07.2;08.3

Полевой транзистор с графеновым каналом и эпитаксиальным слоем фторида кальция в роли подзатворного диэлектрика

© Ю.Ю. Илларионов^{1,2}, А.Г. Банщиков¹, Т. Knobloch², И.А. Иванов¹, Т. Grasser², Н.С. Соколов¹, М.И. Векслер¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Институт микроэлектроники Технического университета Вены, Вена, Австрия E-mail: vexler@mail.ioffe.ru

Поступило в Редакцию 26 сентября 2023 г. В окончательной редакции 26 сентября 2023 г. Принято к публикации 15 ноября 2023 г.

Впервые изготовлены образцы полевых транзисторов для "двумерной" электроники на основе сочетания графена (материала канала) и эпитаксиального фторида кальция (изолирующего затвор материала). Измерены стандартные для приборов данного типа характеристики, подтвердившие работоспособность этих приборов. Исследование можно рассматривать как шаг к созданию транзисторов с новыми материалами, перспективными для дальнейшего масштабирования элементов. Одна из ближайших задач — снижение разброса характеристик приборных структур.

Ключевые слова: 2D-электроника, полевой транзистор, графен, фторид кальция.

DOI: 10.61011/PJTF.2024.04.57097.19739

Важнейшим направлением развития микроэлектроники в настоящее время является поиск новых материалов для изготовления ее базовых элементов — полевых транзисторов с изолированным затвором (MISFET). Обычно в литературе внимание фокусируется на выборе полупроводников, которые в ходе миниатюризации элементов смогли бы сменить традиционный Si. К перспективным относятся двумерные (two-dimensional, 2D) материалы [1,2], такие как графен, силицен и дихалькогениды переходных металлов. В последнее десятилетие были созданы транзисторы с токонесущим слоем (каналом) из материалов данного типа [1,2]. Среди 2D-материалов графен особенно привлекателен ввиду высокой подвижности носителей заряда. При этом в отличие от дихалькогенидов, потенциально интересных для приложений в цифровой электронике, графен имеет нулевую запрещенную зону, и поэтому сферой применения транзисторных структур на его основе видятся прежде всего твердотельная оптоэлектроника и сенсорика.

Возможный вариант конструкции такого транзистора показан на рис. 1. Сама конструкция не нова, но сочетание графен—фторид в подобных приборах вводится нами впервые. В представленной конструкции роль затвора играет нижний электрод, напряжением V_g на нем регулируется величина тока I_d от истока к стоку. Кремний здесь играет по сути "механическую" роль, так как значимые процессы происходят не в Si, а в нанесенном поверх диэлектрика проводящем 2D-слое.

Несомненно, что наряду с оптимизацией подбора полупроводниковой 2D-пленки важную роль играет выбор диэлектрика, поскольку этим будут определяться стабильность функционирования прибора в целом (могут влиять нежелательные зарядовые явления в диэлектрике), подвижность электронов или дырок в канале, а также возможный диапазон работы по напряжениям. Для транзисторов обсуждаемого типа пока применяются стандартные для электроники диоксид кремния (SiO₂) и high-*k*-оксиды (HfO₂, Al₂O₃ и др.) [3]. Однако, как было установлено, ни SiO₂, ни "альтернативные" аморфные окислы не обеспечивают удовлетворительного качества границы изолятор—проводящий канал, что не позволяет воспользоваться преимуществами 2D-материала [3]. Был опробован вариант применения кристаллического гексагонального нитрида бора (*h*BN), давший неплохие результаты, но, во-первых, диэлектрические свойства этого материала оставляют желать лучшего [3], а во-вторых,

Рис. 1. Структура исследуемого полевого транзистора. Пленка графена служит токопроводящим слоем, а фторид подзатворным диэлектриком (ранее в таких приборах использовались иные сочетания материалов: MoS₂/*h*BN/Si и др.).

Рис. 2. Типичные характеристики транзисторов с графеном поверх CaF_2 . a — сравнение тока стока и тока утечки через затвор; b — зависимости тока стока от напряжения на затворе для нескольких заданных напряжений стока; c — зависимости тока стока от напряжения сток-исток для нескольких заданных напряжений затвора. Для всех частей рисунка размер затвора $L \times W = 80 \times 50 \,\mu$ m, температура 25°C.

для его нанесения нужны высокотемпературные режимы [4], неудобные на практике.

В настоящей работе нами впервые изготовлены 2Dтранзисторы на основе графена с использованием совсем другого диэлектрика — фторида кальция (CaF₂) (рис. 1). CaF₂ как материал микроэлектроники относительно мало известен. В основном он рассматривался как кандидат для барьерных слоев в резонанснотуннельных диодах [5]. Его плюсы: широкая запрещенная зона ($E_g = 12.1 \, \text{eV}$), довольно высокая диэлектрическая проницаемость (в статике $\varepsilon = 8.43$ [6]) и близость постоянных решетки CaF₂ и Si [5], позволяющая выращивать монокристаллические слои этого фторида на кремнии методом молекулярно-лучевой эпитаксии. В разное время затрагивался вопрос о применении CaF₂ в MISFET простых архитектур на кремнии, алмазе и арсениде галлия (см., например, [7]). В наших более ранних работах удалось изготовить 2D-транзисторы с каналом из MoS₂ поверх CaF₂ и показать, что их характеристики в ряде отношений лучше, чем у аналогичных приборов с известными диэлектриками [8].

Таким образом, в настоящей работе делается попытка распространить полученный опыт на приборы с графеном. Физическим фактором, с которым связаны надежды на улучшение, является формирование квази-ван-дерваальсова интерфейса CaF₂-2D-материал, что должно улучшать характеристики канала.

Изготовление исследованных в работе транзисторных структур включало два ключевых процесса: выращивание слоя CaF₂ номинальной толщиной 2 nm и нанесение графена, а также вспомогательные операции.

Слой CaF₂ формировался методом молекулярнолучевой эпитаксии на умеренно легированных подложках Si *n*-типа ($N_D = 10^{15}$ cm⁻³) ориентации (111) с отклонением не более 10 агстіп. После стандартной химической обработки методом Шираки [9], в котором неоднократно химически выращивался и удалялся тонкий слой окисла, производилось термическое испарение финишного слоя оксида кремния в условиях сверхвысокого вакуума, после чего начиналось эпитаксиальное выращивание CaF₂ со скоростью (deposition rate) ~ 1.3 nm/min. Оптимальной оказалась температура роста 250°C без последующего отжига. Кристаллическое качество контролировалось по картине дифракции быстрых электронов (RHEED, энергия 15 keV). Толщина слоя фторида составляла около 2 nm, а ее пространственная неоднородность при оценке по параметру rms составляла около 0.2 nm и имела тенденцию к снижению при уменьшении номинальной толщины фторида.

Поверх CaF₂ с применением фотолитографии были сформированы области контактов стока и истока: 10нанометровый подслой Al₂O₃ с металлизацией палладием. На сформированную структуру переносилась пленка графена, выращенная методом химического газофазного осаждения; при переносе использован полиметилметакрилат. Размеры канала (длина $L \times$ ширина W) составляли от 160 \times 100 до 9 \times 3 μ m. Роль "затвора", как уже указывалось, играл тыльный контакт через подложку кремния (backgate configuration).

На рис. 2, *a*-*c* представлены типичные измеренные характеристики транзистора размером $80 \times 50 \,\mu\text{m}$: токи стока I_d и затвора I_g как функции напряжения на затворе Vg, а также ток стока в зависимости от напряжения затвор-исток $V_{g} \ (для \ серии \ напряжений на стоке) и$ сток-исток V_d (для серии напряжений на затворе). В целом данные характеристики свидетельствуют о работоспособности и управляемости прибора. Так, из рис. 2, а очевидно, что ток утечки Ig значительно меньше, чем основной ток I_d, при этом, как легко проверить делением на площадь $L \times W$, плотность тока утечки на несколько порядков ниже 1 А/ст². На рис. 2, с налицо изменение знака тока I_d при переходе через нуль по напряжению стока V_d. Сток-затворные характеристики на рис. 2, b отчетливо показывают управляемость, а именно выраженную зависимость вида кривых от V_d и V_g , при этом положение минимума кривой $I_d(V_g)$ смещается вправо при увеличении положительного напряжения V_d , как и должно быть.

В работе было измерено порядка 50 образцов. На качественном уровне все они демонстрировали ожидаемые характеристики. При этом уже на данной стадии исследований четко выделялась группа образцов с мало отличающимися друг от друга значениями токов (рис. 3). Доля приборов, характеристики которых расположены группой, составляла примерно четверть исследованных (для иллюстрации нанесено десять кривых), что свидетельствует о разумной для первых экспериментов воспроизводимости получения полноценно функционирующих транзисторов. Следует отметить, что ось ординат на рис. 3 не логарифмическая, т.е. разброс в "лучшей" группе составляет не более двух раз по току. Явные количественные отклонения от характеристик этой группы, как мы считаем, связаны с дефектами в конкретных образцах.

Рис. 3. Характеристики десяти лучших (примерно из 50) приборов, демонстрирующие их относительно небольшой разброс.

Подводя итог, можно констатировать, что в работе впервые получены 2D-транзисторы на основе сочетания графена и фторида кальция. Указанная комбинация материалов ранее в сфере 2D-приборов не рассматривалась.

Оценивая результат, отметим, что необходимо иметь в виду, что нами пока не было предпринято шагов по оптимизации процесса, хотя имеются очевидные возможности для этого. В частности, представляется реальным достижение большей однородности слоя фторида, что снизит разброс. Этому же будет способствовать защита канала сверху. В перспективе нельзя также исключать использование других похожих фторидов или их твердых растворов. Одним из ближайших шагов должно стать систематическое сравнение плюсов и минусов структур графен/CaF₂/Si со случаем использования более привычных диэлектриков (SiO₂, *h*BN).

Финансирование работы

Авторы выражают благодарность за частичную поддержку РФФИ (грант 21-52-14007 АНФ_а) и Минобрнауки России (проект 075-15-2020-790).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Lemme, D. Akinwande, C. Huyghebaert, C. Stampfer, Nat. Commun., 13, 1392 (2022). DOI: 10.1038/s41467-022-29001-4
- [2] A. Béraud, M. Sauvage, C. Bazán, M. Tie, A. Bencherif, D. Bouilly, Analyst, 146, 403 (2021).
 DOI: 10.1039/d0an01661f
- [3] Yu.Yu. Illarionov, T. Knobloch, M. Jech, M. Lanza, D. Akinwande, M.I. Vexler, T. Mueller, M. Lemme, G. Fiori, F. Schwierz, T. Grasser, Nat. Commun., 11, 3385 (2020). DOI: 10.1038/s41467-020-16640-8

- [4] F. Hui, M. Villena, W. Fang, A.-Y. Lu, J. Kong, Y. Shi, X. Jing, K. Zhu, M. Lanza, 2D Mater., 5, 031011 (2018). DOI: 10.1088/2053-1583/aac615
- [5] M. Tsutsui, M. Watanabe, M. Asada, Jpn. J. Appl. Phys., 38 (8B), L920 (1999). DOI: 10.1143/JJAP.38.L920
- [6] W. Hayes, *Crystals with the fluorite structure* (Clarendon Press, 1974).
- S. Miyamoto, H. Matsudaira, H. Ishizaka, K. Nakazawa, H. Taniuchi, H. Umezawa, M. Tachikia, H. Kawarada, Diamond Rel. Mater., 12, 399 (2003).
 DOI: 10.1016/S0925-9635(03)00034-7
- [8] Yu.Yu. Illarionov, A.G. Banshchikov, D.K. Polyushkin, S. Wachter, T. Knobloch, M. Thesberg, M. Waltl, M. Stoeger-Pollach, A. Steiger-Thirsfeld, M.I. Vexler, N.S. Sokolov, T. Mueller, T. Grasser, Nat. Electron., 2, 230 (2019). DOI: 10.1038/s41928-019-0256-8
- [9] A. Ishizaka, Y. Shiraki, J. Electrochem. Soc., 133, 666 (1986). DOI: 10.1149/1.2108651