы ионов исчезновение LO-пика происходит при более высокой дозе, например для ионов N⁺ при $D \approx 1 \cdot 10^{14}$ см⁻². Такое поведение является характерным для ионно-имплантированных полупроводников $A^{III}B^V$ и связывается с разупорядочением кристаллической структуры материала [17]. При увеличе-

нии дозы выше порога порообразования (для Si⁺ это $D > 1 \cdot 10^{14} \text{ см}^{-2}$), однако происходит появление (рис. 4, кривая 3) двух новых пиков: при 111 см⁻¹ и сильного при 145 см⁻¹, которые не отмечались для исходного GaSb. Также появляется достаточно широкий асимметричный пик, который может быть аппроксимирован разложением на две лоренцевых линии: при 221 см⁻¹ и менее интенсивную при 227 см⁻¹. С дальнейшим увеличением дозы ионов интенсивность всех указанных пиков возрастает вплоть до максимально использованной для ионов Si⁺ дозы $1 \cdot 10^{15} \text{ см}^{-2}$.

Видимо, линии 221 и 227 см⁻¹ могут быть отнесены к несколько сдвинутым от нормального положения пикам, связанным соответственно с ТО- и LO-фононами в GaSb. Для выяснения природы пиков КРС при 111 и 145 см⁻¹ выполнено исследование образцов необлученного GaSb, окисленных в потоке кислорода при 600°С в течение 15 мин. Спектр КРС для такого образца показан на рис. 4 (кривая 4). Видно, что, кроме характерных для исходного кристала LO-линии при 233 см⁻¹ и менее интенсивной ТО-линии при 224 см⁻¹, видны две низкочастотные линии. Неплохое совпадение положений этих низкочастотных линий в окисленном неимплантированном GaSb с пиками 111 и 145 см⁻¹ свидетельствует о присутствии в имплантированном пористом GaSb значительной окисной фазы.

В целом картина явлений, происходящих в процессе имплантации ионов в GaSb, может быть представлена следующим образом. При увеличении дозы ионов в кристалле происходит накопление радиационных дефектов, что вызывает исчезновение LO-пика КРС и фундаментальной полосы ФЛ (из-за образования центров безызлучательной рекомбинации). Далее происходит формирование вакансионных комплексов (пор), что вызывает появление над ними холмиков. Плотность и размер пор увеличиваются с ростом дозы ионов, что в результате приводит к формированию пористого слоя. Выход пор на поверхность может вызывать образование естественного окисла на всей развитой поверхности имплантированного слоя при выносе образца из камеры ускорителя на воздух. Этот окисел и регистрируется методом КРС.

Пористый слой можно представить себе как систему кристаллитов различных размеров. Наиболее крупные из них "прорастают" из подложки и могут быть ответственными за появление пика КРС, состоящего из двух линий при 221 и 227 см⁻¹. Нарушение правил отбора и некоторая потеря ориентации от подложки обусловливают большую интенсивность ТО-линии по сравнению с LO-линией, а их длинноволновый сдвиг от нормальных положений свидетельствует о наличии нанокристаллической фазы [17]. Геттерирование радиационных дефектов вакансионными порами может быть причиной сохранения кристалличности в этих блоках GaSb. Маленькие кристаллиты являются ответственными за появление коротковолновой полосы в спектрах ФЛ вследствие квантово-механического уширения запрещенной зоны GaSb. Их размеры могут быть рассчитаны

с использованием эмпирических формул, предложенных в [18]. Оценка, сделанная для полосы ФЛ 1.1–1.65 эВ, наблюдаемой в ионно-имплантированном GaSb, дает величину размеров кристаллитов в диапазоне 3.5–8.5 нм.

4. Заключение

Таким образом, показано, что при имплантации ионов средних энергий в монокристаллическом GaSb вследствие накопления радиационных дефектов образуется пористый слой. Определены пороговые дозы ионов для его формирования и измерены морфологические характеристики облученной поверхности. Методами фотолюминесценции и комбинационного рассеяния света показано, что пористый слой, сформированный имплантацией ионов в GaSb, обладает свойствами, характерными для нанокристаллических систем.

Работа выполнена при поддержке РФФИ (грант № 03-02-16777).

Список литературы

- [1] L.T. Canham. Appl. Phys. Lett., 57, 1046 (1990).
- [2] Y. Kanemitsu. Phys. Rep., 263, 1 (1995).
- [3] А.М. Данишевский, А.Ю. Рогачев, В.Б. Шуман, Е.Г. Гук. ФТП, **31**, 1387 (1997).
- [4] T.L. Rutenhouse, P.W. Bohn, T.K. Hossain, I. Adesida, J. Lindesay, A. Marcus. J. Appl. Phys., 95, 490 (2004).
- [5] Д.Н. Горячев, О.М. Сресели. ФТП, 31, 1383 (1997).
- [6] Ю.Н. Бузынин, С.А. Гусев, Ю.Н. Дроздов, А.В. Мурель. ЖТФ, 70, 128 (2000).
- [7] Н.С. Аверкиев, Л.П. Казакова, Э.А. Лебедев, Ю.В. Рудь, А.Н. Смирнов, Н.Н. Смирнова. ФТП, 34, 757 (2000).
- [8] G. Su, Q. Guo, R.E. Palmer. J. Appl. Phys., 94, 7598 (2003).
- [9] Т.Н. Заварицкая, В.А. Караванский, А.В. Квит, Н.Н. Мельник. ФТП, 32, 235 (1998).
- [10] П.В. Павлов, Ю.А. Данилов, В.С. Туловчиков. ДАН СССР, 248, 1111 (1979).
- [11] R. Callec, P.N. Favennec, M. Salvi, H. L'Haridon, M. Gauneau. Appl. Phys. Lett., 59, 1872 (1991).
- [12] S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, V.S.J. Craig, G. Li. Appl. Phys. Lett., 77, 1455 (2000).
- [13] O. Teschke, D.M. Soares, L.A.O. Nunes. Appl. Phys. Lett., 70, 2840 (1997).
- [14] P.S. Dutta, H.L. Bhat, V. Kumar. J. Appl. Phys., 81, 5821 (1997).
- [15] S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H.L. Hartnagel. Science, 285, 1551 (1999).
- [16] S.G. Kim, H. Asahi, M. Seta, J. Takizawa, S. Emura, R.K. Soni, S. Gonda, H. Tanoue. J. Appl. Phys., 74, 579 (1993).
- [17] Л.П. Авакянц, В.С. Горелик, Э.М. Темпер, С.М. Щербина. ФТТ, **41**, 1495 (1999).
- [18] G. Allan, Y.M. Niquet, C. Delerue. Appl. Phys. Lett., 77, 639 (2000).

Редактор Л.В. Беляков

Photoluminescence and Raman study of porous GaSb, produced by ion implantation

Yu.A. Danilov, A.A. Biryukov, J.L. Gonçalves*, J.W. Swart*, F. likawa[†] O. Teschke[†]

N.I. Lobachevsky Nizhny Novgorod State University, 603950 Nizhny Novgorod, Russia * Centro de Componentes Semicondutores — UNICAMP, 13083-970 Campinas, Brazil † Instituto de Física "Gleb Wataghin" — UNICAMP,

13081-970 Campinas, Brazil

Abstract Formation of porous layer in ion-implanted GaSb were investigated by AFM, photoluminescence (PL) and Raman scattering measurements. As ion dose (*D*) accumulates a system of hillocks and subsequently porous layer is formed on implanted GaSb surface. The height of step between the porous layer and unimplanted region may be as much as 1μ m. In ion-implanted porous GaSb the broad blue-shifted PL band between 1.1 and 1.65 eV emerges. The intensity of this band increases with the ion dose. In Raman spectra for the ion-implanted porous layer, the additional lines at 111 cm^{-1} and the strong ones at 145 cm^{-1} develop. The present data suggest that the porous layer in ion-implanted GaSb is characterized by features characteristic of nanocrystalline systems.