08.1

Системный подход анализа эффективности фотоэлементов: мезоструктурированная перовскитная солнечная ячейка

© F. Bonnin-Ripoll¹, R. Pujol-Nadal¹, Я.Б. Мартынов², В.А. Кинев³, Р.Г. Назмитдинов^{3,4}

¹ Факультет промышленной инженерии и строительства, Университет Балеарских островов, Пальма, Испания

² НПП "Исток" им. Шокина, Фрязино, Московская обл., Россия

³ Государственный университет "Дубна", Дубна, Московская обл., Россия

⁴ Лаборатория теоретической физики им. Н.Н. Боголюбова Объединенного института ядерных исследований, Дубна, Московская обл., Россия

E-mail: rashid@theor.jinr.ru

Поступило в Редакцию 5 октября 2023 г. В окончательной редакции 9 ноября 2023 г. Принято к публикации 9 ноября 2023 г.

> Предложен метод анализа эффективности фотоэлемента, основанный на процедуре статистического усреднения экспериментальных данных. Метод позволяет оценить качество экспериментального устройства и определить условия увеличения его эффективности путем оптимизации толщин функциональных слоев. С использованием развитого подхода установлены характеристики функциональных слоев экспериментальной перовскитной солнечной ячейки с мезопористым слоем TiO₂ и получено прекрасное согласие теоретических и экспериментальных значений вольт-амперных характеристик.

> Ключевые слова: перовскитный солнечный элемент, тонкопленочный, мезопористый, оптоэлектронные измерения и анализ, эффективность преобразования энергии.

DOI: 10.61011/PJTF.2024.04.57091.19752

Благодаря замечательным электрическим и оптическим свойствам органо-неорганические галогенидные перовскиты (ОНГП) привлекают огромное внимание исследователей в связи с возможностью их использования в качестве светопоглощающего материала в области фотовольтаики. Фотоэлементы с ОНГП-слоями, для которых в последнее время достигнута эффективность преобразования энергии в 25.8% [1], являются наиболее перспективными конкурентами фотоэлектрических элементов на основе кремния. Несомненными достоинствами ОНГП являются их дешевое производство, высокий коэффициент абсорбции излучения, большая диффузионная длина и высокая подвижность переносчиков зарядов, а также высокая эффективность преобразования энергии (ЭПЭ). Более того, в настоящее время активно разрабатываются различные модификации перовскитных составов с целью достижения их большой стабильности и использования в широких диапазонах поглощаемого излучения [2]. Очевидно, что для дальнейшего повышения эффективности перовскитных солнечных элементов (ПСЭ) анализ оптических и электрических свойств различных функциональных слоев в архитектуре устройства имеет решающее значение. Однако некоторые параметры этих слоев трудно измерить. Например, оценки подвижности носителей зарядов в перовските являются довольно приближенными. Проблемы возникают также при измерении толщин различных функциональных слоев экспериментального образца ПСЭ. Толщины могут меняться не только от образца к образцу, но и для отдельно взятого синтезированного слоя образца. Одной из основных целей настоящей работы является

разработка эффективного подхода, сочетающего анализ оптических и электрических свойств мезоструктурированного ПСЭ, позволяющего получать объективную оценку свойств различных функциональных слоев экспериментального образца.

Для реализации поставленной цели проанализируем свойства ПСЭ с хорошо зарекомендовавшей себя архитектурой (рис. 1), который был изготовлен нами по методике работы [3]. Устройство имеет вид *n*-*i*-*p*-диода. На сложную стеклянную подложку наносился тонкий и компактный (compact) слой TiO₂ (*c*-TiO₂), облегчающий сбор фотогенерированных электронов из перовскитного материала. Для повышения эффективности сбора носителей зарядов вводился слой мезопористого TiO₂ (*mp*-TiO₂), улучшающий дальнейший рост перовскита. Более того, частичная инфильтрация перовскита в слой *mp*-TiO₂ уменьшает число ловушек на этой границе. Для улучшения переноса дырок между перовскитом и золотым электродом был использован Spiro-OMeTAD (C₈₁H₆₈N₄O₈). Отметим, что на данный момент не существует последовательной методики определения толщины мезопористого слоя и его количественного влияния на ЭПЭ для ПСЭ. Далее рассмотрен эффективный подход к анализу оптоэлектрических характеристик как слоя *mp*-TiO₂, так и всего устройства.

Поскольку электронные и оптические измерения не могут быть выполнены на одном и том же образце ПСЭ, были подготовлены две партии из 24 образцов, изготовленных в одинаковых условиях. Первая партия использовалась для оптических измерений с перерывами

Рис. 1. *а* — схематическое изображение архитектуры слоев экспериментального ПСЭ; *b* — типичное изображение экспериментального образца, полученное с помощью сканирующего электронного микроскопа.

на каждой фазе процесса изготовления ПСЭ, а вторая — для измерений вольт-амперных характеристик (BAX).

Рассматривая нанесение нового слоя материала как отдельную стадию процесса, мы проводили измерения оптического коэффициента пропускания полученной структуры ($T^{exp}(\lambda)$) для заданного интервала длин волн λ. На стадии 1 изготавливалась многослойная стеклянная подложка, образованная слоями SnO₂, SiO₂ и оксидом олова, легированным фтором (FTO). На стадии 2 методом распылительного пиролиза добавлялся слой с-ТіО₂ толщиной порядка десятков нанометров. Затем на стадии 3 наносился слой mp-TiO₂, за которым следовало нанесение перовскита (стадия 4) и Spiro-OMeTAD (стадия 5). Последние три слоя наносились методом центрифугирования. Далее с использованием имитатора солнечной энергии были измерены ВАХ ПСЭ для второй партии из 24 образцов. В результате этих измерений было получено среднее значение тока короткого замыкания $J_{sc}^{exp} = 20.07 \,\mu\text{A/cm}^2$ со стандартным отклонением 0.99 µA/cm² при освещенности 1000 W/m². Измерения коэффициента пропускания всего устройства проводились с помощью спектрофотометра UV-VIS CARY 4000 при нормальном падении в диапазоне длин волн 200-800 nm. Наши измерения показали, что достаточно изготовить шесть образцов на каждой стадии, чтобы получить надежный результат для среднего значения. Приблизительная толщина каждого слоя материала (табл. 1) была оценена с помощью методов сканирующей электронной микроскопии.

Для теоретического анализа количества прошедшего $T^{th}(\lambda)$, поглощенного $\alpha(\lambda)$ и отраженного света в каждом из материалов, формирующих архитектуру ПСЭ, мы использовали моделирование трассировки лучей с помощью пакета OTSun python [4]. В основе моделирования лежит метод Монте-Карло. При этом оптические характеристики описывались с помощью уравнений

Таблица 1. Диапазон толщин слоев материалов, присутствующих в образцах ПСЭ, измеренных с помощью сканирующей электронной микроскопии

Материал	Толщина, nm		
SiO ₂	10-30		
SnO ₂ FTO	10-30 500-600		
c-TiO ₂	10-30		
mp-TiO ₂	180-300		
Перовскит Spiro-OMeTAD	400-550 200-250		

Френеля в их наиболее общем виде с дополнением методом матрицы переноса (ММП) для учета явления интерференции [5] (см. детали в [6]).

Комплексные показатели преломления следующих материалов были взяты из литературы: FTO [7], TiO₂ [8], Spiro-OMeTAD [9]. В случае SnO₂ и SiO₂ использовались данные производителя материала. Показатель преломления стекла был рассчитан на основе измерений коэффициента пропускания. Для определения комплексного показателя материала *mp*-TiO₂ использовалась модель теории среднего объема [10]. Свойства *mp*-TiO₂ ассоциировались с эффективной средой, содержащей смесь *c*-TiO₂ и воздуха (см. далее). Комплексный показатель преломления перовскита (FAPbI₃) был взят из работы [11].

Для сравнения теоретических и экспериментальных показателей пропускания необходимо определить сочетания толщин функциональных слоев (далее конфигурация) структуры ПСЭ. Используя измеренные диапазоны значений (табл. 1), мы рассчитывали конфигурацию образца на каждой стадии производственного процесса

Параметр	Параметр	Слои				
	c-TiO ₂	<i>mp</i> -TiO ₂	Перовскит	Spiro-OMeTAD		
	χ, eV	4	4	3.75	2.12	
	E_g , eV	3.05	3.05	1.66	3.1	
	m_e^*/m_e	1	1	1	1	
	m_h^*/m_e	1	1	1	1	
	$N_{d/a}, \mathrm{cm}^{-3}$	$1\cdot 10^{18}$	Переменная	0	$1 \cdot 10^{21}$	
	μ , cm ² /(V · s)	0.006	0.006	Переменная	0.0001	
	ε	60	42.45	60	3	
	l_D , nm	4	4	Переменная	0.5	

Таблица 2. Характеристики рассматриваемых полупроводников: TiO₂, FAPbI₃ (перовскит), Spiro-OMeTAD (для модели [14])

Примечание. χ – сродство к электрону, E_g — ширина запрещенной зоны, $m_{e/h}^*/m_e$ — эффективная масса электрона/дырки, $N_{d/a}$ — концентрация доноров/акцепторов, μ — подвижность, ε — диэлектрическая проницаемость, l_D — длина диффузии. Определение диэлектрической проницаемости m_P -TiO₂ (значение выделено жирным шрифтом) обсуждается в тексте (см. уравнение (2)).

Рис. 2. Вольт-амперные характеристики. Широкая полоса вокруг экспериментальной кривой указывает границы отклонений от среднего значения при измерении экспериментальных образцов.

с помощью ММП для получения наилучшего согласия с экспериментальными данными. Для достижения нашей цели вычислялась среднеквадратичная ошибка (RMSE)

$$\text{RMSE} = \frac{1}{N} \sqrt{\sum_{\lambda=300}^{\lambda=800} \left[T^{exp}(\lambda) - T^{th}(\lambda) \right]^2}.$$
 (1)

Здесь N — общее число шагов для заданного интервала длин волн с шагом в 1 nm. Например, сначала проводились расчеты для стадии 1 с рассмотрением конфигураций из следующих диапазонов толщин (nm): 10–30 для SnO₂ и SiO₂, 500–600 для FTO. В результате выбирались конфигурации, находящиеся в пределах 1% от наименьшей RMSE. Далее проводились аналогичные расчеты для последующих стадий с учетом уменьшенных диапазонов, найденных на предыдущей стадии.

Окончательными средними значениями толщин слоев в изготовленных ПСЭ считались те, которые давали наилучшее совпадение измеренного тока короткого замыкания J_{sc}^{exp} и теоретического значения J_{sc}^{th} . Для расчета J_{sc}^{th} использовались метод, предложенный в [12], и библиотека ММП [13]. Результаты расчетов тока короткого замыкания показали сравнительно малую чувствительность к изменению толщины перовскита и Spiro-OMeTAD. Согласно нашему анализу, "оптимальная" конфигурация, наилучшим образом соответствующая полученным экспериментальным данным, имела следующие толщины (nm): 11 (SiO₂), 16 (SnO₂), 565 (FTO), 24 (*c*-TiO₂), 240 (*mp*-TiO₂, пористость 20%), 500 (перовскит), 250 (Spiro-OMeTAD).

Используя "оптимальную" конфигурацию толщин, мы рассчитывали ВАХ ПСЭ, решая уравнения транспортной модели [14]. Характеристики функциональных слоев (табл. 2) являлись входными параметрами. Среди них имелись "переменные" параметры. Их значения определялись из условия наилучшего совпадения измеренной средней и рассчитанной ВАХ ПСЭ.

Например, для выполнения расчетов в рамках транспортной модели мы должны были определить диэлектрическую проницаемость и электропроводность слоя *mp*-TiO₂ $\sigma_{mp} = q\mu_{mp}N_{mp}$, где μ_{mp} — подвижность большинства носителей заряда, а N_{mp} — концентрация легирующего вещества. Анализ оптических свойств показал, что слой *mp*-TiO₂ содержит заполненные воздухом отверстия (пористость). Поскольку концентрация этих отверстий невелика (20%), диэлектрическая проницаемость такой смеси имеет следующий вид (см. детали в [15]):

$$\varepsilon_{mix} = \varepsilon_{\text{TiO}_2} + c \frac{3(\varepsilon_a - \varepsilon_{\text{TiO}_2})\varepsilon_{\text{TiO}_2}}{\varepsilon_a + 2\varepsilon_{\text{TiO}_2}},$$
(2)

где $\varepsilon_{\text{TiO}_2}$ и ε_a — диэлектрические проницаемости TiO₂ и воздуха соответственно, *с* — концентрация отверстий. Можно допустить, что электропроводность в этом слое также должна быть снижена по крайней мере на 20%. В расчетах предполагалось, что подвижность носителей остается такой же, как и в слое *c*-TiO₂ ($\mu_{mp} = \mu_c$), тогда как концентрация доноров определялась соотношением $N_{mp} \leq 0.8N_c$, где N_c — концентрация доноров в слое *c*-TiO₂. Таким образом, из условия наилучшего совпадения измеренной средней и рассчитанной ВАХ были найдены следующие параметры: эффективная концентрация доноров в слое mp-TiO₂ ($N_{mp} = 1 \cdot 10^{17} \, \mathrm{cm}^{-3}$), подвижность носителей в слое провскита ($\mu = 50 \, \mathrm{cm}^2/(\mathrm{V} \cdot \mathrm{s})$) и время их жизни $(\tau = 0.7 \, \text{ns})$. Это позволило оценить диффузионную длину в перовските $l_D = \sqrt{\mu k_{\rm B} T \tau / |e|} = 0.3 \,\mu{\rm m}$. Отметим, что полученные нами значения для N_{mp}/µ находятся в пределах, известных из литературы: $10^{16} - 10^{19} \,\mathrm{cm}^{-3}$ для N_{mp} [16] и 5-50 cm²/(V · s) для μ [17]. При найденных параметрах было получено замечательное соответствие между рассчитанными и измеренными усредненными ВАХ (рис. 2): ток короткого замыкания $J_{sc}^{exp}(J_{sc}^{th}) = 20.072$ (20.076) μ A/cm², напряжение холостого хода $V_{oc}^{exp}(V_{oc}^{th}) = 0.985$ (0.984) V, коэффициент заполнения ВАХ $FF_{oc}^{exp}(FF_{oc}^{th}) = 0.695(0.703),$ КПД^{*exp*} (КПД^{*th*}) = 13.735(13.882)%.

Таким образом, предложенный подход позволил определить усредненные характеристики различных функциональных слоев экспериментального образца и его эффективность. Данный подход может быть использован для оптимизации архитектуры разрабатываемого ПСЭ с целью получения высокой ЭПЭ изготавливаемого образца.

Благодарности

F. Bonnin-Ripoll выражает благодарность Каталонскому институту нанонауки и нанотехнологии (ICN2, Барселона) за прекрасные условия, предоставленные для выполнения экспериментальных исследований.

Финансирование работы

Работа выполнена при финансовой поддержке Министерства науки Испании (проект TED2021-132758В-I00, MCIN/AEI/10.13039/501100011033/), правительства Балеарских островов (проект FPI/2144/2018), Российского научного фонда (проект 23-19-00884).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S.I. Seok, Nature, 598, 444 (2021). DOI: 10.1038/s41586-021-03964-8
- [2] X. Yu, H.N. Tsao, Z. Zhang, P. Gao, Adv. Opt. Mater., 8, 2001095 (2020). DOI: 10.1002/adom.202001095
- [3] H. Xie, Z. Wang, Z. Chen, C. Pereyra, M. Pols, K. Gałkowski, M. Anaya, S. Fu, X. Jia, P. Tang, D.J. Kubicki, A. Agarwalla, H.S. Kim, D. Prochowicz, X. Borrisé, M. Bonn, C. Bao, X. Sun, S.M. Zakeeruddin, L. Emsley, J. Arbiol, F. Gao, F. Fu, H.I. Wang, K.J. Tielrooij, S.D. Stranks, S. Tao, M. Grätzel, A. Hagfeldt, M. Lira-Cantú, Joule, 5, 1246 (2021). DOI: 10.1016/JJOULE.2021.04.003

- [4] G. Cardona, R. Pujol-Nadal, PLoS ONE, 15, e0240735 (2020). DOI: 10.1371/journal.pone.0240735
- [5] S.J. Byrnes, *Multilayer optical calculations* (2020). DOI: 10.48550/arXiv.1603.02720
- [6] F. Bonnin-Ripoll, Y.B. Martynov, G. Cardona, R.G. Nazmitdinov, R. Pujol-Nadal, Solar Energy Mater. Solar Cells, 200, 110050 (2019).
 DOI: 10.1016/j.solmat.2019.110050
- [7] E. Ching-Prado, A. Watson, H. Miranda, Science: Mater. Electron., 29, 15299 (2018).
 DOI: 10.1007/s10854-018-8795-8.
- [8] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, A. Tünnermann, Adv. Opt. Mater., 4, 1780 (2016). DOI: 10.1002/adom.201600250.
- [9] C.W. Chen, S.Y. Hsiao, C.Y. Chen, H.W. Kang, Z.Y. Huang, H.W. Lin, J. Mater. Chem. A, 3, 9152 (2015). DOI: 10.1039/C4TA05237D
- [10] N.J. Hutchinson, T. Coquil, A. Navid, L. Pilon, Thin Solid Films, 518, 2141 (2010). DOI: 10.1016/J.TSF2009.08.048
- [11] H.W. Chen, D.P. Gulo, Y.C. Chao, H.L. Liu, Sci. Rep., 9, 18253 (2019). DOI: 10.1038/s41598-019-54636-7
- [12] J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang, E.J.W. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, H.J. Snaith, Energy Environ. Sci., 8, 602 (2015). DOI: 10.1039/C4EE03224A.
- [13] S. Byrnes, tmm 0.1.7: Python Package Index (2017).
- [14] F. Bonnín-Ripoll, Y.B. Martynov, R.G. Nazmitdinov, G. Cardona, R. Pujol-Nadal, Phys. Chem. Chem. Phys., 23, 26250 (2021). DOI: 10.1039/d1cp03313a
- [15] Л.Д. Ландау, Е.М. Лифшиц, Электродинамика сплошных сред (Наука, М., 1982), с. 67–69.
- [16] M.C. Sellers, E.G. Seebauer, Thin Solid Films, 519, 2103 (2011). DOI: 10.1016/J.TSF.2010.10.071
- [17] L.M. Herz, ACS Energy Lett., 2, 1539 (2017).
 DOI: 10.1021/acsenergylett.7b00276.