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Graphene in the magnetic field with constant gradient
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The possibility of the carriers’ confinement in graphene by the magnetic field with constant gradient is considered.

The obtained results are compared with the classical description of the plasma motion within magnetically neutral

sheet in the earth geomagnetic tail. The consideration is carried out within the original strictly gauge invariant

approach making use of the additional integral of motion, so called pseudo-momentum. The essential role of the

tunneling effect distinguishing quantum case from classical behavior is revealed.
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1. Introduction

Graphene is considered to serve as a promising basis

for electronic and optoelectronic devices. The necessary

condition for the implementation of this task is the pos-

sibility to control the electron behavior. The commonly

achieved control using the electric fields presents a problem

for graphene due to the Klein effect [1–3] implying the

Dirac electron tunneling through arbitrary high and wide

potential barriers upon normal incidence. The considered

alternative is to use inhomogeneous magnetic fields for

carriers confining by magnetic barriers and magnetic dots

created by ferromagnetic microstructures or by supercon-

ducting stripes. The various magnetic field configurations

were proposed and considered in the number of the

papers [4–8]. In our work we consider the graphene carrier

behavior in the perpendicular static magnetic field with the

constant gradient as compare with its classical counterpart

problem of plasma motion within neutral sheet in the earth

geomagnetic tail. The problem of the gauge invariance of the

formulated equations determining the eigenwave function

received primary emphasis in our work. The ensuing

qualitative analysis of the possible solutions allows to reveal

the peculiarities of the carrier’s behavior in graphene in the

vicinity of the magnetic field neutral line. Also, we compare

obtained results with the predictions for 2D non-relativistic

quantum motion.

2. Motion in classical and non-relativistic
quantum cases

The heliospheric current sheet is the boundary between

the oppositely directed magnetic fields regions originating

in the nature due to the Sun magnetic dipole field. The

problem of the plasma motion within such magnetic field

configuration has been first formulated by Störmer [9]
and had received subsequently much consideration in

connection with the description of the auroral phenomena

and cosmic rays [10]. For the qualitative understanding of

the peculiarities of the behavior of the charged particles

propagating within and near the current sheet very often

the simplified variant of magnetic field configuration with

constant gradient is used. Following [11,12] we consider the

inhomogeneous magnetic field of the form

B(r) = B0

x
L
êz . (1)

Where B0 is a constant and L is the constant gradient

length scale. This seemingly oversimplified example of

the inhomogeneous magnetic field nevertheless reveals the

main peculiarities of the stated problem leading to the

formation of the current sheet confining the particle motion

along neutral magnetic field lines. Moreover, as it has

been pointed in [11] that
”
practically any two-dimensional

magnetic field can be locally approximated by the magnetic

field with constant gradient“, the proposed problem is

important in elucidating the possibility of the electron

control in graphene by inhomogeneous magnetic field of

this kind. Before we start with the analysis of the carrier

behavior in graphene, it is instructive to consider the

classical description of the plasma motion and compare it

with the quantum non-relativistic problem of the charge

movement in such a field. The classical equations of motion

for the particle with the charge |q| are (~ = c = 1)

m
dvx

dt
=

x

Ll2B0

vy , m
dvy

dt
= − x

Ll2B0

vx . (2)

Here l2B0
= 1/|q|B0 is square of the

”
magnetic length“. We

are interested only in result of the integration of the latter

equation (as the classical variant of this problem has been

discussed in detail in [12,13]) which is

πy = − x2

2Ll2B0

+ ky . (3)

Where πy = mvy and ∂tky = 0. The emerging constant of

the integration of momentum dimensions ky has its origin
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in the problem of the particle movement in homogeneous

magnetic field where it corresponds through simple scaling

to the X component of the radius-vector of the gyration

center [14]. The guiding center approximation play essential

role in the description of the classical plasma behavior

in strong fields enabling to decouple fast helical motion

about a local magnetic line from the slow bounce and

drift along and across it [15–17]. With the help of the

conserved quantity ky it can be shown [11,12] that in the

considered field configuration there exist two variants of the

charged particle drift in the opposite directions depending

on whether the particle trajectory crosses neutral line or

not [11,18]. The quantum mechanical behavior of the

charged particle confined to X−Y plane in the considered

magnetic field is described in the non-relativistic case by the

following Hamiltonian

Ĥ = (π̂2
x + π̂2

y )/2m. (4)

Where π̂i = −i∂y − |q|Ai . The classical quantity ky trans-

forms according to quantum mechanical rules into the

corresponding operator ky → k̂y while remaining extra

conserved quantity due to the easily checked property

[Ĥ, k̂y ] = 0. These operators are known as the pseudo

momentums operators [19] connected through scaling to

the guiding center operators [20,21] which are intensively

used in quantum mechanical description of the particle

motion in the homogeneous static magnetic field [22,23].

The problem arising within quantum mechanical description

is an ambiguity in the necessary choice of the particular

vector potential form. The only constrain upon the possible

variant is the condition that B(r) = [∇ × A(r)]. In our

case we can rely on the symmetry of the problem and

fix A(r) = (0, (x2B0)/2L) thus assuming that the wave

functions must describe the free propagation along Y axis.

Nevertheless, the question arises whether we are to proceed

with this fixed gauge, or are we can start with any suitable

one. The fixing of the vector potential in the problem

of homogeneous constant magnetic field B(r) = B0êz in

the Landau gauge A(r) = (0, xB0) or in the symmetric

gauge A(r) = (−yB0/2, xB0/2) leads to the conflicting

conclusions. In the former case we obtain free propagation

along Y axis, while in the latter the solutions are the set

of the bounded wave functions. Following the commonly

accepted statement that we are free in the choice of A(r)

specific spatial dependence, let us try in our problem the

so called Poincare gauge [24] which appears to be best

suited for analyzing behavior in the inhomogeneous fields

as it is defined readily only by the magnetic field spatial

dependence

A(r) = −r×
1

∫

0

uB(ru)du. (5)

The vector potential components expressed in the explicit

form in this gauge for chosen gradient field are

|q|Ax = − yx

3Ll2B0

, |q|Ay =
x2

3Ll2B0

. (6)

Notice that written down vector potential components do

not take into account the symmetry of the problem, while

correctly reproducing the spatial behavior of the considered

field (1). Now the introduced before pseudo-momentum

operator k̂y comes into play. As this extra conserved

quantity commutes with the 2D Hamiltonian we can label

the eigenfunctions 9(r) by its eigenvalues

k̂y9(r) =

[

−i∂y − |q|Ay +
x2

2l2B0
L

]

9(r) = λ9(r). (7)

Correspondently, the wave functions can be presented as

9(r) = eiλy e−ix2y/6Ll2B0ϕ(x). (8)

Where ϕ(x) in the non-relativistic case is the solution of the

equation

[

−∂2x +

(

λ − x2

2Ll2B0

)2]

ϕ(x) = εϕ(x). (9)

Thus we arrive at the equation we would obtain by choosing

the gauge from symmetry considerations. It can be shown

that this result remains true for any vector potential form if

we make use of the outlined k̂y operator property.

The solutions of the Eq. (9) demonstrate qualitative dif-

ference in the quantum mechanical predictions as compare

with the classical description. As in classical picture there

also exist two distinct types of the motion depending on

the λ sigh. For λ < 0 we are to deal with the problem

of the quantum anharmonic oscillator [25,26]. For λ > 0

emerges no less well-investigated problem of the double-

well potential [27]. As it follows from (), for λ < 0, the

possible solutions describe a carrier motion only along the

neutral line within the confines of the 1D anharmonic
”
mag-

netic“ potential (x2/2Ll2B0
+ |λ|)2. For λ > 0, the double-

well potential (x2/2Ll2B0
− |λ|)2 also confines a particle to

the neutral line due to its
”
instanton“ property [28]. It is

interesting that in the both cases the particle cannot leave

the current sheet. In the double-well case this is due to

the tunneling effect which prevents the particle localization

in one of the effective potential minimums permissible

under classical consideration. Thus, the drifting in the

opposite directions particles within classical consideration

differ additionally in that are their trajectories crossing

neutral line or not. It is interesting to investigate if quantum

born tunneling effect can play any role in the observed

plasma behavior in the heliospheric current sheet but this

task lies far beyond the scope of the present article. There

remains the question of the possibility to interpret k̂y as

observable. We cannot ascribe to its eigenvalue λ/m in

the given state the meaning of the particle average velocity

Semiconductors, 2023, Vol. 57, No. 5



XXVII International Symposium
”
Nanophysics and Nanoelectronics“ 357

describing its flow along Y axis direction. The problem is

that the physically meaningful gauge invariant quantity is the

current density defined as [29]

jy (r) =
i
2m

[

(∂y9
∗(r))9(r) −9∗(r)∂y9(r)

]

− |q|
m

Ay9
∗(r)9(r). (10)

In considered problem the quantum average of the current

operator Ĵy according to (10) is (see (8), (9))

〈Ĵy 〉 =

∫

jy (r)dr =
1

m

(

λ − 1

2Ll2B0

〈x2〉
)

. (11)

Where 〈x2〉 =
∫

x2|ϕ(x)|2dx(). It follows from (11) that

for λ < 0 the sign of pseudo-momentum points to the right

direction of particle propagation but for λ > 0 this is true if

and only if λ > 〈x2〉/2Ll2B0
. In the both cases the absolute

value of the average current operator is not determined

only by λ value as it could be expected but depends

essentially on the transverse sideways bounce 〈x2〉. Two

limiting situations stand out. The presence of the current for

λ = 0, and its absence (localized state) for λ = 〈x2〉/2Ll2B0
.

The first case is interesting in that λ viewed upon as the

characteristics of the particle drift along the neutral line is

absent altogether from the current expression and particle

propagation is determined solely by its
”
x“ behavior. The

issue of the
”
proper“ choice of the vector potential arises in

many problems. It is worth mention e. g. the paper [30]. The
authors argued that in the perpendicular magnetic field with

the constant asymptotics B(r → ∞) = B0 there can exist

the zero energy solution depending only on the sign of the

magnetic field in the infinite boundary. Their argumentation

is based largely on the choice of the symmetric gauge in

describing carrier behavior in the asymptotic region. At

the same time, following common prescription we are free

to choose linear Landau gauge. But this choice (which

is commonly used for the description of the states in the

homogeneous magnetic field) if used as such, leads to un-

renormalized states and destroys their derivation. The way

out is in the gauge invariant approach outlined above leading

unambiguously to uniqueness of the symmetry form of the

vector potential choice.

3. Current sheet magnetic field
configuration in graphene

The introduced above in the non-relativistic problem the

gauge invariant pseudo-momentum operator k̂y remains

valid as the extra conserving quantity for the description

of the low-energy envelope states in the single layer

graphene in the chosen gradient magnetic field. This results

from the commutation properties of this pseudo-momentum

operator. It is easy to verify that k̂y commutes not only

with π̂2
x + π̂2

y but obeys more strict commutation relations

[k̂y , π̂i ] = 0. This ensures k̂y commutation with the Dirac-

like Hamiltonian describing carriers behavior in graphene

within k · p approach and thus it can be of use as the

corresponding extra quantum number. Due to the valley

degeneracy of graphene Hamiltonian it suffices to restrict

our consideration to the one of the valleys (say K valley)
described by the Hamiltonian Ĥ = vF(Q̂+σ+ + Q̂−) [31].
Here Q̂ = π̂x + iπ̂y , σ

± = (σx ± iσy )/2, and σi are Pauli

matrixes [1,31]. First, let us consider behavior of the zero-

mode states (if existing) described by the first-order partial

differential equation

(π̂x + iπ̂y )9(r) = 0. (12)

As discussed above, we can choose any appropriate

gauge subjected only to the condition B(r) = [∇ × A(r)]
if in what follows we adhere to the outlined gra-

dient invariant approach. In deciding on the gauge

A(r) = (0, B0x2/2L) we arrive at the simplest form for

k̂y = −i∂y (see discussion above). Labeling the eigenfunc-

tions 9T
λ (r) = (ϕλ(x), 0) exp(iλy) by its eigenvalue λ we

obtain

[−i∂x + i(λ − x2/2Ll2B0
)]ϕλ(x) = 0. (13)

It follows from (13) that ϕλ(x) ∼ exp(λx − x3/6Ll2B0
). Con-

trary to the behavior in the considered above non relativistic

Schrodinger case where a particle is always tied to the

neutral line in accord with the classical behavior crossing

it hither and thither, the zero-mode carriers in K valley are

to escape to x → −∞ thus destroying the current sheet.

The destruction of the zero-modes states by the considered

magnetic field configuration is the predictable result. It is

caused by the specific property of the zero energy states in

graphene. Consider the well-known problem of the charged

particle movement in the static homogeneous magnetic field.

In distinction to the behavior of the curriers in the higher

Landau levels spreading over the both graphene sub-lattices,

the motion of the particles in the zero-mode state is confined

to the one of the sub-lattices only [1,32]. The choice of the

sub-lattice over which to jump is dictated by the magnetic

field direction and at which of the two valleys (K or K′)
the consideration is carried out. It is interesting to note that

thus only the zero-energy states demonstrate the
”
hidden“

C3 symmetry of graphene smeared by the higher energy

states to C6 . It is clear from this consideration that in

the gradient field the particle is to change A-lattice sites

to the B -sites after crossing the magnetic field neutral line.

Moreover, the electron-like character of the wave function

must change to the hole-like one. So, the particle at crossing

the neutral line finds itself in the
”
hostile“ environment

which leads to the disappearance of the square-integrable

zero-modes. Nevertheless, the current sheet conditions

can be set up for zero energy states also by choosing

the specific configuration of the inhomogeneous magnetic

field. The symmetric magnetic field profile relative to the

neutral line must be employed. The simplest magnetic field

configuration confining the particle current can be chosen
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as

B(r) = B0

|x |
L

ez . (14)

If we choose the vector potential gauge as

A = (0, B0θ(x)x2/2L − B0θ(−x)x2/2L) where θ(x)-Heavi-
side function) and use the corresponding expression for k̂y ,

we arrive to the following equation for zero-energy states

[−i∂x +i(λ − θ(x)x2/(2Ll2B0
)+θ(−x)x2/(2Ll2B0

)]ϕλ(x)=0.

(15)

Now the asymptotic behavior of ϕλ(x) ∼ exp(−|x |3/6Ll2B0
)

is of the desired form. Pay attention that in the both

cases the eigenvalue λ lost completely physical interpretation

as the quantity describing the particle drift. Due to

the absence of one of the pseudo-spinors component in

the zero-mode wave function, the corresponding average

of the current matrix I = i[Ĥ, y ] = vFσy elements vanish

identically [33,34]. The general Landau state (E 6= 0) is

given by the solution 8(r)T = (ϕ1(r), ϕ2(r)) of the matrix

equation

(−EI + vFQ̂+σ+ + vFQ̂−)8(r) = 0. (16)

These equations of the first order can be transformed to the

equations of the second order by applying to the Eq. (16)
the operator (EI + vFQ̂+σ+ + vFQ̂−)

(EI + vFQ̂+σ+ + vFQ̂−)

× (−EI + vFQ̂+σ+ + vFQ̂−)8(r) = 0. (17)

As a result, we are to solve two Schrodinger-like equations

(−E2 + v2FQ̂+Q̂)ψ1(r) = 0,

(−E2 + v2FQ̂Q̂+)ψ2(r) = 0. (18)

Which are super-symmetry (SUSY) connected [35,36] as the
solutions 9T (r) = (ψ1(r), ψ2(r))/

√
2 are subjected to the

condition ψ2(r) = vFQ̂ψ1(r)/E (it is assumed that ψ1(r) is

normalized). With such choice 9(r) simultaneously satisfies

not only the system (18) but the system of the first-order

Eq. (16) also.

As we are left with the solution of the one Schrodinger-

like equation, the procedure outlined above for non-

relativistic problem can be at once applied for the analysis

of carrier spectrum in graphene. For the chosen gradient

magnetic field, the explicit form of the corresponding

Schrodinger — like operator is

v2FQ̂+Q̂ = v2F(π̂x − iπ̂y )(π̂x + iπ̂y )

= v2F [π̂2
x + π̂2

y + x/Ll2B0
]. (19)

The difference with the non-relativistic case discussed above

resides in the linear in x term (compare with (4)). It is

interesting that the addition of this term in our pseudo-

Schrodinger problem makes it similar to the non-relativistic

problem of the motion in crossed static magnetic and

electric fields. The linear in x term can be considered as an

effective electrostatic potential leading to constant spatially

homogeneous effective
”
electric“ field Eeff = ex/|q|Ll2B0

.

Accordingly, we can state that the carriers in graphene must

follow the predictions for nonrelativistic case considered

above, demonstrating two distinct types both confined to

neutral line, plus the contribution of the drift induced by

Eeff. We will not proceed further with the analysis of the

wave function solutions which will be considered in detail

elsewhere. Our task in the presented paper has been to

pave gradient invariant road to the formulation of
”
proper“

wave equations with the help of pseudo-momentum aka

guiding center operator and reveal the main features of

the quantum mechanical description of the current sheets

distinguished it from the classical motion in the earth

geomagnetic tail. Once more we must return to the

question of interpretation of k̂y as observable and its physical

meaning. First we must note that k̂y origin can be traced

to the problem of the particle motion in homogeneous

field [18,19] where it is shown that it is in one-to one

correspondence with the X component of the guiding center

operator. In this connection we must once more raise the

issue of the physical meaning of k̂y and its interpretation

as an observable. Consider the average 〈I〉 = vF〈σy 〉 of the
current matrix which for the discussed eigenstates is

〈I〉 =
v2F
E

(

λ − 1

2Ll2B0

∫

x2ϕ2
1(x)dx

)

. (20)

It is assumed that in this expression ϕ1(x) is real. This

result predicts non-zero value of the current. This is a

peculiar statement for the equilibrium steady states. The

authors [37] who has arrived to the same result analyzing

carriers’ behavior in the step-like magnetic configuration

reminiscing our gradient one, propose the existing of the

compensating boundary currents. We can assume that in

our case this conundrum can be solved if the following

restrictions were imposed upon the allowed λ values

λ :=
1

2Ll2B0

∫

x2ϕ2
1(x)dx . (21)

This condition means that only double-well potential is per-

missible and the corresponding Schrodinger-like equation

becomes non-linear. The wave functions and corresponding

Landau levels in this setting of the problem will be

presented elsewhere.

4. Conclusion

We presented the qualitative description of the carriers’

motion in graphene within the neutral current sheet pro-

duced by the magnetic field with constant gradient. It is

shown that such magnetic field configuration has the most

drastic effect upon zero energy states in graphene due to

their mixed electron-hole feature. As a result, the square-

integrable Landau states with zero-energy cannot exist in
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such
”
hostile“ environment in contrast to their counterpart

in the homogeneous magnetic field. The specific symmetric

1D magnetic field profile with the neutral region ensuring

zero energy states localization on the one of the sub-

lattices is proposed. It is shown that the pseudo-Schrodinger

SUSY connected equations describing current sheet states

for E ≷ 0 in gradient field are in one-to-one correspondence

with the non-relativistic 2D equations describing the particle

behavior in the crossed gradient magnetic and
”
effective“

electric“ (Eeff = ex/|q|Ll2B0
) fields. Notice that in our

paper the problem of constructing gauge invariant equations

describing the particle motion in gradient field received

much consideration. This objective was accomplished

invoking the additional integral of motion (constant of

integration) operator k̂y . With it help the
”
uniqueness“

of the choice of the vector potential form for the given

magnetic field configuration was proved. The subsequent

qualitative analysis of the obtained equations allows to reveal

the main differences in the classical description of the

plasma motion in the presence of the current sheets and its

quantum mechanical counterpart. It is shown that the main

difference is due to the tunneling effect being of the primary

importance as in the 2D non-relativistic problem, so in the

graphene mono-layer confining the carriers to the neutral

line. Additionally, we consider the problem of the physical

meaning of the pseudo-momentum k̂y and its interpretation

as the quantum mechanical observable.
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