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Localized and resonant state energies of double Coulomb acceptor in narrow-gap HgCdTe alloys are calculated.

The simulation is made with scattering matrix technique within spherically symmetric three-band Kane model

taking into account conduction band and two top valence bands. It is shown that appearance one-particle state is

highly unlikely when the two-particle state is resonant.
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1. Introduction

A solid solution of cadmium-mercury-tellurium (CMT)
attracts the constant interest of researchers due to a number

of specific fundamental effects [1–4] and the possibilities

of application in the field of infrared optoelectronics [5],
including the prospect of creating laser diodes [6,7]. This

material owes its outstanding properties to the peculiarities

of the zone structure. The bottom of the conduction

band in CdTe is formed by wave functions with symmetry

Ŵ6, and the ceiling of the valence band — by wave

functions with symmetry Ŵ8. The width of the band gap

at low temperatures in this material is ∼ 1.6 eV. The HgTe

semiconductor has an inverted band structure, in which

the bottom of the conduction band and the ceiling of the

valence band are formed by wave functions with symmetry

Ŵ8, and the zone with symmetry Ŵ6 is located at ∼ 0.3 eV

lower in energy. Therefore, it is sometimes said that this

material has a negative band gap. In fact, mercury telluride

is slit-free, since due to the same symmetry of the wave

functions of the conduction band and the valence band,

a violation of the symmetry of the crystal, for example,

uniaxial deformation, is required to remove the degeneracy

at the point of their contact. Thus, depending on the

composition of the solid solution, a material with an inverted

or normal band structure with a band gap from 0.3 to 1.6 eV

can be obtained.

When studying the properties of this material in the

mid-infrared and terahertz ranges, impurity states play an

important role. In particular, mercury vacancies that arise

due to the high degree of segregation of Hg atoms are a

natural acceptor for CMT. This defect is divalent, i. e. in

a fully ionized state it has a charge of −2e. Resonant

states occur in narrow-band and gap-free materials, where

the band gap width is less than the ionization energy of

the acceptors. These levels lead to the appearance of

features in the spectra that are clearly visible against the

background of the corresponding interband transitions. Such

lines attributed to mercury vacancies [8] have already been

observed experimentally in the CMT [9].

Significant progress has recently been made in the

theoretical study of the discrete spectrum of mercury

vacancies [8,10]. However, modeling of resonant states

was complicated by the need to solve unstable equations

for wave functions of a continuous spectrum [11]. The

calculation method developed for such problems based

on the scattering matrix was successfully used earlier

to study localized and resonant states of single-charge

acceptors [12–14], and it is used in this paper to describe a

two-charge Coulomb acceptor. The study of this model,

which does not require fitting parameters, is a natural

preliminary step for studying the structure of resonant states

of mercury vacancies, since it allows us to draw a number

of qualitative conclusions.

2. Calculation method

When describing acceptor states, a
”
hole“ band structure

is often used, in which the valence band is located on top

and has a positive mass. However, when studying resonant

states in the conduction band, as well as interband transi-

tions, the
”
electronic“ band structure is more convenient.

At the same time, however, it should be borne in mind

that purely electronic formalism is suitable only for the

qualitative description of acceptor states and transitions. For

a quantitative study of such a system, it is necessary to

use the concept of a hole as a quasi-particle, which is a

perturbation of the electron distribution in the valence band.

Three types of [10] states are characteristic of a two-

charge acceptor: doubly ionized (A−2
2 ), once ionized (A−1

2 )
and neutral (A0

2). It is necessary to understand what the
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Figure 1. Charge density distribution scheme in various states of

a divalent acceptor: a — location of the defect; b — fully ionized

acceptor; c — once ionized acceptor; d — neutral acceptor. The

signs
”
+“ and

”
−“ indicate the charge density created by ions and

electrons, respectively.

defect potential is in each of the three cases for calculating

the energies and wave functions of carriers in these states.

Since the acceptor is a defect in the crystal lattice, its

potential, of course, is the difference between the potential

of a crystal with a defect and without it. In the case of

a divalent Coulomb acceptor, this potential is equal to the

potential of a double negative point charge:

ϕ0(r) =
2e
ǫ0r

. (1)

The total potential acting on an electron consists of the field

of ions and the field of other electrons. If the electron

distribution is uniform, as in an ideal crystal (Figure 1, b),
then the defect field is not compensated, and the total

potential will be determined by the expression (1). This

corresponds to the case of a doubly ionized acceptor A−2
2 .

Since the mass of electrons in the valence band is

negative, the repulsive potential (1) will create localized

states near the defect, the energy of which will be higher

than the ceiling of the valence band. These levels should

be interpreted as hole levels, i. e. the wave function of

the deepest state — is the wave function of the hole that

will arise after the departure of one electron from the

region of the repulsive potential (Figure 1, c). The resulting

structure is a single ionized acceptor A−1
2 . The energy

released when the first electron leaves and the wave function

of the resulting hole obey the Schrodinger equation with

potential (1):

(

Ĥ0 + eϕ0(r)
)

ψ0(r) = E0ψ0(r). (2)

In the case A−1
2 of the center, its field consists of the

potential of a fully ionized acceptor (1) and the potential of

the first captured hole, which satisfies the Poisson equation:

1ϕ(r) = −
4πe
ǫ0

|ψ0(r)|
2.

This potential is still repulsive and can provoke the departure

of another electron, which is equivalent to the capture of a

second hole with the formation of a A0
2 -center. The second

hole, in turn, will affect the first one and change its state

so that it will differ from the solution of equation (2).
Both holes are identical and therefore must have the same

energies and wave functions (this is possible since the

ground state of the acceptor is fourfold degenerated). Thus,
the energy and wave function of each of the particles

must satisfy a self-consistent system of Schrodinger–Poisson
equations:

(

Ĥ0 + eϕ0(r) + eϕh(r)
)

ψh(r) = Ehψh(r), (3)

1ϕh(r) = −
4πe
ǫ0

|ψh(r)|
2. (4)

System of equations (3) and (4) were solved iteratively

using the following recursive equations:

ϕh,0(r) = 0,

(

Ĥ0 + eϕ0(r) + eϕh,i (r)
)

ψh,i(r) = Eh,iψh,i (r),

1ϕh,i+1(r) = −
4πe
ǫ0

|ψh,i (r)|
2.

We considered all potentials to be spherically symmetric to

simplify the calculations, and when calculating the charge

density, the wave functions were averaged over the angle.

Then using the Gauss theorem it is possible to write

ϕh,i+1(r) =
e
ǫ0r

∫

r ′≤r

|ψh,i(r
′)|2d3r ′.

By way of analogy with [13] we use the three-band Kane’s

Hamiltonian in the spherical symmetry approximation.

Within the framework of this approach, the wave function

is represented in a spherical coordinate system as the sum

of the basic
”
angular“ solutions with coefficients depending

on the radial coordinate:

ψ
(J,L)
M (r) = f (J,L)

1 (r)(−i|Ŵ6, L, J,M〉)

+ f (J,L)
2 (r)|Ŵ8, L + 1, J,M〉 + f 3(r)(J,L)|Ŵ8, L − 1, J,M〉

(5)
or

ψ
(J,L)
M (r) =







−i|Ŵ6, L, J,M〉

|Ŵ8, L + 1, J,M〉

|Ŵ8, L − 1, J,M〉






· f(J,L)(r).
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In this case, the Hamiltonian of a homogeneous semicon-

ductor for given values J and L has the form:

Ĥ
(J,L)
0 =

=









Eg +AcK̂(L+1)
− K̂(L)

+ P−K̂(L+1)
− P+K̂(L−1)

+

P−K̂(L)
+ −γ+K̂(L+2)

− K̂(L+1)
+ −ν2K̂

(L)
+ K̂(L−1)

+

P+K̂(L)
− −ν2K̂

(L)
− K̂(L+1)

− −γ−K̂(L)
− K̂(L−1)

+









,

(6)
where

K̂(L)
+ = −

∂

∂r
+

L
r
,

K̂(L)
− =

∂

∂r
+

L + 1

r
.

The material parameters in the Hamiltonian (6) are calcu-

lated based on the parameters of the anisotropic four-band

Kane’s Hamiltonian [15]:

P± = Pw(J,L)
± ,

γ± = γ ± w(J,L)ν,

ν2 = νw
(J,L)
2 ,

P = ~

√

Ep

2m0

,

Ac =
~
2

2m0

(

1 + 2F +
Ep

3(Eg + 1)

)

,

γ =
~
2

2m0

γ1,

ν = 2
~
2

2m0

2γ2 + 3γ3

5
,

where

w
(J,J−1/2)
− =

√

2J + 3

12J
,

w
(J,J−1/2)
+ =

√

2J − 1

4J
,

w(J,J−1/2) = −
2J − 3

4J
,

w
(J,J−1/2)
2 =

√

3(2J − 1)(2J + 3)

4J
,

w
(J,J+1/2)
− =

√

2J + 3

4(J + 1)
,

w
(J,J+1/2)
+ =

√

2J − 1

12(J + 1)
,

w(J,J+1/2) =
2J + 5

4(J + 1)
,

w
(J,J+1/2)
2 =

√

3(2J − 1)(2J + 3)

4(J + 1)
.

The equations for radial functions will be as follows:

(

Ĥ
(J,L)
0 + eϕ0(r)

)

f
(J,L)
0 (r) = E0f

(J,L)
0 (r),

ϕh,0(r) = 0,

(

Ĥ
(J,L)
0 + eϕ0(r) + eϕh,i (r)

)

f
(J,L)
h,i (r) = Eh,i f

(J,L)
h,i (r),

ϕh,i+1(r) =
4πe
ǫ0r

r
∫

0

∣

∣f
(J,L)
h,i (r ′)

∣

∣

2
r ′2dr ′.

The scattering matrix method was used in solving these

equations with the calculation of the degree of localization

of the wave function [13]. Thus, the energies of the ground

states of the acceptor with one and two holes were obtained.

It should be remembered that in the case of A0
2 of the

center, the energy of the hole separation does not coincide

with the energy Eh in equation (3). Indeed, when one of

the particles leaves, its repulsive field ceases to act on the

second, which consequently moves to a higher energy level.

Thus, if we denote for E1 the energy of separation of the

first hole from the A0
2-center, and for E2 — the energy of

separation of the second hole from the A−1
2 -center, then the

energy Eh will be their arithmetic mean:

Eh =
E1 + E2

2
.

3. Results and discussion

In the course of calculations, we obtained the energy of

separation of the first hole from the neutral acceptor and

the energy of separation of the second hole from the once

ionized acceptor. Calculations were carried out for solid

solutions of CdxHg1−xTe with a cadmium content of x from

0 to 0.2. This area of compositions covers cases of both

inverted and normal zone structure. The temperature was

assumed to be zero. The calculation results are shown in

Figure 2.

The most interesting is the range of compositions where

the energies of separation (capture) of holes with the

width of the band gap intersect. Three areas can be

distinguished here, which are shown in more detail in

Figure 3. In the region (A), the energies of the main

acceptor levels lie in the conduction band (Eg < E1 < E2),
and these states are resonant. In region (B), only the

deepest state is resonant, and the shallower one is localized

(E1 < Eg < E2). In region (C), both states are localized

(E1 < E2 < Eg).
The system with two localized states (E1 < E2 < Eg)

was discussed in detail in [10,16] in relation to mercury

vacancies. The processes of tearing a hole from the

A−1
2 -center or capturing a hole at the A−2

2 -center are similar

to those for a single-charge acceptor adjusted for a greater

depth of energy levels. The processes of detaching the

first hole from the A0
2-center or capturing the hole at the

A−1
2 -center are more interesting. When a hole is captured
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Figure 2. The energy of separation of the first hole from

the neutral acceptor (E1) and the energy of separation of the

second hole from a single ionized acceptor (E2) in solid solutions

CdxHg1−xTe.
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Figure 3. The energy of separation of the first hole from

the neutral acceptor (E1) and the energy of separation of the

second hole from a single ionized acceptor (E2) in solid solutions

CdxHg1−xTe near the intersection of the energies of localized

states with bottom of the conduction band.

by a single ionized divalent acceptor (Figure 4, a), an energy

equal to E1 is released, and both holes move to a level with

energy Eh. When one hole is detached from the neutral

acceptor (Figure 4, b), an energy equal to E1 is consumed,

and the remaining hole moves to a deeper level with an

energy of E2.

In narrow-band materials, the bottom of the conduction

band is located between the capture energies of the first

and second holes (E1 < Eg < E2), i. e. the deepest state

is resonant, or quasi-localized. In this case, the state of

the fully ionized acceptor (A−2
2 ) is unstable. Indeed, we

can assume that the conduction band is completely filled

with holes, and one of the holes with an energy of E2 can

occupy a deep localized level. In this case, an electron-

hole pair is born, and an electron with the same energy E2

appears in the conduction band. Such resonant levels

significantly increase the density of states in the conduction

band, and it should be expected that their contribution

to photoconductivity and photoluminescence will be very

noticeable. Thus, in this system it is possible to observe

experimentally both transitions with energy E1 and with

energy E2.

Finally, consider the case when the bottom of the

conduction band is located below the capture energy of the

second hole (Eg < E1 < E2). In this system, in addition to

transitions between the lower localized level and the valence

band (Figure 4, a and b), transitions between this level and

the conduction band are possible (Figure 4, c and d). At

the same time, the probability of the latter is high, since

E2

Eh

E1

b

c d

a

E2

Eh

E1

Figure 4. Transition schemes for capturing (a, c) and relea-

sing (b, d) the second hole by a divalent acceptor in the case of

localized (a, b) and resonant (c, d) states.
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it occurs without changing the energy of the quasi-particles,

and the preservation of the quasi-pulse is not required, since

the translational symmetry is broken by the acceptor center.

Thus, in such narrow-band materials A−1
2 , the centers

are unstable due to spontaneous colonization of the lower

quasi-localized state by holes from the conduction band

(Figure 4, c). Therefore, to observe transitions with energy

E2 in such a system, it is necessary to keep a sufficient

number of lower resonant levels free due to intense

irradiation. From this point of view, solid solutions with

a cadmium content of ∼ 15% are more promising than, for

example, pure HgTe. Indeed, the calculations performed

in [13] show that in Hg1−xCdxTe, the width of the resonant

levels of the single-charge acceptor decreases (and their

lifetime increases) with the growth of x . This is due to the

fact that, as the distance between the zones with symmetry

Ŵ6 and Ŵ8 decreases at the Ŵ-point, the proportion of states

with symmetry of heavy holes (component f 3 decreases

in the conduction band in the expression (5)). At the

same time, the intensity of interaction between the deepest

acceptor levels (which are tied to the zone of heavy holes)
and the states of the continuum of the conduction band

decreases. It should be expected that the resonant levels of

a two-charge acceptor will have similar properties.

4. Conclusion

A universal method for calculating continuous and dis-

crete spectra based on the scattering matrix method was first

used to study the states of a divalent Coulomb acceptor. The

energies of the main single-particle and two-particle states

(both localized and resonant) were calculated depending on

the composition of the solid solution. It was shown that in

the case of a resonant two-particle state, the formation of a

single-particle state will be unlikely.

Funding

This study was supported by the Russian Science Foun-

dation (grant No. 22-72-10111).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] M. Orlita, K. Masztalerz, C. Faugeras, M. Potemski, E.G. No-
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L.W. Molenkamp, X.-L. Qi, S.-C. Zhang. Science, 318, 766

(2007).

[4] M. Orlita, D.M. Basko, M.S. Zholudev, F. Teppe, W. Knap,

V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretskii, P. Ne-ge-

bauer, C. Faugeras, A.-L. Barra, G. Martinez, M. Potemski.

Nature Physics, 10, 233 (2014).
[5] A. Rogalski. Opto-Electron. Rev., 20, 279 (2012).
[6] S.V. Morozov, V.V. Rumyantsev, M.A. Fadeev, M.S. Zholudev,

K.E. Kudryavtsev, A.V. Antonov, A.M. Kadykov, A.A. Dubi-

nov, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko. Appl.

Phys. Lett., 111, 192101 (2017).
[7] K.E. Kudryavtsev, V.V. Rumyantsev, V.V. Utochkin, M.A. Fa-

deev, V.Ya. Aleshkin, A.A. Dubinov, M.S. Zholudev,

N.N. Mikhailov, S.A. Dvoretskii, V.G. Remesnik, F. Teppe,

V.I. Gavrilenko, S.V. Morozov. J. Appl. Phys., 130, 214302

(2021).
[8] V.V. Rumyantsev, D.V. Kozlov, S.V. Morozov, M.A. Fadeev,

A.M. Kadykov, F. Teppe, V.S. Varavin, M.V. Yakushev,

N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko. Semicond.

Sci. Technol., 32, 095007 (2017).
[9] V.V. Rumyantsev, S.V. Morozov, A.V. Antonov, M.S. Zholudev,

K.E. Kudryavtsev, V.I. Gavrilenko, S.A. Dvoretskii, N.N. Mi-

khailov. Semicond. Sci. Technol., 28, 125007 (2013).
[10] D.V. Kozlov, V.V. Rumyantsev, A.M. Kadykov, M.A. Fadeev,

N.S. Kulikov, V.V. Utochkin, N.N. Mikhailov, S.A. Dvoretsky,
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