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1. Introduction

The Ising model is the most simple and frequently used

model for the study of cooperative phenomena in statistical

mechanics. The Ising model was offered and used for the

first time by Lenz [1] and Ising [2]. In 1925 Ising found

a solution for a one-dimensional chain case, though the

solution did not cover a phase transition (PT) (PT in an

atomic lattice occurs at T = 0) [2]. Almost 20 years had

passed until Lars Onsager published the solution for a two-

dimensional case without external field and proved that PT

can exist in two-dimensional systems [3]. Despite multiple

attempts taken by researchers, no accurate solution for the

tree-dimensional Ising model has been found yet.

The Ising model was initially used for theoretical descrip-

tion of the magnetic PT in ferromagnetic materials. Being

one of the few accurately solved models, it is now used as

a reference for verification of new theories, approximations

and numerical algorithms. During many years, the Ising

model has been considered as a mathematical model.

However, experimental implementations of the Ising model

have been found in magnetism. Currently, there are nume-

rous magnetic materials, some of whose properties may be

successfully described by the Ising model. They include,

for example, fluorides (MnF2, FeF2 etc.). Theoretical

description of the critical behavior of these compounds

in accordance with the Ising model is in good agreement

with the applicable experimental data. (Fluorides, although
having the Ising anisotropy, exhibit also the

”
Heisenberg“

properties — for example, the have magnon excitations that

are absent in the Ising model).

In addition to traditional applications in magnetism, the

Ising model is used in many applications closely connected

with cooperative phenomena in various research areas. The

Ising model and its versions have proven to be useful in

statistical physics for PT order-disorder modelling in metal

alloys, liquid-gas transition and liquid mixtures [4–6]. The

Ising models are also successfully used to study various

collective phenomena in physics [7]. The Ising model

have been used in medicine, because it allows to simulate
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tumor growth or electromechanical alternations of the heart

cells [8,9]. The Ising model applications listed above are

certainly not limited. Nevertheless, this list demonstrates

the flexibility of models similar to the Ising model for the

study of a lot of various phenomena and systems.

When describing critical phenomena (CP) in lattice

systems, various Ising model versions are used most

often. They were used as the basis to get comprehensive

information about the behavior of various thermodynamic

values in a wide temperature range and other physical

property ranges. The investigations have been carried out

using various types and spatial dimensions of lattices, as

well as with varying numerous parameters. Lately, the

computational physics (CP) methods have been extensively

used to study also a critical region with calculation of critical

indices (CI), and the achieved accuracy is not lower, but

is often higher than the best results achieved by other

methods [10–12].
Currently, the center of gravity of theoretical research has

moved towards more realistic Ising models including nu-

merous factors inherent in real crystals and not considered in

first approximation models. Such factors include: anisotropy,

impurities, vs, lattice vibrations, frustrations, etc. [13,14].
Investigations of complex magnetic structures such as highly

frustrated magnetic compounds and metallic nanosystems,

spin glasses, spin ice, amorphous and nanogranulated

materials and multilayer nanofilms play an important role

in the modern condensed matter physics [15–17]. Physical
properties of frustrated spin systems differ greatly from the

corresponding systems without frustrations. The nature

of PT, magnetic structures of the ground state, critical

and thermodynamic properties of frustrated spin systems

depend on many external factors. The presence of

frustrations in the system may result in new physical

behavior. Investigation of the effect of frustrations on PT,

thermodynamic, magnetic and critical properties of spin

systems gave a lot of interesting results [18,19]. Despite

the achieved success, several issues related to PT, critical,

thermodynamic and magnetic properties of frustrated spin

systems still remain open.

The objective of the study is to summarize the findings of

investigations of PT, critical, magnetic and thermodynamic

properties of frustrated spin systems described by the Ising

model. The results frustrated Ising model investigations

carried out using the Monte Carlo (MC) method are

reviewed herein mostly using the publications of the authors

of this summary. Our findings are compared with the

literature data.

The Ising model and results of its investigations are

discussed in Section 2. Section 3 describes the frustration

effects in the Ising models. The impact of frustrations

on the Ising model behavior is discussed. Numerical

investigations of PT, magnetic and thermodynamic prop-

erties are discussed in Section 4. This section describes

the triggering conditions and impact of frustration on the

physical properties of the Ising model for various types

of lattices and dimensions. Section 5 gives the numerical

experiment results obtained for the Ising models in the

external magnetic field. The conclusion contains a summary

of findings.

2. Ising model

In the Ising model, spins are located in d-dimensional

lattice sites. Variable spin models may have only two values

(+1 or −1) and correspond to two possible spin orientations

(upwards or downwards).
The Ising model Hamiltonian may be represented as

follows:

H = −
1

2
J

∑

i, j

Si S j − h
∑

i

Si, (1)

where J is the exchange interaction parameter between

spins i and j , h is the external magnetic fields and Si = ±1

for all i .
Despite the relative simplicity of the Ising model, until

now only two particular cases with dimensions d = 1 and

d = 2 have been solved accurately [20]. These accurate

solutions help estimate the suitability of the approximate

methods used to study 3D models. Moreover, these models

may serve as a good approximation for some real physical

systems, because there is a large class of magnetic and

non-magnetic materials, which can be classified as one-

dimensional or two-dimensional.

It should be noted that no solution or the three-

dimensional Ising model case has been found yet. There-

fore, the study of the Ising model, in particular by the

numerical experiment methods, is of great interest. The

MC method has been first used to calculate the energy

and magnetization of the two-dimensional Ising model

with nearest-neighbor interaction [21]. This calculation

reproduces Onsager’s accurate result for energy with an

error within 1% in a wide range, excluding the direct

critical point region. The square lattice and simple cubic

lattice Ising models were studied in detail as early as in the

1970s [22–25]. In [24,25], the MC method was used to

study the simple lattice Ising model with periodic boundary

conditions (PBC) and free surfaces, where rather detailed

information was obtained regarding the effects connected

with the small size of the lattice of interest. The free

surface effect on the system properties is also discussed.

In [25], strong dependence of energy, magnetization and

susceptibility on the linear dimension of the system has

been found. When superimposed on the PBC system, these

dependences are reported to be lower, moreover, the order

parameter in the low-temperature region does not depend

on the system size.

In the next years, the focus has shifted towards the

study of models with complex type interactions and on

other classes of lattices. The number of such investigations

is large with only some of them described below. The

Ising model has been further studied with anisotropy (the
Ising model where spins have higher values) [26–29], with

biquadratic interaction [30], in random fields [31,32], in
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magnetic fields [33–35], in transverse field [36], with three-

spin interaction [37], with four-spin interaction [38], in

antiferromagnetic systems [39–44], with frustration [45–56],
with mixed spin value [57–60], with exchange interaction

competition [61–69], on decorated lattices [59,60,70,71].
The Ising model in various dimensions was studied in

detail in [11], where one of latest and most accurate results

have been obtained for two-, three- and five-dimensional

cases. The basic aspects of various algorithms and

applications of finite-size scaling (FSS) are also provided.

These investigations were used to obtain comprehensive

information about the Ising model. Thus, short- and long-

range order parameters, internal energy, heat capacity, other

thermodynamic parameters, CI for the Ising model and its

various versions were calculated.

3. Frustrations in the Ising model

Term
”
frustrution“ was first used by Toulouse in the

theory of magnetism in 1977 [72]. Frustrations in the

condensed matter physics generally mean an event when

simultaneous minimization of all Hamiltonian summands is

impossible in the presence of competing interactions. This

causes strong degeneracy of the ground state of a system

with nonzero entropy at zero temperature. Frustration in

the system may be caused by the exchange interaction

competition or specific lattice geometry.

Consider three random spins interacting with each other

(Figure 1) and assume that the interactions are equal to

each other, but may have opposite signs. When all three

interaction constants J12, J23 and J13 are positive or two of

them are negative (i. e. when the product of interactions

along the triangle is positive), then the ground state (energy
minimum) of this three-spin system will be the only one

(with accuracy up to the total sign reversal of all three spins)
(Figure 1, a). However, when the product of interactions

along the triangle is negative (one of the interactions

is negative, or all three interactions are negative), then

the ground state of such system is degenerate. I.e.

when we record the first spin up is and go round the

triangle setting the spin orientation in accordance with the

specified interactions, then last third spin orientation will

be uncertain —
”
up“ state and

”
down“ state energies will

be equal. Figure 1, b shows the situation when all three

interactions are negative. When the first spin looks up,

then in accordance with J12 < 0 the second spin shall look

down, however, after that uncertainty occurs for the third

spin: in accordance with J23 < 0, it shall look up, and in

accordance with J13 < 0, it shall look down. The same

ground state degeneracy phenomenon occur in any closed

chain consisting of a random number of spins, if the product

of spin-spin interactions along the chain is negative. This

phenomenon is called frustrations.

Frustrations change the system behavior considerably

compared with the corresponding unfrustrated system.

In spin systems, frustrations may result tremendous de-

1

23

J12J13

J23

1

23

J12J13

J23

a b

Figure 1. Frustrations in the system of three spins.

generacy of the ground state, i.e. the system may have a

great amount of states with low energy close to the ground

state energy that, due to their high entropy, may make the

final (and even dominating) contribution to thermodynamics

even in a low temperature range [73].

Theoretical model of the geometrical frustration offered

by Vanier [74] has shown that triangle lattice antiferromag-

netic has totally different behavior compared with square

lattice antiferromagnetic and has no magnetic order up to

zero temperature. Geometrically frustrated antiferromagnet-

ics make a large class of materials, where frustration has a

merely structural origin and gives rise to strongly degenerate

ground states.

Investigations of PT and CP in frustrated spin systems by

traditional theoretical, experimental and numerical methods

come across several formidable problems in an attempt to

calculate critical parameters, define the features, nature and

mechanisms of critical behavior of such systems [75,76].
This is associated with the fact that such models have

numerous local energy minima valleys. This and some

other reasons have resulted in a situation where PT and CP

are now extensively studied by the computational physics

methods — MC methods [11,12,77], that ensure successful

study of critical properties of systems with complex realistic

Hamiltonians in wide temperature and other parameter

ranges. But conventional MC methods poorly cope with

solution of these problems. Therefore, many new MC

method algorithms have been developed lately in order

to overcome these problems. Replete algorithms and the

Wang–Landau algorithm of the MC method are the most

powerful and efficient for investigation PT and CP in

frustrated systems [78,79].

4. Phase transitions, magnetic,
thermodynamic and critical properties
of the frustrated Ising model

4.1. Square lattice Ising model

Two-dimensional Ising model with nearest-neighbor in-

teractions has been well studied by various methods and

approaches [2,80–82]. This square lattice model with

ferromagnetic first- and second-neighbor interactions has
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been accurately solved. However, consideration of anti-

ferromagnetic second-neighbor interactions in the classical

two-dimensional Ising model is followed by ground state

degeneracy and occurrence of various phases and PT, and

affects the critical behavior of the model [83].
In the late 1970s, the first renormalization group cal-

culations and numerical simulation by the MC method

for the two-dimensional antiferromagnetic square lattice

Ising model with second-neighbor interactions carried out

in [84,85]. The authors of the papers mentioned above

assumed that a second-kind PT occurs in this model

and calculated the PT temperature and CI. In [84–87],
it is also shown that the second-kind PT takes place in

the antiferromagnetic square lattice Ising model with first-

and second-neighbor interactions. In addition, this model

may have
”
abnormal“ CI. At the same time, dependence

of CI on r = J2/J1 was found, where J1 and J2 are

first- and second-neighbor exchange interaction constants,

respectively. But the continuous PT scenario has been

still in question after the calculations on the basis of the

mean-field theory that have shown the existence of the

first-kind PT [88]. According to [89–91], the first-kind

PT shall be also observed for the square lattice Ising

model with the ferromagnetic first-neighbor interactions

and antiferromagnetic second-neighbor interactions within

r = 0.5−1.2. In [92], we found the second-kind PT for the

antiferromagnetic square lattice Ising model at r = 1.

This Section contains the results obtained using the

replete algorithm of the MC method for the antiferromag-

netic square lattice Ising model including the first- and

second-neighbor interactions. The antiferromagnetic square

lattice Ising model including the first- and second-neighbor

interactions is described by the following Hamiltonian:

H = −J1

∑

〈i j〉

(Si · S j) − J2

∑

〈il〉

(Si · Sl), (2)

where S = ±1 is the Ising spin. The first term in

equation (2) takes into account the first-neighbor exchange

interaction (J1 < 0), and the second term takes into account

the second-neighbor exchange interaction (J2 < 0). Compe-

tition of the first- and second-neighbor exchange interactions

induces frustrations in this model. The calculations were

carried out for systems with PBC and linear dimensions

L × L = N, L = 20−150, where L is measured in the lattice

cell dimensions. The relation of the second- and first-

neighbor exchange interactions varied within 0.0 ≤ r ≤ 1.0.

To determine the temperature behavior of heat capacity

and susceptibility, the following expressions were used [93]:

C = (NK2)(〈U2〉 − 〈U〉2), (3)

χ =

{

(NK)(〈m2〉 − 〈|m|〉2), T < TN

(NK)〈m2〉, T ≥ TN

, (4)

where K = |J|/kBT , N is the number of pages, U is the

internal energy, m is the order parameter.

0.8 1.6 2.4

0

6

12

C
/k

B

k T JB /| |

r = 1.0

r = 0.7
r = 0.8
r = 0.9
r = 0.95

r = 0.6

L = 80

Figure 2. Dependence of heat capacity on temperature for

various r .

0.8 1.6 2.4

0

200

300

c

k T JB /| |

r = 1.0

r = 0.7
r = 0.8
r = 0.9
r = 0.95

r = 0.6

L = 80

100

400

Figure 3. Dependence of susceptibility on temperature for

various r .

The order parameter of system m was calculated using

the expression [94]:

mλ =
4

N

∑

i∈λ

Si, where λ = 1, 2, 3, 4, (5)

ma = [m1 + m2 − (m3 + m4)]/4, (6)

mb = [m1 + m4 − (m2 + m3)]/4, (7)

m =
√

(ma)2 + (mb)2, (8)

where m1, m2, m3, m4 is the order parameter on sublattices.

Figure 2−5 shows the temperature dependences of heat

capacity C and susceptibility χ calculated for L = 80 at

various r values (hereinafter the statistical error does not

exceed the sizes of symbols used to plot the dependences).
The figures show that distinct peaks of heat capacity C
and susceptibility χ are observed for all r values near

the critical temperature. Note that decreasing r within

0.6 ≤ r ≤ 1.0 is followed by the shift of peaks towards
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0.8 1.2 1.6 2.0 2.4

0

0.5

1.0
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2.0

2.5

C
/k

B

k T JB /| |

r = 0.1

r = 0.4
r = 0.3
r = 0.2

L = 80

Figure 4. Dependence of heat capacity on temperature for

various r .

0.8 1.2 1.6 2.0 2.4

k T JB /| |

r = 0.1

r = 0.4
r = 0.3
r = 0.2

L = 80

0

150

300

c

75

225

Figure 5. Dependence of susceptibility on temperature for

various r .

lower temperatures and the growth of both absolute heat

capacity and susceptibility peaks is observed at the same

time. An opposite picture is observed within 0.1 ≤ r ≤ 0.4.

With decreasing r from 0.4 to 0.1, PT temperature moves

towards higher temperatures.

To determine the critical temperatures TN , we used the

fourth-order Binder cumulant method UL. The fourth-order

cumulants for magnetization and energy are as follows [95]:

UL = 1−
〈m4〉L

3〈m2〉2L
, (9)

VL = 1−
〈U4〉L

3〈U2〉2L
, (10)

where UL is the cumulant for magnetization, VL is the

cumulant for energy.

Expressions (9) and (10) allow to define the critical

temperature TN more accurately. It should be noted that the

use of the Binder cumulants also allows good determination

of PT in the system. In case of the second-kind PT, the

temperature curves of the Binder cumulants UL are known

to have a clearly defined intersection point [95].

Figure 6 shows typical dependences of UL on the tem-

perature at r = 0.2 for various L values. This figure shows

the determination accuracy of the critical temperature. The

detail shows that a clearly defined intersection point is

observed in the critical region (hereinafter the temperature

is given in terms of |J|/kB), that is indicative of the second-

kind PT. Critical temperatures for other r values were also

defined in a similar way.

Figure 7 shows the phase diagram of dependence of

the critical temperature on the second-neighbor interaction.

The diagram shows that TN for r = 0.5 has the minimum

value. This is due to the fact that a frustrated state occurs

near r = 0.5 in the system for the model of interest. The

presence of frustrations is confirmed by the behavior of the

temperature dependence of heat capacity shown in Figure 8.

This figure shows that the heat capacity near the frustration

point (r = 0.5) has no sharp peak and a spreading trend

0.6

1.5

1.2

1.7

1.5 1.6 2.1

k T JB /| |

L = 20

L = 80
L = 60
L = 40

r = 0.2

0

0

0.4 0.6

0.6

U
L

0.2
0.3

0.9

1.6

TN = 1.609

Figure 6. Dependences of the Binder cumulant on temperature

for r = 0.2 at L = 20, 40, 60 and 80.

0 0.4 0.6 0.8 1.0
r

0

1.0

2.0

1.5

2.5

T
N

0.5

0.2

I

II

III

Figure 7. The phase diagram of dependence of the critical

temperature on the second-neighbor interaction for the two-

dimensional square lattice Ising model.
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Table 1. Critical parameter values for the square lattice Ising model

r TN ν α β γ η α + 2β + γ = 2

1.0 2.081(1) 0.830(1) 0.35(1) 0.09(1) 1.45(1) 0.25(1) 1.98

0.95 1.955 0.82 0.36 0.09 1.44 0.24 1.98

0.9 1.829 0.80 0.41 0.09 1.43 0.22 2.02

0.8 1.567 0.78 0.46 0.10 1.37 0.24 2.03

0.7 1.289 0.74 0.51 0.10 1.28 0.26 1.99

0.4 0.873 1.01 0.01 0.11 1.75 0.25 1.98

0.3 1.258 0.99 0.01 0.12 1.76 0.23 2.01

0.2 1.612 0.99 0.01 0.11 1.76 0.23 1.99

0.1 1.952 1.01 0.01 0.12 1.76 0.26 2.01

0.0 2.268 1 0.01 0.13 1.75 0.25 2.02

r = 0.0 2.262 1 0 0.125 1.75 − 2

[94]

0 0.5 1.0 1.5 2.0

0

0.1

0.2

0.3

0.4

0.5

C
/k

B

k T JB /| |

r = 0.5

Figure 8. Dependence of heat capacity on temperature for

r = 0.5 at L = 150.

is observed. Such heat capacity behavior is typical for

frustrated systems. The diagram shows that near point

r = 0.5 three different phases intersect: I — ferromagnetic,

II — paramagnetic and III — superantiferromagnetic

(collinear antiferromagnetic structure).
Review of our findings shows that the second-kind PT

is observed within 0.0 ≤ r ≤ 1.0, except for r = 0.5 and

r = 0.6. histogram data analysis also supports this. Figure 9

shows the energy distribution histogram for r = 0.2. The

curve is plotted near the critical point for lattice L = 150.

The figure shows one peak, which is typical for the second-

kind PT [79]. Similar behavior is observed on the histograms

for all r values within the interval, except r = 0.6. It is

shown that near point r = 0.5 the system becomes fully

frustrated and two peaks are observed on the histogram for

r = 0.6, which is typical for the first-kind PT. The authors

of [96] found the second-kind PT within r < 0.5. However,

the results of this study show that the first-kind transition is

observed in 0.5 < r < 0.948. The data obtained in [96]
partially coincide with our findings. Findings of later

investigations showing that this model demonstrates the

second-kind PT within 0.0 ≤ r ≤ 0.4 and 0.67 ≤ r ≤ 1.0

fully correspond to our data [97,98].
To calculate static CI of heat capacity α, susceptibility γ ,

magnetization β and correlation radius ν , the FSS theory

ratios were used. According to the FSS theory, the following

expressions are satisfied in the system with dimensions

L × L at T = TN and rather high L [99–102]:

m ∼ L−β/ν , (11)

χ ∼ Lγ/ν , (12)

Vn ∼ L1/νgVi , (13)

where gVi is the constant, and Vi may be as follows

Vi =
〈mi E〉
〈ml〉

− 〈E〉, (i = 1, 2, 3, 4), (14)

These expressions were used to calculate β, γ and ν .

For approximation of the temperature dependence

of heat capacity on L, the following expression was

used [101,103,104]:

Cmax(L) = Cmax(L = ∞) − αLα/ν , (15)

where a is some coefficient.

–0.4 –1.2

0

0.001

0.002

U

r = 0.2

P
U(

)

Figure 9. Energy distribution histogram for r = 0.2.
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Figure 10. Dependence of Vi , order parameter m and suscepti-

bility χ on the linear lattice dimensions L for r = 0.3.

Critical parameters were calculated for 0.0 ≤ r ≤ 0.4

and 0.7 ≤ r ≤ 1.0, where, according to our data and data

obtained by other authors, this model demonstrates the

second-kind PT [97,98].

Figure 10 shows typical dependences of Vi , magnetic

order parameter m and susceptibility χ on the linear lattice

dimensions L in log-log scale for r = 0.3. The inclinations

of the lines define 1/ν , β/ν and γν values. This scheme was

used to determine the heat capacity α/ν . Having the data

for ν , static CI α, β and γ were calculated. This procedure

was used to calculate CI for r = 1, 0.95, 0.9, 0.8, 0.7, 0.4,

0.3, 0.2, 0.1 and 0. All static CI values calculated in this

way are listed in Table 1.

The procedure used by us to determine the Fisher index η

shall be particularly emphasized. Using the relation of

susceptibility χ and correlation radius χ [105]:

χ ∝ ξγ/ν , (16)

as well as η = 2− γ/ν correlating η and ν , we get

ln(χ/ξ2) = c − η ln ξ, (17)

where c is some constant. For systems with finite

dimensions ξ = L. Then, for T = TN , we have

ln(χ/L2) = c − η lnL. (18)

The Fisher index values calculated in this way are

also listed in Table 1. Comparison of numerical CI

values calculated herein with the literature data [94] (for
r = 0.0) shows their good agreement. CI of heat capacity

α = 0.342 (5), order parameter β = 0.103 (3), susceptibility
γ = 1.451 (7) and correlation radius ν = 0.84 (1) calculated
in [94,106] coincides within the allowable accuracy with our

data at r = 1. It should be noted that scaling relations are

also satisfied well enough for our data showing that CI are

calculated with good accuracy [107–110].
As shown in the Table, the critical temperature TN

decreases with decreasing second-neighbor interaction up to

r = 0.4. With further decrease in r , the critical temperature

starts growing. Numerical CI values listed in the Table show

that all CI within 0.7 ≤ r ≤ 1.0 change with varying r .
Within 0.0 ≤ r ≤ 0.4, all indices coincide with Onsager’s

data and do not depend on r .
Thus, we can suggest that the critical behavior universality

class of the Ising model taking into account the antiferro-

magnetic second-neighbor interactions is maintained within

0.0 ≤ r ≤ 0.4. Table 1 shows that the model of interest

has two regions, which are characterized by different critical

behavior. It can be claimed that the change of the second-

neighbor interaction results in non-universal critical behavior

within 0.7 ≤ r ≤ 1.0.

4.2. Kagome lattice Ising model

Spin systems having the Kagome lattice may be highly

frustrated due to the specific geometry. With decreasing

temperature, the ordering process in such systems is much

slower as compared with even conventional frustrated

systems. This behavior is due to the fact that systems

with a smaller coordination number can have not only

states with non-trivial global degeneracy, but also locally

degenerate states [111,112]. When considering exchange

interactions only between the nearest neighbors, PT to

the magnetically ordered state is not implemented at any

finite temperatures. Consideration of the second-neighbor

exchange interactions partially releases the degeneracy and
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may result in the occurrence of the long-range order and

PT at non-zero temperatures [113]. Nevertheless, since the

frustration effects are still present, the structure ordering

and stabilization process is much slower compared with

unfrustrated systems [114].

The two-dimensional Kagome lattice Ising model is one

of the extensively studied frustrated models over the last

years [115]. This model is an exemplary geometrically

frustrated system. In this model with the nearest-neighbor

interactions in the ground state, the entropy per spin is

non-zero [116]. Spin ordering and long-range order in

such system are suppressed due to the fruxtration effects.

However, consideration of the second-neighbor interactions

stabilizes the ordered spin state and the system reveals

PT [114,115].

Two-dimensional antiferromagnetic Kagome lattice Ising

model with the first- and second-neighbor interactions is

considered. The interest in this model is caused by the

fact that it can be used to describe real materials and com-

pounds [116–118]. It is shown in [118] that magnetic ions

of Fe3+ form the Kagome lattice in plane c in MFe3(OH)6
family (SO4)2 (M = H3O, Na, K, Rb, Ag, NH4, Tl, Pb, Hg)
with the mineralogical name

”
jarosites“. According to the

experimental data, interactions between the nearest spins

inside and between layers are antiferromagnetic [119]. Since
the adjacent layers with Fe3+ in jarosites are separated by

nonmagnetic ions S, O, K and OH, interplanar exchange

is considerably lower than the intraplanar exchange. In

addition, PT in the Kagome lattice Ising systems are known

to be possible only in case of the ferromagnetic second-

neighbor interaction [120].

The antiferromagnetic Kagome lattice Ising model includ-

ing the first- and second-neighbor interactions is described

by the following Hamiltonian:

H = −J1

∑

〈i, j〉

(Si · S j) − J2

∑

〈i,l〉

(Si · Sl). (19)

The first term in equation (19) takes into account the anti-

ferromagnetic nearest-neighbor exchange interaction J1 < 0,

and the second term takes into account the second-neighbor

ferromagnetic interaction J2 > 0. The case of J1 = −1 and

J2 = 1 is addressed herein.

To study this model, we used the Wang–Landau algo-

rithm of the MC method. The calculations were carried

out for the systems with PBC and linear dimensions

L = 12−120, the number of particles in the system was

equal to N = 3/4× L × L.
Expressions relations (3), (4) were used to observe the

temperature behavior of the heat capacity and susceptibility.

The system order parameter was calculated using the

expression [114]:

m =
1

3

(

|m1| + |m2| + |m3|
)

, (20)

where m is the sublattice magnetization.
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Figure 11. Energy state density g(E) for systems with various

linear dimensions L for the two-dimensional Ising model.
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Figure 12. Temperature dependences of entropy.

Energy state density g(E) for systems with various linear

dimensions L is shown in Figure 11. The curve shows

that there is no ground state degeneracy in this system. We

suppose that this is due by the fact that this model addresses

the second-neighbor exchange interaction that can facilitate

degeneracy removal.

Temperature dependences of entropy S at various linear

dimensions of the system are shown in Figure 12. This

figure shows that the system entropy with increasing

temperature tends to the theoretically predicted value ln 2.

At low temperatures near absolute zero, the system entropy

tends to zero, while for this model with only nearest-

neighbor interactions, the entropy tends to a non-zero value.

Such entropy behavior is indicative of considerable influence

of the second-neighbor interaction on the thermodynamic

properties of the model.

Figures 13 and 14 show temperature dependences of

heat capacity and susceptibility obtained at various linear

dimensions of the system. It should be noted that both
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for heat capacity and susceptibility, unusual behavior is

observed which is characterized by the presence of the

twin peak. The curves show that the growth of absolute

heat capacity and susceptibility peaks is observed with

the increasing linear dimensions of the lattice. And the

two-peak structure becomes more distinct. Such behavior

is associated with the first-neighbor and second-neighbor

competition. It can be assumed that the first peak on

the curves is caused by the system transition from the

ordered state to a partially disordered stated and the

second peak corresponds to the system transition to the

paramagnetic state.

Temperature dependences of the order parameter m at

various linear dimensions of the system are shown in

Figure 15. The figure shows that unusual behavior of

the order parameter is observed on the curves. These

features correspond to the same temperatures at which two

peaks were observed on the heat capacity and susceptibility

curves (Figures 13 and 14). Such order parameter behavior

is obviously associated with the competition of exchange

interactions in the system.

0 2 4
0

0.2

0.4

0.6

0.8

1 0.

T

L = 12

С

6 8

72
36

120

Figure 13. Temperature dependences of heat capacity.
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Figure 16 shows the energy distribution histograms for

systems with different linear dimensions. The curves are

plotted near the point corresponding to the temperature of

the second heat capacity peak. Since the temperatures of

the heat capacity peaks are different for the systems with

different linear dimensions, the temperatures corresponding

to the peaks are shown on the curves. All histograms are

standardized in such a way that the integral of it (integrated
probability of all energy states) is equal to one. The curves

show a single peak, which is typical for the second-kind

PT [94,121,122]. The data analysis suggests that consider-

ation of the ferromagnetic second-neighbor interactions in

the two-dimensional antiferromagnetic Kagome lattice Ising

model results in the occurrence of the second-kind PT and

facilitates unusual behavior of thermodynamic parameters

in their temperature dependence [123].

4.3. Simple cubic lattice Ising model

This Section describes the investigations of PT of the

antiferromagnetic cubic lattice Ising model taking into
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Figure 17. The phase diagram of dependence of the critical

temperature on the second-neighbor interaction for the cubic

lattice Ising model.

account the second-neighbor interactions inside the layers

within 0.0 ≤ r ≤ 1.0. This model is a particular case of

the model studied in [124,125], when the second-neighbor

interaction between the layers is equal to zero.

The antiferromagnetic cubic lattice Ising model including

the first- and second-neighbor interactions is described by

the following Hamiltonian:

H = −J1

∑

〈i, j〉

(Si · S j) − J2

∑

〈i,l〉

(Si · Sl). (21)

The lattice contains two-dimensional square layers folded

along the orthogonal axis. The first term in equation (21)
characterizes the antiferromagnetic interaction of all nearest

neighbors, whish is assumed equal both inside and between

the layers (J1 < 0). The second term characterizes the

antiferromagnetic second-neighbor interaction in the same

layer (J2 < 0). Consideration of the antiferromagnetic

second-neighbor interaction causes frustration in this model.

To study this model, we used the replete exchange

algorithm of the MC method. The calculations were

carried out for the systems with PBC and linear dimensions

L × L × L = N, L = 30−90.

The order parameter of system m was calculated using

expression (6)−(8). mλ was calculated as follows

mλ =
4

N

∑

i∈λ

(−1)z Si, (22)

where z is the number of the lattice layer.

To determine the critical temperature TN for all r values,

the method of the fourth-order Binder cumulants UL was

used.

Figure 17 shows the phase diagram of dependence of

the critical temperature on the second-neighbor interaction.

This diagram shows that three different phases intersect

near point r = 0.5: antiferromagnetic — I, paramagnetic —
II and superantiferromagnetic (collinear) — III. Magnetic

structure of the ground state of the superantiferromagnetic

phase was addressed in detail in [126], and magnetic

structures of the antiferromagnetic and paramagnetic phases

are well known.

We considered transitions from the antiferromagnetic

phase to the paramagnetic phase and from the superanti-

ferromagnetic phase to the paramagnetic phase. We did not

address the transition from the antiferromagnetic phase to

the superantiferromagnetic phase. We suggest that there is

a coexistence region for both phases at the phase boundary.

The diagram shows that within 0.0 ≤ r ≤ 0.5 transition

from phase I to phase II is the second-kind PT (dark
circles on the curve). A similar picture is also observed for

r = 0.9 and r = 1.0, at which transition from phase III to

phase II occurs in the system. Within 0.6 ≤ r ≤ 0.8, where

transition from phase III to phase II occurs, the first-kind

PT is observed (light circles on the curve).
To perform a deeper analysis of a PT kind, a histogram

data analysis of the MC method was used. The results of our

study show that the transition from the antiferromagnetic

phase to the paramagnetic phase is the second-kind PT. This

is demonstrated in Figure 18. This figure represents energy

distribution histograms for systems with linear dimensions

L = 36, 48 and 90 for r = 0.3. The curves are plotted

for T = TN . Figure 19 shows that one clearly defined

peak, which grows with increasing linear dimensions of

the system, is observed on the dependence of probability

P(U) on energy U for all linear dimensions. Such behavior

supports the second-kind PT. A similar picture is observed

throughout 0.0 ≤ r ≤ 0.5 and for r = 0.9.

As or the transition from the superantiferromagnetic

phase to the paramagnetic phase, we have found that the

first-king PT is observed within 0.6 ≤ r ≤ 0.8. This is

shown in Figure 19. This figure represents energy distribu-

tion histograms for r = 0.8 at various linear dimensions L.
The figure shows that two clearly defined peaks, which

grow with increasing linear dimensions of the system,

are observed on the dependence of probability P(U) on

energy U for all linear dimensions. The twin peak on the

0
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Figure 18. Energy distribution histograms for r = 0.3.
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Table 2. Critical parameter values for the antiferromagnetic cubic lattice Ising model

r TN ν α β γ η α + 2β + γ = 2

Unfrust.
4.5111(3) 0.6305(25) 0.108(9) 0.3265(25) 1.239(4) 0.037(3) 2

Ising model [128]
0.0 4.5110(2) 0.630(5) 0.110(5) 0.320(5) 1.241(5) 0.03(1) 1.991

0.1 4.1020(2) 0.625(5) 0.115(5) 0.317(5) 1.238(5) 0.02(1) 1.986

0.2 3.4440(2) 0.633(5) 0.119(5) 0.328(5) 1.237(5) 0.04(1) 2.012

0.3 3.2050(2) 0.624(5) 0.118(5) 0.319(5) 1.243(5) 0.02(1) 1.999

0.4 2.6820(2) 0.632(5) 0.110(5) 0.322(5) 1.245(5) 0.02(1) 1.999

0.9 3.8250(2) 0.550(5) 0.339(5) 0.249(5) 1.188(5) −0.14(1) 2.025

1.0 4.1730(2) 0.549(5) 0.330(5) 0.245(5) 1.190(5) −0.16(5) 2

r = 1.0 [129] 1.355(2) 0.55(2) 0.33(5) − − −0.28(6) −

r = 1.0 [130] 1.347(1) 0.56(2) 0.32(2) 0.25(2) − −0.10(2) −

0
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0.006

0.009
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Figure 19. Energy distribution histograms for r = 0.8.

energy distribution histogram is indicative of the first-kind

PT. A similar picture is observed throughout 0.6 ≤ r ≤ 0.8.

Analysis of our data shows that consideration of the second-

neighbor interactions inside the layers at specific interaction

values results in PT change [127].
To calculate the static CI, the FSS theory relations

were used. The CI calculation procedure is described in

Section 4.1. This procedure was used to calculate CI for

the model of interest within 0.0 ≤ r ≤ 0.5, and for r = 0.9

and 1.0, where the second-kind PT is observed. All static

CI values calculated in this way are listed in Table 2 [127].
For r = 0.5, the attempt to calculate the critical param-

eters with the allowable accuracy has failed. We suggest

that this is due to the fact that three different phases coexist

in this point. Comparison of numerical CI values obtained

herein with the literature data shows good agreement, the

critical parameters for this model for various r values have

been calculated by us for the first time.

As shown in Table 2, the critical temperature TN

decreases with increasing next-neighbor interaction up to

r = 0.4. With further increase in r , the critical tem-

perature starts growing. All CI values calculated by us

within 0.0 ≤ r ≤ 0.4, coincide within the allowable accu-

racy with CI values of the three-dimensional unfrustrated

Ising model [128]. This indicates that this model within

0.0 ≤ r ≤ 0.4 is included in the same critical behavior

universality class as the unfrustrated Ising model. CI

values calculated by us for r = 0.9 and 1.0 well agree

with those calculated in [129,130] for the fully frustrated

three-dimensional cubic lattice Ising model, but they differ

greatly from the data obtained by us for this model

within0.0 ≤ r ≤ 0.4. It can be assumed that consideration

of the second-neighbor interactions inside the lattice layers

for the antiferromagnetic cubic lattice Ising model results

in the critical behavior universality class change within

0.8 < r ≤ 1.0. In this case, CI coincide with the data

for the fully frustrated three-dimensional cubic lattice Ising

model [131,132].

4.4. Triangular layered lattice three-dimensional
Ising model

The two-dimensional antiferromagnetic triangular layered

lattice Ising model is a relatively simple geometrically

frustrated model. In this model where interaction is limited

only by the nearest neighbors, the spin ordering is strongly

suppressed due to the frustration effects. As a result this

system has now PT at any finite temperature [133–135].
Consideration of the second-neighbor interactions in this

model plays a significant role and causes various types of

long-range order depending on the values and sign of the

second-neighbor interaction [136].
Theoretical and numerical investigations of the three-

dimensional antiferromagnetic triangular layered lattice Ising

model were controversial. Landau–Ginzburg–Wilson the-

ory predicted 3d XY -behavior for the observed magnetic

PT [137,138]. Later, the MC simulation gave the results

typical for tricritical behavior [139]. Later investigations

using the MC histogram method and FSS theory showed

the set of CI that differs from the tricritical behavior and is

rather close to 3d XY -model [140,141].
The authors of [142] studies the ordered phases and PT

in the triangular layered lattice Ising model with strong

interlayer interaction. This model may be used to describe

CsCoCl3 and CsCoBr3. Calculations carried out for them
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within the mean field approximation [143] and by the

cluster variation method show that one of three magnetic

sublattices is probably disordered.

However, the MC method shows that such partially

disordered states are described by the a mode with a

randomly space- and time-varying phase [145,146]. These

results may explain the observed obvious time fluctuations

of the magnetic structure [147].

The MC simulation of the triangular layered lattice Ising

antiferromagnet taking into account the antiferromagnetic

second-neighbor interactions shows that there is the first-

kind PT between the low-temperature two-sublattice an-

tiferromagnetic phase and high-temperature paramagnetic

phase. This scenario differs from that observed when

the first-neighbor interactions are ferromagnetic. For such

case, the Berezinsky–Kosterlitz–Taules pahse in the isolated

layers occurs at an intermediate temperature between the

three-sublattice ferrimagnetic phase at low temperature and

paramagnetic phase at high temperature [148].

As of today, some issues regarding the effect of the

interlayer exchange interaction on the Ising antiferromagnet

PT are still controversial. The findings obtained for the

antiferromagnetic triangular layered lattice Ising model PT

with various interlayer exchange interaction values are

provided in herein. The antiferromagnetic triangular layered

lattice Ising model is described by the Hamiltonian

H = −J1

∑

〈i, j〉

(Si · S j) − J2

∑

〈i,l〉

(Si · Sl) − J3

∑

〈i,k〉

(Si · Sk),

(23)
where J1 < 0, J2 < 0 and J3 > 0 are the exchange in-

teraction constants. The lattice contains two-dimensional

triangular layers folded along the orthogonal axis. The first

term in equation (23) characterizes the antiferromagnetic

interaction of all nearest neighbors which is assumed equal

within the layer, the second term characterizes the interlayer

antiferromagnetic interaction and the third term characte-

rizes the ferromagnetic third-neighbor interaction within the

layers. For calculations, we assume that |J1| = |J3| = 1 and

change J2 value. r = J2/J1 is the interlayer and intralayer

exchange relation. 0.01 < r ≤ 1.0 interval is addressed. The

investigations were carried out the Wang–Landau algorithm

and replete exchange algorithm of the MC method. The

calculations were carried out for the systems with PBC and

linear dimensions L × L × L = N, L = 18−90.

The order parameter of system m was calculated using

expression [149]:

m =
3

N

√

〈M2
A + M2

B + M2
C〉/3, (24)

where MA, MB and MC are magnetizations of three sublat-

tices.

To determine the critical temperatures TN , we used the

fourth-order Binder cumulant method UL. The critical

temperatures obtained for the addressed r values are listed

in Table 3.

0

0.005

0.010

0.015

U

P

– .801 –1.75 –1.65

L = 90
L = 60

TN = .7 087

–1.60

r = 0.4

–1.70 –1.55

Figure 20. Energy distribution histograms for a system with

linear dimensions L = 60 and L = 90 for r = 0.4.
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Figure 21. The phase diagram of dependence of the critical

temperature on the interlayer exchange interaction for the three-

dimensional triangular lattice Ising model.

The PT kind analysis was carried out using the histogram

data analysis of the MC method [94,150]. Our findings

show that PT for all addressed r values are second-kind

transitions. This is demonstrated in Figure 20, where the en-

ergy distribution histograms are provided for a system with

linear dimensions L = 60 and 90 r = 0.4. The provided

histograms show that the dependence of probability P on

energy U has one clearly defined peak, which supports the

second-kind PT. The same result has been obtained for all

remaining r values.

Figure 21 shows the phase diagram characterizing the

dependence of the critical temperature on the interlayer

exchange interaction. The diagram shows that decreasing

interlayer exchange interaction results in decreasing PT

temperature. Analysis of our data shows that the transition

from the disordered phase to the ordered phase within the

addressed r interval is the second-order PT [151].

Physics of the Solid State, 2023, Vol. 65, No. 9



Phase transitions in frustrated Ising models 1411

Table 3. Critical parameters for the triangular layered lattice Ising model with variable interlayer exchange interaction

r TN ν α β γ η α + 2β + γ = 2

0.01 5.420(1) 0.577(15) 0.26(5) 0.284(15) 0.81(5) 0.59(10) 1.6

0.05 5.751(1) 0.592(15) 0.22(5) 0.292(15) 0.88(5) 0.51(10) 1.6

0.1 6.066(1) 0.651(15) 0.05(5) 0.370(15) 1.19(5) 0.16(10) 1.98

0.2 6.465(1) 0.648(15) 0.05(5) 0.365(15) 1.21(5) 0.13(10) 1.99

0.4 7.087(1) 0.660(15) 0.02(5) 0.369(15) 1.20(5) 0.18(10) 1.95

0.6 7.5850(1) 0.648(15) 0.07(5) 0.362(15) 1.17(5) 0.19(10) 1.96

0.8 8.031(1) 0.652(15) 0.05(5) 0.373(15) 1.20(5) 0.15(10) 1.99

1.0 8.427(1) 0.650(15) 0.05(5) 0.370(15) 1.16(5) 0.21(10) 1.95

Table 3 lists the CI values for all addressed r values

calculated using the FSS theory relations. The Table shows

that the numerical CI values within 0.05 < r ≤ 1.0 coincide

with each other within the allowable accuracy. It should be

also noted that the scaling relation between CI is satisfied

with sufficiently high accuracy. In this case, the CI values

within 0.05 < r ≤ 1.0 do not depend on the interlayer in-

teraction and coincide with each other within the allowable

accuracy and do not correspond to any known critical

behavior universality class. At r ≤ 0.05, the CI values

change considerably and the scaling relations between them

are not satisfied any longer. It is suggested that at r = 0.05

crossover from the three-dimensional critical behavior to

the quasi two-dimensional critical behavior occurs in the

system [152,153].

4.5. Body-centered cubic lattice Ising mode

Findings for PT and thermodynamic properties of the

antiferromagnetic BCC lattice Ising model taking into

account the second-neighbor interaction obtained using

the MC replete exchange (REMC) algorithm and Wang–
replete (WLA) algorithm are described herein.

Theoretical calculations and MC numerical simulation for

the BCC lattice Ising model were described in [154–159].
The theoretical investigations show that the second-kind PT

occurs for the simple cubic lattice and BCC lattice Ising

model [155–157]. According to [158,159], the second-

kind PT changes to the first-kind PT in the system when

the second-neighbor interaction increases. Consideration of

the second-neighbor in this model interaction can result in

frustrations.

The antiferromagnetic BCC lattice Ising model including

the first- and second-neighbor interactions is described by

the following Hamiltonian [160]:

H = −J1

∑

〈i, j〉

(Si · S j) − J2

∑

〈i,l〉

(Si · Sl). (25)

The first term in equation (25) takes into account the first-

neighbor exchange interaction (J1 < 0), and the second

term takes into account the second-neighbor exchange

interaction (J2 < 0). r = J2/J1 is the second-neighbor

interaction. The calculations were carried out for the
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Figure 22. Temperature dependences of energy.
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Figure 23. Temperature dependences of heat capacity.

systems with PBC and linear dimensions L × L × L = N,

L = 12−90. The relation of the second- and first-neighbor

exchange interactions varied within 0.0 ≤ r ≤ 1.0.

Figures 22 and 23 show the temperature dependences

of energy and heat capacity obtained using the replete

exchange algorithm and Wang–Landau algorithm. These

figures demonstrate that the data obtained using different

2∗ Physics of the Solid State, 2023, Vol. 65, No. 9
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Figure 24. The phase diagram of dependence of the critical

temperature on the second-neighbor interaction for the BCC lattice

Ising model.
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Figure 25. Magnetic structures of the ground state for r = 2/3.

algorithms correspond closely to each other. This suggests

reliability and accuracy of the findings.

Figure 24 shows the phase diagram of dependence of

the critical temperature on the second-neighbor interaction.

The diagram shows that three different phases intersect in

point r = 2/3: AF1 — antiferromagnetic, PM paramagnetic

and AF2 2- type antiferromagnetic phase[157,158]. Spin

directions in sublattices are shown with arrows on the phase

diagram. Figure 25 shows magnetic structures of the ground

state for the model of interest for r = 2/3, which were

obtained using the Wang–Landau algorithm (black and light

circles show the spin directions). Numbers 1−6 in this

figure indicate all possible magnetic structures of the ground

state observed in this model.

Energy state density g(E) for systems with various linear

dimensions L is shown in Figure 26. The curve shows that

there is no strong ground state degeneracy in this system.

This suggests that the first-neighbor and second-neighbor

exchange interaction competition in the addressed model

does not result in strong ground state degeneracy opposed

to the square lattice Ising model [108].

Temperature dependence of entropy S is shown in

Figure 27. This figure shows that the system entropy with

increasing temperature tends to the theoretically predicted

value ln 2. At low temperatures close to the absolute zero,

the system entropy tends to a near-zero value. Such entropy

behavior also suggests that the ground state degeneracy is

not available in this model. It can be assumed that the

exchange interaction competition in this model does not

cause any frustrations.

For the PT kind analysis, we used the MC histogram

data analysis method for the data obtained using both the

replete algorithm and Wang–Landau algorithm. It is shown

that the second-kind PT is observed within 0.0 ≤ r ≤ 0.6

and 0.8 ≤ r ≤ 1.0, which is fully consistent with [105].
A more detailed investigations of 2/3 ≤ r ≤ 0.75 has shown

that the second-kind PT is observed for r = 2/3. This is

demonstrated in Figure 28. This figure represents energy

distribution histograms for a system with linear dimensions
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2·105

4·105

6·105

8·105

E N/
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(

)
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Figure 26. Energy state density g(E) for systems with various

linear dimensions L.
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Figure 27. Temperature dependence of entropy.
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Figure 28. Energy distribution histograms for a system with

linear dimensions L = 80.

L = 80. The curves are built near the critical temperature.

The figures show that the dependence of probability P(U)
on energy U for all temperatures has one clearly defined

peak, which supports the second-kind PT. Thus, the findings

show that the phase diagram (Figure 24) contains a

narrow region (2/3 < r ≤ 0.75) where the transition is

implemented as the first-kind PT.

Analysis of this data suggests that consideration of

the antiferromagnetic second-neighbor interactions in the

antiferromagnetic BCC lattice Ising model results in sixfold

degeneracy of the ground state, rather than in frustration.

The second-kind PT is observed in the addressed model

at r = 2/3 [161–165]. The obtained data may be used to

describe particular antiferromagnetic BCC lattice materials

such as FeCr [166], FeAl, FeCo [167] and some others as

described in [168].

5. Ising models with frustrations
in the magnetic field

5.1. Triangular lattice Ising model

in the magnetic field

An external magnetic field applied to the two-dimensional

antiferromagnetic triangular lattice Ising model stabilizes the

spin state and induces PT in the system [136]. Opposed

to the two-dimensional case, the tree-dimensional antiferro-

magnetic triangular lattice Ising model is still poorly under-

stood. This model allows to describe a variety of systems,

including artificial dipole magnets [169], compounds where

electrically charged dumbbells act as the Ising degrees of

freedom [170], frustrated Coulomb liquids [171] etc.

Many physical properties of frustrated systems may

depend on external factors, for example, magnetic field.

Therefore, the study of the three-dimensional antiferromag-

netic triangular lattice Ising model provides answers to some

questions regarding the impact of magnetic field on PT of

layered frustrated spin systems.

The Section provides the findings for PT in the anti-

ferromagnetic triangular layered lattice Ising model in the

magnetic field described by the Hamiltonian

H = −J1

∑

〈i, j〉

(Si · S j) − h
∑

i

Sz
i . (26)

The lattice contains two-dimensional triangular layers folded

along the orthogonal axis z , h is the external magnetic

field oriented along the z axis. The calculations were

carried out for the systems with PBC and linear dimensions

L × L × L = N, L = 12−48.

Figure 29 shows the temperature dependences of heat

capacity obtained for the system with liners dimensions

L = 36 at various magnetic field strengths h (hereinafter
magnetic field is given in terms of kBT ). A clearly defined

peak is observed in the dependences of heat capacity on

temperature within 0 ≤ h ≤ 6 near the critical temperature.

This peak moves towards low temperatures with increasing

magnetic filed strength. There is competition between

the internal molecular field that induces antiferromagnetic

ordering in the system and the external magnetic field

that arranges the system along the field. therefore, with

the increasing external magnetic field, PT occurs in the

systems at lower temperatures. A small second peak is

observed in the low-temperature region. It should be noted

that twin peaks are associated with so-called intermediate

partially disordered antiferromagnetic phase. The curves

show that heat capacity peaks within 6 < h ≤ 12 become

more smooth or disappear at all. This is due to the fact that

the magnetic field fully suppresses the system fluctuations

and PT is degraded in the system.

Figure 30 shows the magnetization vs. magnetic field

curve for different temperatures. There is a magnetization

plateau equal to 1/3 saturation magnetization. When the

0 1 2 3 5

0

0.5

1.0

C
/k

B

k T JB /

L = 36

4

h = 0

h = 10
h = 8
h = 6
h = 4
h = 2

h = 12

Figure 29. Temperature dependences of heat capacity for

different magnetic field strengths h.
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external magnetic field is included, the ground state having

a long-range order may be represented. In this state, the

spins of two sublattices are arranged along the field, while

the spins of the third sublattice are oriented opposite to

the magnetic field. This induces the magnetization plateau

equal to 1/3 saturation magnetization. With the increasing

temperature, the plateau gradually disappears and we

observe smooth growth of magnetization up to saturation.

This is explained by the spin temperature fluctuations.

Figure 31 shows temperature dependences of entropy S
at different magnetic field strengths h. According to

the theoretical predictions, the entropy for the system of

interest shall tend to ln 2 with temperature growth. At low

temperatures, the entropy for unfrustrated systems tends to

zero, and is non-zero for frustrated systems. The figure

shows that the entropy at high temperatures tends to ln 2.

At low temperatures, the entropy tends to non-zero values.
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Figure 30. Magnetization dependences on the magnetic field

strength for different temperatures.
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Figure 31. Temperature dependences of entropy S for different

magnetic field strengths h.
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Figure 32. Energy distribution histograms for a system with

linear dimensions L = 36 at h = 0, 2, 4, 6.

With increasing h, growth of the value to which the entropy

tends at low temperatures is observed. Such behavior

is typical for frustrated spin systems. This suggests that

frustration effects are observed in this model at the given

magnetic field strengths. For higher fields, the entropy tends

to zero at low temperatures and to ln 2 in a high temperature

region. It can be claimed that there is no ground state

degeneracy in this model at high magnetic field strength

and the system achieves the ordered state.

For PT kind analysis, we used the MC histogram data

analysis method. Our findings show that PT for the field

strengths within 0 ≤ h ≤ 6 are the second-kind transitions.

This is demonstrated in Figure 32, where the energy distri-

bution histograms are provided for a system with linear di-

mensions L = 36 and 6 h = 0, 2, 4 and 6. The curves show

that one clearly defined peak is observed on the dependence

of probability on energy. One peak on the energy distribu-

tion histogram supports the second-kind PT [172–175].

5.2. Body-centered cubic lattice Ising model
in magnetic field

The influence of the magnetic field on the nature of

PT, magnetic and thermodynamic properties of the anti-

ferromagnetic BCC lattice Ising model taking into account

the first- and second-neighbor interactions will be discussed

herein.

The Hamiltonian in the antiferromagnetic BCC lattice

Ising model taking into account the first- and second-

neighbor interaction as well as external magnetic field is

written as follows

H = −J1

∑

〈i, j〉

(Si · S j) − J2

∑

〈i,l〉

(Si · Sl) − h
∑

〈i〉

Sz
i , (27)

where J1 and J2 are the antiferromagnetic exchange

interaction constants of the first neighbors (J1 < 0) and
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Figure 33. Dependence of the critical temperature on the

magnetic field strength h for the BCC lattice Ising model.

second neighbors (J2 < 0), h is the magnetic field strength.

Magnetic field is oriented along the z axis. Using the MC

replete algorithms, calculations were carried out for the sys-

tems with PBC and linear dimensions 2× L × L × L = N,

L = 18−90.

MC histogram data analysis shows that one peak is

observed on the energy distribution histograms for all field

values within 0.0 ≤ h ≤ 6.0. This suggests that the second-

kind PT is implemented in he system.

Figure 33 shows the dependence of the critical temper-

ature TN on the magnetic field strength h. It is shown

that TN decreases with increasing magnetic field strength

within 0.0 ≤ h ≤ 6.0. Within the addressed magnetic field

interval, transition from the antiferromagnetic phase to the

paramagnetic phase is implemented as the second-kind

PT [176,177]. According to [178], the second-king PT

occurs in the magnetic field range 0.0 ≤ h ≤ 10.0 and the

first-kind PT is observed within 11.0 ≤ h ≤ 13.0. Strong

magnetic field (h ≥ 14.0) has been found to result in PT

suppression.

6. Conclusion

The data on the frustration effect on phase transitions,

critical behavior and thermodynamic properties of the Ising

models provided herein suggest that an extremely wide and

versatile behavior picture is formed. Occurrence of the frus-

trated state independently on its cause, whether due to the

lattice geometry or competing interactions, may influence

phase transitions and critical behavior dramatically. In this

case, the kind of phase transition and the critical behavior

universality class can be changed, and non-universal critical

behavior can be also observed sometimes. Behavior features

of frustrated spin systems depend to a great extent on the

relation of competing exchange interaction forces, on the

type of lattice and on the space dimension. Simultaneous

influence of all these factors results in extreme versatility of

phase diagrams of such systems.

Funding

The study was partially supported by NCFM’s research

program (
”
Investigations of strong and superstrong magnetic

field“ project).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] W. Lenz. Z. Phys. 21, 613 (1920).
[2] E. Ising. Z. Phys. 31, 253 (1925).
[3] L. Onsager. Phys. Rev. 65, 117 (1944).
[4] T.D. Lee, C.N. Yang. Phys. Rev. 87, 410 (1952).
[5] J.C. Wheeler. Ann. Rev. Phys. Chem. 28, 411 (1977).
[6] M. Blume, V.J. Emery, R.B. Griffiths. Phys. Rev. A 4, 1071

(1971).
[7] C.J. Thompson. Biopolymers 6, 1101 (1968).
[8] S. Torquatto. Phys. Biol. 8, 015017 (2011).
[9] E. Alvarez-Lacalle, B. Echebarria, J. Spalding, Y. Shiferaw.

Phys. Rev. Lett. 114, 108101 (2015).
[10] A. Mailhot, M.L. Plumer, A. Caille. Phys. Rev. B 50, 6854

(1994-II).
[11] K. Binder, E. Luijten. Phys. Rep. 344, 179 (2001).
[12] D.P. Landau. Physica A 205, 41 (1994).
[13] I.P. Beloborov, R.S. Gekht, V.A. Ignatchenko. ZhETF 84,

1097 (1983). (in Russian).
[14] D. Loison, A.I. Sokolov, B. Delamotte, S.A. Antonenko,

K.D. Schotte, H.T. Diep. JETP Lett. 72, 337 (2000).
[15] J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer. Nature 413, 48

(2001).
[16] J.S. Gardner, A. Keren, G. Ehlers, C. Stock, Eva Segal,

J.M. Roper, B. F̊ak, M.B. Stone, P.R. Hammar, D.H. Reich,

B.D. Gaulin. Phys. Rev. B 68, 180401 (2003).
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